
This is the accepted manuscript made available via CHORUS. The article has been
published as:

Noninvertible duality transformation between symmetry-
protected topological and spontaneous symmetry breaking

phases
Linhao Li, Masaki Oshikawa, and Yunqin Zheng

Phys. Rev. B 108, 214429 — Published 22 December 2023
DOI: 10.1103/PhysRevB.108.214429

https://dx.doi.org/10.1103/PhysRevB.108.214429


Non-Invertible Duality Transformation Between SPT and SSB Phases

Linhao Li,1 Masaki Oshikawa,1, 2 and Yunqin Zheng1, 2

1Institute for Solid State Physics, University of Tokyo, Kashiwa, Chiba 277-8581, Japan
2Kavli Institute for the Physics and Mathematics of the Universe,

University of Tokyo, Kashiwa, Chiba 277-8583, Japan

In 1992, Kennedy and Tasaki constructed a non-local unitary transformation that maps between a Z2 ×
Z2 spontaneously symmetry breaking phase and the Haldane gap phase, which is a prototypical Symmetry-

Protected Topological phase in modern framework, on an open spin chain. In this work, we propose a way to

define it on a closed chain, by sacrificing unitarity. The operator realizing such a non-unitary transformation

satisfies non-invertible fusion rule, and implements a generalized gauging of the Z2×Z2 global symmetry. These

findings connect the Kennedy-Tasaki transformation to numerous other concepts developed for SPT phases, and

opens a way to construct SPT phases systematically using the duality mapping.

I. INTRODUCTION

Symmetry-Protected Topological (SPT) phases are one

of the central issues in contemporary quantum many-body

physics. While the concept of SPT phases was established [1–

4] after the discovery of topological insulators [5,6]—the free

electron version of SPT phases, a prototypical example of

the bosonic SPT phases [7]—the Haldane gap phase, was

found much earlier. Although Haldane’s initial prediction was

only that the Heisenberg antiferromagnetic chains with inte-

ger spins are “massive” (with a non-zero excitation gap and

exponentially decaying correlation functions), it was gradu-

ally recognized that the Haldane gap phase has various exotic

properties.

In [8], Affleck, Kennedy, Lieb, and Tasaki constructed

exact ground state wavefunctions for a certain generalized

Heisenberg antiferromagnetic chains, which are now called

AKLT states/models. We can naturally see from its construc-

tion, the AKLT model on an open chain exhibits free fraction-

alized edge spins [9]. Moreover, although there is no long-

range order in the conventional sense that can be detected by

correlation functions of local operators, the AKLT state can

be characterized by a non-local string order parameter [10].

It was also confirmed numerically that these properties are

not specific to the AKLT model but are characteristics of the

Haldane gap phase including the ground state of the standard

Heisenberg antiferromagnetic chain with S = 1.

Kennedy and Tasaki [11,12] demonstrated that these two

apparently unrelated features of the S = 1 Haldane gap phase

can be understood as consequences of the spontaneous break-

ing of a hidden Z2 × Z2 symmetry. That is, they showed

that many S = 1 spin Hamiltonians with short-range inter-

actions on an open chain are mapped to Hamiltonians with

short-range interactions by a non-local unitary transformation

now called Kennedy-Tasaki (KT) transformation. While the

Kennedy-Tasaki transformation was introduced specifically

for S = 1 chains in a complicated way in the original lit-

erature, a simple compact expression, which is valid for any

integer spin, was found as

UKT =
∏

i>j

exp
(
iπSz

i S
x
j

)
(1)

by one of the authors of the present work [13]. It maps the

spin operators as follows:

UKTS
x
j UKT

† = Sx
j e

iπ
∑

k<j Sx
k , (2)

UKTS
z
jUKT

† = eiπ
∑

k>j
Sz
kSz

j , (3)

UKTS
y
j UKT

† = eiπ
∑

k>j
Sz
kSy

j e
iπ

∑
k<j

Sx
k . (4)

While the local spin operators are mapped to non-local opera-

tors, many of the spin chain Hamiltonians of interest are sums

of local (i.e. defined over a short range) quadratic forms of

spin operators and thus are mapped to another Hamiltonian

with short-range interactions by the Kennedy-Tasaki transfor-

mation. The Hamiltonian obtained in this way generally pos-

sesses a dihedral symmetry of global spin rotations (π-rotation

about x, y, and z axes), which is isomorphic to the Z2 × Z2.

A spontaneous breaking of this “hidden” Z2 × Z2 symmetry

implies the long-range string order in the original system, as

well as a four-fold ground-state degeneracy of the open chain

signaling the existence of the fractional S = 1/2 edge spins

[14].

It is remarkable that, the recognition of the “Haldane gap

phase” as a nontrivial phase, which cannot be characterized by

any local order parameter but is distinct from a trivial phase,

was established by early 1990s even though the clear concept

of the SPT phases was missing. In fact, in the early days,

the Haldane gap phase was sometimes called “topological”

or “topological ordered” without a clear definition [15]. To

be specific, what was lacking at that time was the recogni-

tion that a certain symmetry is required for the Haldane gap

phase to be distinct from the trivial phase. In retrospect, how-

ever, the global Z2 ×Z2 symmetry could have been identified

as a symmetry protecting the Haldane gap phase, since it is

the condition for the Kennedy-Tasaki transformation to give a

Hamiltonian with short-range interactions [3].

A comment is in order on the terminology. Although

the Kennedy-Tasaki transformation (1) is a highly non-local

transformation, the symmetry operators

Rα = eiπ
∑

j Sα
j (α = x, y, z), (5)

implementing the Z2 × Z2 transformation are invariant under

the Kennedy-Tasaki transformation:

UKTR
αU †

KT = Rα, (6)
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because the eigenvalues of eiπS
α
j are ±1 and eiπS

α
j = e−iπSα

j ,

for α = x, y, z [16]. In this sense, the Z2 × Z2 symmetry is

not exactly “hidden”, since it is (a subset of) the symmetry of

the original Hamiltonian with the open boundary condition.

However, it is certainly appropriate that the SPT phase corre-

sponds to the hidden (spontaneous) breaking of the symmetry,

because the symmetry is not spontaneously broken in the SPT

phase before applying the Kennedy-Tasaki transformation.

Since the discovery of the concept of the SPT phases, sig-

nificant progress has been made on many fronts. In particu-

lar, systematic classifications in general dimensions have been

studied, uncovering the deep relation to topological quantum

field theory and algebraic topology [4, 17–21]. Given the his-

tory, it would be worthwhile to revisit the Kennedy-Tasaki

transformation, which played a significant role in understand-

ing the Haldane gap phase 30 years ago, from the modern

perspective. It is indeed the goal of the present paper.

It must be mentioned that various properties, generaliza-

tions and applications of the vanilla Kennedy-Tasaki trans-

formation have been explored. The hidden symmetry break-

ing order in models of spin-1/2 and higher integer spin was

studied in [22–25]. The relation between the hidden symme-

try breaking order and SPT order with a broad class of sym-

metry, such as ZN × ZN , was discussed in [26–28]. More-

over, the Kennedy-Tasaki transformation can disentangle the

twofold degeneracy entanglement spectrum of spin-1 Heisen-

berg chain [29,30]. Besides, the phase diagram of a (1 + 1)d
model, which is defined by interpolating between the spin-1

bilinear-biquadratic chain and its Kennedy-Tasaki dual, was

discussed in [31].

However, most of the discussions of the (generalized)

Kennedy-Tasaki transformation so far focused on open bound-

ary conditions; to the best of the authors’ knowledge, the

Kennedy-Tasaki transformation on closed chains has not been

explored. In fact, there are several apparent difficulties in

defining on closed chains.

1. The highly non-local unitary operator (1) depends on

the ordering of the sites. On an open chain, the ordering

is well-defined. However, for the closed chain, there is

no consistent ordering. The site i to the left of another

site j can also be viewed as to the right of j by going

around the ring.

2. An SPT phase on a closed chain only has a single

non-degenerate ground state. However, an SSB phase

has multiple degenerate ground states. Hence the two

Hamiltonians on a closed chain can not be mapped to

each other via a unitary transformation.

Nevertheless, there are several reasons to consider this

transformation beyond on open chains. First, it is theoretically

demanding that a physically well-defined operation should be

applicable to all boundary conditions. Second, twisting the

boundary condition on a closed chain is useful to character-

ize the SPT phases. In order to exploit the twisted bound-

ary conditions as a probe, it is desirable to construct the

Kennedy-Tasaki transformation on closed chains. Third, al-

though Kennedy-Tasaki transformation has a rather compact

expression (1), its physical interpretation is not quite clear.

This is perhaps one of the reasons why this intriguing trans-

formation has not been generalized beyond the Haldane gap

phase (Z2 × Z2-protected SPT phase in one dimension). As

we will find later in this work, by investigating the transforma-

tion on a closed chain, we are able to find a more transparent

physical interpretation from a modern viewpoint: it is simply

gauging the Z2 × Z2 symmetry with certain twist.

In this work, we propose that the Kennedy-Tasaki transfor-

mation can be defined on closed chains by sacrificing unitarity

or by expanding the Hilbert space by including “twist” sec-

tors corresponding to different boundary conditions. We make

two attempts to define the Kennedy-Tasaki transformation on

a ring.

1. The first attempt is to define the Kennedy-Tasaki trans-

formation for spin-1 system by naively implementing

(2), (3) and (4) on a ring.

2. The second attempt is to propose a non-unitary trans-

formation NKT acting on a ring where each unit cell

contains two spin- 12 ’s. For convenience, we also call

NKT the Kennedy-Tasaki transformation. Similar gen-

eralizations of the Kennedy-Tasaki transformation to

the spin- 12 systems with open boundary condition were

constructed earlier [22,23]. Our construction is also in-

spired by the recent work [32–34]. We will show that

NKT satisfies the desired properties: it maps an Z2×Z2

SSB phase to an Z2 × Z2 SPT phase both on a closed

and open chain.

The Kennedy-Tasaki transformation from the two attempts

will be shown to be equivalent on a ring. In particular, the

transformations for both spin-1 and two spin- 12 systems are

non-unitary transformations and satisfy the non-invertible fu-

sion rules, which is a generalization of the famous Kramers-

Wannier duality transformation. Such duality transforma-

tions have been extensively discussed in recent years, both in

(1 + 1)d[35–43] and in higher dimensions[44–56]. When the

system is invariant under the duality transformation, the oper-

ator NKT becomes a non-invertible symmetry of the system.

Although the two attempts can be shown to be equivalent,

the construction in the second attempt is more convenient

to manipulate because the degrees of freedom charged un-

der two Z2’s are decoupled. The first and the second spin-
1
2 are charged under separate Z2’s respectively. Moreover,

the decoupling between degrees of freedom admits a more

convenient interpretation of twisted gauging, similar to the

Kramers-Wannier duality transformation which implements

gauging of the Z2 global symmetry. This interpretation also

facilitates the construction of new models with interesting

topological features. In an upcoming work [57], we will ap-

ply the Kennedy-Tasaki transformation to systematically con-

struct a series of gapless SPT phases that have been recently

explored in [58–62] and uncover new ones.

This paper is organized as follows. In Section II, we sys-

tematically review the Kramers-Wannier (KW) transforma-

tion on closed and open chains respectively, as a preparation

for a more complicated Kennedy-Tasaki transformation. The
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Kramers-Wannier transformation on a closed chain is well-

known to be non-unitary and the operators implementing the

Kramers-Wannier transformation satisfy the non-invertible fu-

sion rule. However, on an open chain with the free bound-

ary condition, the Kramers-Wannier transformation can be

defined as a unitary transformation, as it was pointed out in

Ref. [63]. In Section III, we define the Kennedy-Tasaki trans-

formation for spin-1 systems on a ring, and find that it is non-

unitary and obeys the non-invertible fusion rule. In Section

IV, we motivate that the Kennedy-Tasaki transformation im-

plements a twisted gauging, via field theory formulation. In

Section V, we define the Kennedy-Tasaki transformation for

spin- 12 systems on a ring, and explore nice properties in par-

allel with the Kramers-Wannier transformations. These prop-

erties coincide with those in Section III. In Section VI, we

place the Kennedy-Tasaki transformation for spin- 12 systems

on an interval, and find that it becomes a unitary operator. In

Section VII, we explain how to construct the typical represen-

tative model of SPT—the cluster model, using the Kennedy-

Tasaki transformation. Finally in Section VIII, we prove the

equivalence between the Kennedy-Tasaki transformations for

spin-1 and spin- 12 systems.

II. KRAMERS-WANNIER TRANSFORMATION

To prepare for the reformulation of the Kennedy-Tasaki

transformation, we first discuss the Kramers-Wannier trans-

formation. While the Kramers-Wannier transformation has

been known for many years, here we shall formulate it pre-

cisely, with an emphasis on modern concepts such as non-

invertible fusion rules and mapping between symmetry and

twist sectors. This is not only because it is a precursor of

the Kennedy-Tasaki transformation as a nonlocal duality map-

ping; we will reformulate the Kennedy-Tasaki transformation

based on the Kramers-Wannier transformation in later sec-

tions.

The Kramers-Wannier transformation was initially con-

ceived as a duality mapping between a higher temperature

and a lower temperature of the two-dimensional classical

Ising model [64]. The simple assumption of the existence

of the single phase transition between the disordered and or-

dered phases, combined with the Kramers-Wannier transfor-

mation, determines the critical temperature on the square lat-

tice uniquely. As a typical example of the general correspon-

dence between classical statistical systems in 2 dimensions

and quantum many-body systems in 1 spatial dimension, the

quantum transverse-field Ising chain defined by the Hamilto-

nian

Hh
Ising = −

∑

i

(
σz
i−1σ

z
i + hσx

i

)
. (7)

is a counterpart of the two-dimensional classical Ising model.

The Kramers-Wannier transformation can be also defined for

the quantum spin model (7) in one spatial dimension [65].

(In fact, the Kramers-Wannier transformation is applicable to

more general systems and not limited to the particular model,

as we will see later.) However, there are subtleties related to

the boundary conditions of the system, as we will discuss be-

low.

Recently, the Kramers-Wannier transformation has been

also reformulated from the modern viewpoint. The transverse-

field Ising chain (7) has a global Z2 symmetry, which is gen-

erated by the simultaneous flip of spin at every site. This is

a typical example of an “on-site symmetry” because the sym-

metry generator is a product of single-site operators. Natu-

rally, such a symmetry can be gauged by introducing local

gauge transformation (local spin flips). The Kramers-Wannier

transformation may be identified with such a “gauging” oper-

ation of the Z2 symmetry[36–41] .

In terms of field theory, the gauging is understood as a topo-

logical manipulation corresponding to an insertion of a line

defect N in (1+1)-dimensional space-time, to obtain the new

system T /Z2 from a given system T with the global Z2 sym-

metry. The defect satisfies the fusion rule of “Ising-category”

N † ×N = 1 + U,

Û ×N = N × U = N ,

U × U = 1.

(8)

where U and Û are the topological line defects that gener-

ate the Z2 symmetry in T and the Z2 symmetry in T /Z2.

This fusion rule implies that N lacks its inverse; the Kramers-

Wannier transformation is thus “non-invertible”. While this

statement may look rather abstract, in the following we will

define the Kramers-Wannier transformation carefully on the

lattice, with a particular emphasis on subtleties concerning the

symmetry and twist sectors. Our discussion leads to a more

precise version of the fusion rule, and elucidates its physical

meaning. The prior knowledge of the fusion rule (8) is not

necessary to follow the discussion in this Section.

A. Kramers-Wannier transformation on a closed chain

Let us consider a spin chain with L sites. Each site supports

one spin- 12 spanning a two dimensional local Hilbert space

|si〉, where si = 0, 1 and i = 1, ..., L. The state can be acted

upon by spin measurement and spin flip Pauli operators in the

standard way,

σz
i |si〉 = (−1)si |si〉 , σx

i |si〉 = |1− si〉 . (9)

We also assume that the spin system has an on-site Z2 global

symmetry, generated by

U =

L∏

i=1

σx
i (10)

which flips the spins on every site simultaneously. The states

can be organized into eigenstates of U as Z2 even state with

the eigenvalue of U to be (−1)u = 1, i.e. u = 0, and Z2

odd state with the eigenvalue of U to be (−1)u = −1, i.e.

u = 1. Moreover, one can also use the Z2 symmetry to twist

the boundary condition of the spins as

|si+L〉 = (σx
i )

t |si〉 = |si + t〉 , (11)
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hence the spins obey either periodic boundary condition

(PBC), i.e. t = 0 or twisted boundary condition (TBC), i.e.

t = 1. In summary, one can organize the Hilbert space into

four symmetry-twist sectors, labeled by (u, t) ∈ {0, 1}2.

It is also useful to define a set of “dual” spin- 12 ’s on the links

between sites. We use half-integers to label the position of

links, and dual spins are labeled by ŝi− 1
2

’s, where i = 1, ..., L.

They also span local Hilbert spaces on the links |ŝi− 1
2
〉. The

states are acted upon by Pauli operators τz
i− 1

2

and τx
i− 1

2

, simi-

lar as (9),

τzi− 1
2

|ŝi− 1
2
〉 = (−1)

ŝ
i− 1

2 |ŝi− 1
2
〉 ,

τxi− 1
2

|ŝi− 1
2
〉 = |1− ŝi− 1

2
〉 .

(12)

The dual on-site Z2 global symmetry acting on the links, gen-

erated by

Û =

L∏

i=1

τxi− 1
2

. (13)

Likewise, the dual Hilbert space can also be organized into

four sectors labeled by (û, t̂) ∈ {0, 1}2. Note that the spins

and the dual spins do not exist as independent degrees of free-

dom simultaneously, rather, one determines the other by the

Kramers-Wannier transformation.

Following [38], the Kramers-Wannier transformation

would be defined as the operator N acting on the Hilbert

space, in terms of the matrix elements

〈{ŝi− 1
2
}|N |{si}〉 ∼ 1

2L/2
(−1)

∑
j sj(ŝj− 1

2

+ŝ
j+1

2

)
(14)

∼ 1

2L/2
(−1)

∑
j
(sj−1+sj)ŝj− 1

2 , (15)

on an infinite chain, where the above two expressions are

equivalent. However, on the finite ring, the summation should

be limited to L sites (or dual sites), and the boundary condi-

tions should be carefully examined.

Let us start from the expression (14) and limit the summa-

tion to
∑L

j=1. The last term in the sum contains sLŝL+1/2.

If we are to define the dual spins ŝ on the half-integer sites

1/2, 3/2, . . . , L − 1/2, ŝL+ 1
2

should be replaced by ŝ1/2 + t̂

(modulo 2), using the boundary condition t̂ = 0, 1 for the

dual spin. Then the Kramers-Wannier transformation on the

ring seems to be given by

〈{ŝi− 1
2
}|N |{si}〉

∼ 1

2L/2
(−1)

∑L
j=1

sj ŝj− 1
2

+
∑L−1

j=1
sj ŝj+ 1

2

+sL ŝ 1
2

+t̂sL
.

(16)

On the other hand, starting from Eq. (15) and limiting the sum-

mation to
∑L

j=1, we find the “boundary term” s0ŝ 1
2

. Replac-

ing s0 with sL + t, we find

〈{ŝi− 1
2
}|N |{si}〉

∼ 1

2L/2
(−1)

∑
L
j=1

sj ŝj− 1
2

+
∑L−1

j=1
sj ŝj+ 1

2

+sLŝ 1
2

+tŝ 1
2 .

(17)

In this way, we can “derive” two different (and inequivalent)

expressions for the Kramers-Wannier transformation on the

ring.

It turns out that the correct expression for the Kramers-

Wannier transformation on the ring includes both boundary

factors appearing in Eqs. (16) and (17), and is given as

〈{ŝi− 1
2
}|N |{si}〉

=
1

2L/2
(−1)

∑
L
j=1

sj ŝj− 1
2

+
∑L−1

j=1
sj ŝj+ 1

2

+tŝ 1
2

+t̂sL
.

(18)

We will confirm that this is the appropriate definition of the

Kramers-Wannier transformation by explicit calculations. In

particular, the boundary terms can be fixed by matching how

the symmetry-twist sectors are mapped from gauging Z2, as

in [66]. The above expression can be also written as either

〈{ŝi− 1
2
}|N |{si}〉 =

1

2L/2
(−1)

∑
L
j=1

(sj−1+sj)ŝj− 1
2

+t̂sL
,

(19)

where s0 = sL + t is understood, or

〈{ŝi− 1
2
}|N |{si}〉 =

1

2L/2
(−1)

∑
L
j=1

sj

(
ŝ
j− 1

2

+ŝ
j+1

2

)
+tŝ 1

2 ,

(20)

where ŝL+ 1
2
= ŝ 1

2
+ t̂ is understood. Eqs. (18), (19), and (20)

are equivalent, while they contain an extra factor compared to

the naive versions (16) or (17).

The operator N acts on the Hilbert space of the entire sys-

tem at a certain “time slice”. Thus it corresponds to a de-

fect line parallel to the spatial axis in the (1 + 1)-dimensional

space-time. We remark that by exchanging the role of space

and time, the operator N can be interpreted as a defect in the

Hilbert space. This point of view was more often adopted in

the recent discussions of non-invertible defects and their fu-

sion rules [44, 47 and 50]. We will only work with operator

N acting on the Hilbert space in this work. Moreover, the

N operator defined this way is independent of the underlying

Hamiltonian. Instead one can use [H,N ] |{si}〉 = 0 to con-

strain the possible Hamiltonians which are self-dual under the

Kramers-Wannier transformation.

B. Fusion rules

We proceed to discuss the fusion rule involving N and U .

Since we have defined the duality and symmetry defects as

operators N and U , the “fusion” is simply given as a product

of the operators. We start from a general state of the original

spins

|ψ〉 =
∑

{si}
ψ{si} |{si}〉 (21)

where ψ{si} is the wavefunction of the spin variables.

Let us first consider N × U .
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N × U |ψ〉
=N

∑

{si}
ψ{1−si} |{si}〉

=
1

2L/2

∑

{ŝ
i− 1

2

},{si}
ψ{1−si}(−1)

∑
L
j=1

(sj−1+sj)ŝj− 1
2

+t̂sL |{ŝi− 1
2
}〉

=
1

2L/2

∑

{ŝ
i− 1

2

},{si}
ψ{si}(−1)

∑
L
j=1

(sj−1+sj)ŝj− 1
2

+t̂(1−sL) |{ŝi− 1
2
}〉

=(−1)t̂N |ψ〉 .

(22)

This implies the fusion rule

N × U = (−1)t̂N . (23)

This fusion rule is slightly different from the standard fusion

rule in the Ising fusion category (8), by the additional factor

(−1)t̂. Such a factor can be traced back to the additional term

t̂sL in (18). Here, we would like to argue that (−1)t̂ makes

sense.

The fusion rule (23) implies that the spin-flip parity u of the

original spins is linked to the boundary condition t̂ of the dual

spins. That is, for any parity eigenstate

U |Ψ〉 = (−1)u|Ψ〉, (24)

it follows from Eq. (23) that

(−1)t̂ (N|Ψ〉) = (−1)u (N|Ψ〉) , (25)

namely

t̂ = u. (26)

It is useful to see (23) in a diagrammatic way. Let us justify

this in the Ising CFT. In the Ising CFT, there are three local

primary operators, the trivial operator, the energy operator ε
and the spin operator σ. The spin operator is Z2 odd, while the

energy operator is Z2 even. Let us first prepare a Z2 odd state

|σ〉 in the untwisted sector, by acting σ on the vacuum state

|0〉. In the radial quantization picture, the state is represented

by placing σ at the origin. Let us act U and N on the state, by

wrapping U and N subsequently around σ. We then shrink

the U operator in two different ways as shown in Figure 1.

Shrinking U inward means acting U on |σ〉, and we obtain

a minus sign since σ is Z2 odd. One can also expand the U
outwards. By applying the F-move several times[36, 38, 39,

67–70], and one finds that U can be absorbed by N . Hence

the N |ψ〉 vanishes in the untwisted sector.

How about the N |ψ〉 in the twisted sector? We thus need

to consider the configuration as shown in Figure 2, where the

state after acting by N is in the twisted sector. Since in the ra-

dial quantization, the radial direction is the time, there should

be a Z2 defect line along the time/radial direction outside of

the N . We again deform the U operator in two ways, either

shrinking inwards or expanding outwards. Shrinking inwards

again yields a nontrivial sign since σ is Z2 odd. However, by

using the F-moves, expanding U outwards also yields a mi-

nus sign, which comes from FN
U,N ,U = −1. Hence two ways

of deforming U does not lead to any constraint, and indeed

N |ψ〉 is in general non-vanishing. Similar discussions can be

applied when we insert a Z2 even local operator at the origin,

and the conclusions for the untwisted and twisted sectors are

exchanged.

The above discussion shows that the standard fusion rule

N×U = N holds only when the state after Kramers-Wannier

is in the untwisted sector. When we work within the twisted

sector, the fusion rule is modified by a minus sign.

We next compute the fusion rule N † × N . To do so, we

note that so far N is only defined on the Hilbert space on sites

spanned by |{sj}〉, but not on the Hilbert space on links. The

latter can be defined in a similar way,

N † |{ŝj− 1
2
}〉 = 1

2L/2

∑

{sj}
(−1)

∑L
j=1

(ŝ
j− 1

2

+ŝ
j+ 1

2

)sj+ŝ 1
2

t |{sj}〉 .

(27)

Then N † ×N proceeds as



6

σ

U

N

=
− σ N

=

σ

U

N =
σ N

FIG. 1. Shrink the U operator inwards and expanding U outwards yield opposite signs. This means that N |ψ〉 for Z2 odd |ψ〉 vanishes in the

untwisted sector.

σ

U

N

=

U
− σ N

U

=

σ

U

N

U

= − σ N

U

FIG. 2. Shrink the U operator inwards and expanding U outwards yield the same minus sign. This is consistent with the fact that N |ψ〉 for

Z2 odd |ψ〉 is in general non-vanishing in the twisted sector.

N † ×N |ψ〉

=
1

2L/2

∑

{ŝ
i− 1

2

},{si}
ψ{si}(−1)

∑L
j=1

(sj−1+sj)ŝj− 1
2

+t̂sLN |{ŝi− 1
2
}〉

=
1

2L

∑

{ŝ
i− 1

2

},{si},{s′i}
ψ{si}(−1)

∑
L
j=1

(sj−1+sj)ŝj− 1
2

+t̂sL
(−1)

∑
L
k=1

(ŝ
k−

1
2

+ŝ
k+1

2

)s′k+ŝ 1
2

t′ |{s′j}〉

=
1

2L

∑

{ŝ
i− 1

2

},{si},{s′i}
ψ{si}(−1)

∑
L
j=1

(sj−1+sj+s′j−1+s′j)ŝj− 1
2 (−1)t̂(sL+s′L) |{s′j}〉

=
∑

{si},{s′i}
ψ{si}δsj−1+sj+s′

j−1
+s′

j
(−1)t̂(sL+s′L) |{s′j}〉 .

(28)

Solving the constraints for sj−1 + sj + s′j−1 + s′j = 0 for

every j yields to solutions, s′j = sj for all j, or s′j = sj + 1
for all j, which subsequently implies t = t′. In other words,

N † ×N |ψ〉
=
∑

{si}
ψ{si} |{sj}〉+

∑

{si}
ψ{1−si}(−1)t̂ |{sj}〉

=(1 + (−1)t̂U) |ψ〉 .

(29)



7

This implies the fusion rule

N † ×N = 1 + (−1)t̂U. (30)

The fusion rule (30) again differs from the standard one N †×
N = 1 + U by a factor (−1)t̂. This means that the standard

fusion rule (8) holds only when the state in the intermediate

state (after applying one Kramers-Wannier transformation) is

in the untwisted sector. Indeed this is as expected, because

if the intermediate state is in the twisted sector, there is a U
connecting the two N ’s. See Figure 3.

C. Mapping between symmetry-twist sectors

We have already shown in Eq. (26) that the spatial twist

(boundary condition) t̂ of the dual spins is linked to the spin-

flip parity u of the original spins, via the Kramers-Wannier

transformation.

Let us also clarify the relation between the spin-flip parity

û of the dual spins and the spatial twist t of the original spins.

We assume |ψ〉 is with in the sector labeled by (u, t), i.e.

ψ{1−si} = (−1)uψ{si}, si+L = si + t. (31)

To determine the symmetry-twist sectors under Kramers-

Wannier transformation, we first compute the resulting state

using the representation (19) of the Kramers-Wannier trans-

formation as

N |ψ〉 =
∑

{ŝ
i− 1

2

}
ψ̂{ŝ

i− 1
2

} |{ŝi− 1
2
}〉 ,

ψ̂{ŝ
i− 1

2

} =
1

2L/2

∑

{si}
ψ{si}(−1)

∑L
j=1

(sj−1+sj)ŝj− 1
2

+t̂sL
.

(32)

The symmetry sector û is determined by ψ̂{1−ŝ
i− 1

2

} =

(−1)ûψ̂{ŝ
i− 1

2

}. From (32), we find

ψ̂{1−ŝ
i− 1

2

} =
1

2L/2

∑

{si}
ψ{si}(−1)

∑L
j=1

(sj−1+sj)(1−ŝ
j− 1

2

)+t̂sL

=
1

2L/2

∑

{si}
ψ{si}(−1)

∑L
j=1

(sj−1+sj)ŝj− 1
2

+t̂sL
(−1)

∑L
j=1

sj−1+sj

= (−1)tψ̂{ŝ
i− 1

2

}.

(33)

This shows that the dual Z2 symmetry after Kramers-Wannier

transformation is determined by the twist before this transfor-

mation,

û = t. (34)

Combining (34) and (26), we find that given a state |ψ〉 in

the symmetry-twist sector (u, t), under the Kramers-Wannier

transformation, the resulting state N |ψ〉 is in the symmetry-

twist sector (û, t̂) = (t, u). The above results of the sector

mapping under Kramers-Wannier transformation are summa-

rized in Table I.

From the sector mapping, it is also obvious that the

Kramers-Wannier transformation is not unitary, consistent

with the observation in Section II D. For instance, Kramers-

Wannier transformation annihilates a Z2 odd untwisted state

if one is within the untwisted sector after this transformation.

(Note that we should fix one boundary condition (or twist

sector) to discuss a transformation.) Hence the probability

is in general not conserved under Kramers-Wannier transfor-

mation, and this again shows that the N is non-unitary. The

non-unitarity will further be reflected by the non-invertibility

in its fusion rule.

D. (Non-)unitarity of Kramers-Wannier transformation

Now let us examine the unitarity of the Kramers-Wannier

transformation as defined in Eq. (18). For this purpose, we

evaluate N †N , which should be equal to the identity operator

if N were unitary. It can be evaluated explicitly, in the same

way as the fusion rule (30). As a result, we find

N †N = 1 + (−1)t̂U. (35)

The fact that the right-hand side is not identical to identity im-

plies that N is not unitary for a given t̂. In fact, N annihilates

the odd spin-flip parity sector (u = 1) if t̂ = 0, or the even

spin-flip parity sector (u = 0) if t̂ = 1. Therefore N is not

invertible.

On the other hand, we can take a different viewpoint [71].

If we regard the spatial twists t, t̂ as extra degrees of freedom

associated to the original and dual spin systems, or equiva-

lently, regard the twisted and untwisted sectors as different

Hilbert spaces, the Kramers-Wannier transformation just shuf-

fles among the different sectors as in Table I and is unitary.

Mathematically, t̂ can then be regarded as an extra dual spin,

and thus a summation over t̂ = 0, 1 should be taken in the

intermediate dual spin state, resulting in N †N = 1 from

Eq (35).
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N

N †

= 1 +
U

N

N †

= 1 −
UU

FIG. 3. The left is the standard fusion rule, where the state in the middle belongs to the untwisted sector. The right is the modified fusion rule,

where the state in the middle belongs to the twisted sector.

|ψ〉 t = 0 t = 1
u = 0 S U

u = 1 T V

N |ψ〉 t̂ = 0 t̂ = 1
û = 0 S T

û = 1 U V

TABLE I. Symmetry-twist sectors of the theories before and after the Kramers Wannier transformation. The Z2 even twisted sector is ex-

changed with the Z2 odd untwisted sector.

E. Kramers-Wannier transformation and Z2 gauging

As mentioned earlier in this Section, the Kramers-Wannier

transformation amounts to gauging the non-anomalous72
Z2

global symmetry. We start with the partition function of

theory X with a non-anomalous Z2 global symmetry whose

background field is A, i.e. ZX [X2, A]. Gauging Z2 yields

another theory X/Z2, whose partition function is

ZX/Z2
[X2, Â]

=
1

|H0(X2,Z2)|
∑

a∈H1(X2,Z2)

ZX [X2, a](−1)
∫
X2

aÂ (36)

where Â is the background gauge field for the dual Z2 sym-

metry of X/Z2.

The mapping between the symmetry and twist sectors has

been discussed in [66, 73, and 74]. Let us briefly review the

results. We first place the system on a torus, X2 = T 2. The

gauge fields can thus be replaced by their holonomies A →
{Wt,Wx},

ZX/Z2
[Ŵt, Ŵx] =

1

2

∑

wt,wx=0,1

ZX [wt, wx](−1)wtŴx+wxŴt .

(37)

The partition functions in different symmetry and twist sectors

labeled by (u, t) are given by

Z
(u,t)
X =

1

2

∑

wt=0,1

ZX [wt, t](−1)uwt

(38)

and the converse relation is

ZX [wt, wx] =
∑

u=0,1

Z
(u,wx)
X (−1)uwt . (39)

The symmetry and twist sectors for X/Z2 are likewisely de-

fined. Combining (37), (38) and (39), we find
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Z
(û,t̂)
X/Z2

=
1

2

∑

ŵt=0,1

ZX/Z2
[ŵt, t̂](−1)ûŵt

=
1

4

∑

ŵt=0,1

∑

wt,wx=0,1

ZX [wt, wx](−1)wtt̂+wxŵt+ûŵt

=
1

4

∑

ŵt=0,1

∑

wt,wx=0,1

∑

u=0,1

Z
(u,wx)
X (−1)uwt+wt t̂+wxŵt+ûŵt

=
∑

wx=0,1

∑

u=0,1

Z
(u,wx)
X δu,t̂δwx,û = Z

(t̂,û)
X .

(40)

This is precisely the mapping between symmetry and twist

sectors (û, t̂) = (t, u) derived using the Kramers-Wannier

transformation on the lattice.

The fusion rule of the topological interface between X and

X/Z2 can also be derived, following [44, 45, 47, and 50].

We will not repeat the derivation here, and refer the interested

readers to these references, e.g. Section 2 of [45]. One re-

mark is that in deriving the fusion rule between the duality

interfaces N † × N , one does not turn on the Z2 defects U
in the vicinity of the locus of N , hence the fusion rule cor-

responds to the left panel of Figure 3. This point has already

been emphasized in [50].

F. Kramers-Wannier transformation on the transverse field

Ising Hamiltonian

The Hamiltonian is a sum over local interactions given by

the Pauli operators. Let us first consider how the Pauli opera-

tors are mapped under Kramers-Wannier transformation. It is

straightforward to check that

τxi− 1
2

N |ψ〉 = Nσz
i−1σ

z
i |ψ〉 ,

τzi− 1
2

τzi+ 1
2

N |ψ〉 = Nσx
i |ψ〉 (41)

where i = 1, ..., L. Now let us consider the transverse Ising

chain (7). When the system is defined on a ring, the Hamilto-

nian is more precisely specified as

Hh
Ising = −

L∑

i=1

(
σz
i−1σ

z
i + hσx

i

)
, (42)

with the identification of site 0 with site L as in Eq. (11).

Note that the boundary conditions are already encoded into

the Hilbert spaces. For example, σz
0 |s0〉 = (−1)s0 |s0〉 =

(−1)sL+t |s0〉. Hence effectively σz
0 = (−1)tσz

L, and one

should replace the term σz
0σ

z
1 by (−1)Lσz

Lσ
z
1 , which is a more

common convention used in the literature (for example [75

and 76]). Using the above map (41), the Kramers-Wannier

dual Hamiltonian of the transverse Ising chain (42) is

Ĥh
Ising = −

L∑

i=1

(
τxi− 1

2

+ hτzi− 1
2

τzi+ 1
2

)
. (43)

By shifting the spins on the links to the sites (which is simply

a relabeling), one finds that

Hh
Ising = hĤ

1/h
Ising. (44)

Given the duality mapping of the Hamiltonian, we can

see why the Kramers-Wannier transformation must be non-

invertible, and why the unitarity can be restored by expanding

the Hilbert space by including the twisted sector. Let us con-

sider the ordered phase h ≪ 1 of the Ising model of the orig-

inal spins. The ground states are two-fold degenerate, corre-

sponding to the spontaneous magnetization “up” and “down”.

The Kramers-Wannier transformation maps this model to the

Ising model of the dual spins in the disordered phase, where

the ground state is unique. As a consequence, the Kramers-

Wannier transformation must map the two ground states to

one, and thus is non-unitary and non-invertible. In our con-

struction, the 2-to-1 mapping is achieved by projecting out

one of the spin-flip parity sectors.

On the other hand, the Ising model in the disordered phase

is insensitive to the boundary condition. Therefore, the

ground-state energy under the twisted boundary condition is

asymptotically degenerate with that under the periodic bound-

ary condition. If we expand the Hilbert space by including the

twisted sector, the ground states are two-fold degenerate. In

contrast, when the Ising model is in the ordered phase, the

twisted boundary condition introduces a domain wall with a

non-zero energy. As a consequence, the ground-state energy

in the twisted sector is higher than that in the untwisted sector

(periodic boundary condition). Thus the ground-state degen-

eracy remains 2 (coming from the spontaneous breaking of

the spin-flip symmetry) even if the Hilbert space is expanded.

The Kramers-Wannier transformation between the extended

Hilbert spaces can be invertible (and unitary). Of course the

present argument which focuses on the ground state alone

does not prove the invertibility or unitarity, but it gives a phys-

ical perspective on the unitarity we have shown by an explicit

calculation in Sec. II D.

G. Kramers-Wannier transformation on an interval: A

unitary transformation

We proceed to discuss the Kramers-Wannier transformation

on an open chain. Although the operator N implementing
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the Kramers-Wannier transformation is non-unitary and satis-

fies the non-invertible fusion rule, the N under certain open

boundary conditions is unitary [63].

Suppose the open chain contains sites i = 1, ..., L, and the

dual spins live on half-integer links i − 1
2 for i = 1, ..., L.

We begin by modifying (18) such that only the terms that are

fully supported will be kept in the exponent, i.e. free boundary

condition. Concretely,

N |{si}〉

=
1

2L/2

∑

{ŝ
i− 1

2

}
(−1)

∑
L
j=2

sj−1 ŝj− 1
2

+
∑

L
j=1

sj ŝj− 1
2 |{ŝi− 1

2
}〉 .

(45)

Note that we also dropped the term t̂SL because the twisted

boundary condition is well defined only on closed chains.

It is immediate to check that N is a unitary transformation,

by directly checking 〈{si}|N †N |{s′i}〉. To see this, we com-

pute

〈{si}|N †N |{s′i}〉

=
1

2L

∑

{ŝ
i− 1

2

},{ŝ′
i− 1

2

}
〈{ŝi− 1

2
}| (−1)

∑L
j=2

sj−1 ŝj− 1
2

+
∑L

j=1
sj ŝj− 1

2 (−1)

∑
L
j=2

s′j−1 ŝ
′

j− 1
2

+
∑

L
j=1

s′j ŝ
′

j− 1
2 |{ŝ′i− 1

2

}〉

=
1

2L

∑

{ŝ
i− 1

2

}
(−1)

∑
L
j=2

(sj−1+s′j−1)ŝj− 1
2

+
∑

L
j=1

(sj+s′j)ŝj− 1
2

=

L∏

i=1

δsi,s′i .

(46)

This shows that N †N = I , hence N is a unitary operator. It

should be contrasted to the non-unitarity of N on the closed

chain.

It is useful to find the mapping between Pauli operators.

Our goal is to solve Oz
j ({σx,z

k }) satisfying

τxj− 1
2

N |ψ〉 = NOx
j ({σx,z

k }) |ψ〉 ,
τzj− 1

2

N |ψ〉 = NOz
j ({σx,z

k }) |ψ〉 (47)

for any |ψ〉. The calculation is straightforward, and the result

is

Ox
j ({σx,z

k }) =
{
σz
j−1σ

z
j , j = 2, ..., L

σz
1 , j = 1

,

Oz
j ({σx,z

k }) =
L∏

k=j

σx
k .

(48)

As a consistency check, the commutation relations between

τx,z
j− 1

2

match those between Ox,z
j ({σx,z

k }). These maps will

become useful in Section VIII.

Let us now discuss the Kramers-Wannier transformation of

the Ising model Hamiltonian on an open chain, which was

also discussed in [35]. Because of the mapping, the standard

Ising model defined on the open chain is not exactly self-dual;

Eqs. (7) is not mapped to Eq. (43) by the Kramers-Wannier

transformation on the open chain. More precisely, we find

Hh
open Ising = −σz

1 −
L∑

i=2

σz
i−1σ

z
i − h

L∑

i=1

σx
i (49)

is dual to

Ĥh
open Ising = −

L∑

i=1

τxi− 1
2

− h

L−1∑

i=1

τzi− 1
2

τzi+ 1
2

− hτzL− 1
2

. (50)

Note the existence of the longitudinal magnetic fields (cou-

pled to the z-component of the spin) at the boundary in ei-

ther side. The boundary longitudinal magnetic field breaks the

spin-flip symmetry explicitly. As a consequence, the ground

state is unique (chosen by the boundary longitudinal magnetic

field) even in the ordered phase. This resolves the obstacle

to the unitarity of the Kramers-Wannier transformation dis-

cussed in Sec. II D, as the mapping of the ground states now

becomes 1 to 1.

Alternatively, to maintain the spin-flip symmetry of the

original spins, we can omit the boundary longitudinal field

−σz
1 in Eq. (49). In this case, the ground state in the ordered

phase h < 1 is two-fold degenerate, reflecting the sponta-

neous symmetry breaking. The dual Hamiltonian lacks the

transverse field −τx1
2

at the end of the chain. The edge spin

at 1/2 is still coupled to the neighboring one by the Ising

coupling τz1
2

τz3
2

. Therefore, in the ordered phase of the dual

spins (which corresponds to the disordered phase of the orig-

inal spins), the end spin is polarized and the ground state is
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unique (since the spin-flip symmetry is explicitly broken by

the boundary longitudinal field at the other end L− 1
2 ). On the

other hand, in the disordered phase of the dual spins (which

corresponds to the ordered phase of the original spins), the

end spin at 1/2 has no favored direction; this implies the pres-

ence of the spin-1/2 “edge mode” and the ground states are

two-fold degenerate. As a result, the Kramers-Wannier trans-

formation does preserve the number of the ground states: 1 to

1 mapping in the disordered phase (of the original spins) and

2 to 2 in the ordered phase. This means that Kramers-Wannier

transformation can be unitary, as it was indeed shown by the

explicit calculations.

The fact that the spontaneous symmetry breaking of the

global symmetry of the original spin system corresponds to

the edge state in the dual spin system can be also read off from

the mapping (48). The global spin-flip operatorU =
∏L

j=1 σ
x
j

is mapped to the single spin operator τz1
2

at the end of the dual

spin chain.

The Kramers-Wannier duality between the spontaneous

breaking of the global symmetry and the edge state is remi-

niscent of the Kennedy-Tasaki transformation. However, there

are important differences. While the Kramers-Wannier trans-

formation on an open chain maps the global symmetry gener-

ator to the local operator at the end of the chain as we have

seen above, the Kennedy-Tasaki transformation on an open

chain preserves the global symmetry generators as in Eq. (6).

Nevertheless, they are deeply related, as we will see in the

following sections.

III. KENNEDY-TASAKI TRANSFORMATION ON A RING

OF SPIN-1 PER UNIT CELL

As we have discussed in the Introduction, the Kennedy-

Tasaki transformation as a unitary transformation has been

discussed exclusively for open boundary conditions. The

transformation (1) appears to be ill-defined for the periodic

boundary conditions, as it depends on the ordering of the sites.

Furthermore, the SPT phase with a unique ground state should

be mapped to the phase breaking the Z2×Z2 symmetry with 4

degenerate ground states, which seems impossible with a uni-

tary transformation. However, as we have seen in Secs. II C

and II D, the latter problem could be resolved by matching the

symmetry sector and the boundary condition in the case of

Kramers-Wannier transformation.

To formulate the Kennedy-Tasaki transformation (1) on a

ring, we have to overcome two apparent difficulties mentioned

in the introduction: 1) the lack of natural ordering on a ring,

and 2) the mismatch of ground state degeneracy. The second

difficulty has been briefly mentioned above, and we have seen

a resolution in the case of the Kramers-Wannier transforma-

tion. We will come back to this later.

How to address the ordering problem on a ring? The key

observation is that although it seems hard to define the unitary

operatorUKT on a ring, the transformation on spin-1 operators

(2), (3) and (4) have a natural definition on the ring! Note that

the Kennedy-Tasaki transformation simply addresses a string

operator that generates the Z
x
2 × Z

z
2 symmetry to the spins,

similar to both Kramers-Wannier and Jordan-Wigner transfor-

mations [61, 66, 74, and 77]. We thus define the Kennedy-

Tasaki transformation on a ring by specifying how the spin-1

operators map:

S′x
j = Sx

j e
iπ

∑j−1

k=1
Sx
k ,

S′z
j = eiπ

∑L
k=j+1

Sz
kSz

j = Rzeiπ
∑j

k=1
Sz
kSz

j ,

S′y
j = eiπ

∑
L
k=j+1

Sz
kSy

j e
iπ

∑j−1

k=1
Sx
k .

(51)

where j = 1, ..., L. When j = 1, the string eiπ
∑j−1

k=1
Sx
k =

1 is trivial; when j = L, the string eiπ
∑L

k=j+1
Sz
k = 1 is

trivial. Indeed, the commutation relations among S′x,y,z
j are

still those of the standard spin-1 operators.

a. Mapping between symmetry sectors: We proceed to

discuss how the symmetry sectors and boundary conditions

transform under the map (51). First symmetry operatorsRα =

eiπ
∑L

j=1
Sα
j are invariant under the transformation,

R′α = Rα, α = x, y, z, (52)

as we have shown in Eq. (6). Denoting the eigenvalue of Rα

as (−1)uα , we thus have

u′x = ux mod 2, u′z = uz mod 2. (53)

b. Mapping between boundary conditions: The bound-

ary condition is specified by

Sx
j+L = (−1)tzSx

j , Sz
j+L = (−1)txSz

j . (54)

Note that under Zx
2 generated by Rx, the Sz

j flips sign, hence

the boundary condition for Sz
j is labeled by tx. Then the

boundary condition for the S′x,z
j can be determined from (51)

via

S′x
j+L = Sx

j+Le
iπ

∑j+L−1

k=1
Sx
k = (−1)tzSx

j e
iπ

∑j−1

k=1
Sx
kRx

= (−1)tz+uxSx
j ,

S′z
j+L = RzSz

j+Le
iπ

∑j+L

k=1
Sx
k

= (−1)txRzSz
j e

iπ
∑j

k=1
Sz
kRz = (−1)tx+uzSz

j

(55)

which implies

t′z = tz + ux mod 2, t′x = tx + uz mod 2. (56)

Although the generalization of the Kennedy-Tasaki transfor-

mation from the open chain to the closed chain as in (51)

looks naive, the mapping between the symmetry and twist

sectors (53) and (56) match precisely with mapping induced

by the twisted gauging to be discussed in Section V B. The

above relations are also very much reminiscent of the similar,

well-known relation for the Jordan-Wigner transformation on

a ring [77,66].

In condensed matter literatures, the boundary condition is

more conventionally specified by modifying one term in the

Hamiltonian that crosses the boundary. It is useful to derive

(56) from this conventional point of view. For example, let’s

consider the Heisenberg Hamiltonian under Zx
2 × Z

z
2 twisted

boundary condition
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H =

L−1∑

i=1

(
JxS

x
j S

x
j+1 + JyS

y
j S

y
j+1 + JzS

z
j S

z
j+1

)
+ (−1)tzJxS

x
LS

x
1 + (−1)tz+txJyS

y
LS

y
1 + (−1)txJzS

z
LS

z
1 . (57)

Under Kennedy-Tasaki transformation, the above Hamiltonian is mapped to

HKT =

L−1∑

i=1

(
Jxe

iπSx
j Sx

j S
x
j+1 + Jye

iπSx
j Sy

j S
y
j+1e

iπSz
j+1 + JzS

z
j S

z
j+1e

iπSz
j+1

)

+ (−1)tz+uxJxe
iπSx

LSx
LS

x
1 + (−1)tz+tx+ux+uzJye

iπSx
LSy

LS
y
1e

iπSz
1 + (−1)tx+uzJzS

z
LS

z
1e

iπSz
1

(58)

from which we again read off the mapping between the bound-

ary conditions and the symmetry sectors as in (53) and (56).

This also resolves the issue of the ground-state degeneracy

for the Kennedy-Tasaki transformation on the ring. Similarly

to the discussion on the Kramers-Wannier transformation in

Sec. II D, spontaneous breaking of the Z2 × Z2 symmetry

implies a 4-fold ground state degeneracy under the periodic

boundary condition, with one ground state in each of the 4

symmetry sectors uz, ux = 0, 1. Since a twisted boundary

condition introduces a domain wall with positive energy, the

twisted sectors tz = 1 or tx = 1 do not contribute ground

states in the extended Hilbert space. On the other hand, the

Kennedy-Tasaki dual of the symmetry-broken phase is the

Haldane SPT phase, which does not have a long-range or-

der and thus is insensitive to the boundary conditions. As a

consequence, the ground states in each of the 4 twist sectors

t′z, t
′
x = 0, 1 are degenerate, resulting in the 4-fold ground-

state degeneracy (in the extended Hilbert space). Therefore,

in the extended Hilbert space, the Kennedy-Tasaki transfor-

mation induces a 4-to-4 mapping of the ground states and

thus can be unitary. This is analogous to the unitarity of the

Kramers-Wannier mapping in the extended Hilbert space, as

discussed in Sec. II D and in Ref. [71]. If we focus on the

untwisted Hilbert space only (i.e. PBC), the Kennedy-Tasaki

transformation is non-unitary.

IV. FIELD-THEORY FORMULATION OF THE

KENNEDY-TASAKI TRANSFORMATION

In the previous section, we have observed that the Kennedy-

Tasaki transformation can be defined on a ring by sacrificing

unitarity. Moreover, the unitarity can be restored by includ-

ing twisted sectors. In order to obtain deeper insights, let us

formulate the Kennedy-Tasaki transformation in terms of field

theory.

Let us denote the partition function of an arbitrary QFT X
with non-anomalousZ2×Z2 symmetry asZX [A1, A2], where

Ai is the background field for the i-th Z2. When X is in the

trivial phase, the fixed point partition function is

ZTri[A1, A2] = 1. (59)

When X is in the Z2×Z2 SSB phase, the fixed point partition

function is

ZSSB[A1, A2] = δ(A1)δ(A2). (60)

When X is in the Z2×Z2 SPT phase, the fixed point partition

function is [78,79]

ZSPT[A1, A2] = (−1)
∫
A1A2 . (61)

To see how these theories are related, we define the following

topological manipulations:

S : ZS12X [A1, A2] :=
1

|H0(X2,Z2)|2
∑

a1,a2∈H1(X2,Z2)

ZX [a1, a2](−1)
∫
X2

a1A2+a2A1

T : ZT12X [A1, A2] := ZX [A1, A2](−1)
∫
X2

A1A2 .

(62)

The first topological manipulation S is gauging the Z2×Z2.80

The second one is stacking a Z2 × Z2 SPT. With the above

operations, we are able to fit the three theories (59), (60) and

(61) into the following web,
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SSB Trivial SPT
S T

T S (63)

The only combination of the topological manipulations that

exchanges SPT and SSB while preserving the trivial phase is

STS = TST. (64)

The two expressions are related by the identity of SL(2,Z2),
i.e. (ST )3 = 1. However, it will become clear that when

formulating the topological manipulations on an open chain,

there are subtle differences between STS and TST , and STS
turns out to be simpler which is what we will use. The above

discussion strongly suggests that the Kennedy-Tasaki trans-

formation should simply be the STS transformation.

In the following sections, we will implement STS trans-

formation, which was conceived in field theory, on spin

chains. For this purpose, it is convenient to consider spin

chains with two spin- 12 ’s per unit cell, rather than the spin-

1 chains discussed in the original literature on the Kennedy-

Tasaki transformation. The implementation on the spin- 12
models is also useful in elucidating the deep connection be-

tween the Kramers-Wannier and Kennedy-Tasaki transforma-

tions. We will also discuss the relation between the Kennedy-

Tasaki transformation for the spin- 12 models and the original

Kennedy-Tasaki transformation for the spin-1 chains.

V. KENNEDY-TASAKI TRANSFORMATION ON A RING

OF TWO SPIN- 1
2

’S PER UNIT CELL

In this section, we discuss the Kennedy-Tasaki transforma-

tion implementing STS on a ring. Parallel to the study of

Kramers-Wannier transformation, we study the fusion rules,

mapping between symmetry and twist sectors, mapping be-

tween local operators, etc.

A. Non-invertible Kennedy-Tasaki transformation

Let us consider a spin chain with L sites and L links. Each

site supports one spin- 12 , spanning a two dimensional local

Hilbert space |sσi 〉, where sσi = 0, 1 and i = 1, ..., L. More-

over, each link also supports one spin- 12 spanning a two di-

mensional local Hilbert space |sτ
i− 1

2

〉, where sτ
i− 1

2

= 0, 1 for

i = 1, ..., L. Hence each unit cell contains two spin- 12 ’s.81

The local states can be acted upon by Pauli operators,

σz
i |sσi 〉 = (−1)s

σ
i |sσi 〉 ,

σx
i |sσi 〉 = |1− sσi 〉

τzi− 1
2

|sτi− 1
2

〉 = (−1)
sτ
i− 1

2 |sτi− 1
2

〉 ,
τxi− 1

2

|sτi− 1
2

〉 = |1− sτi− 1
2

〉 .

(65)

The Z2 × Z2 symmetry is generated by Uσ and Uτ respec-

tively, where

Uσ =
L∏

i=1

σx
i , Uτ =

L∏

i=1

τxi− 1
2

. (66)

The symmetry and twist sectors are labeled by

(uσ, uτ , tσ, tτ ). Here uσ, uτ are the eigenvalues of Uσ, Uτ

respectively, and tσ, tτ label the boundary conditions

sσi+L = sσi + tσ, s
τ
i− 1

2
+L

= sτ
i− 1

2

+ tτ .

After the Kramers-Wannier transformation, i.e. S transfor-

mation which gauges Z2×Z2, the spins on sites and the spins

on links are exchanged, and we denote the resulting spins as

ŝσ
i− 1

2

and ŝτi . Likewise, the dual spins can also be organized

into 16 symmetry and twist sectors as (ûσ, ûτ , t̂σ, t̂τ ). Fol-

lowing the definition (18), the Kramers-Wannier transforma-

tion for both Z2’s is

N |{sσi , sτi− 1
2

}〉 = 1

2L

∑

{ŝσ
j− 1

2

,ŝτ
j
}
(−1)

∑L
j=1

sσj (ŝ
σ

j− 1
2

+ŝσ
j+ 1

2

)+tσ ŝ
σ
1
2

+ŝτj (s
τ

j− 1
2

+sτ
j+ 1

2

)+t̂τ s
τ
1
2 |{ŝσj− 1

2

, ŝτj }〉 . (67)

The T transformation amounts to stacking a Z2×Z2 SPT, and the operator implementing such stacking has been discussed
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in [58, 61, and 82], under the name of domain wall decoration

UDW. The UDW acts on the basis state as

UDW |{ŝσi− 1
2

, ŝτi }〉

=(−1)

∑L
j=1

ŝτj (ŝ
σ

j− 1
2

+ŝσ
j+ 1

2

)+t̂τ ŝ
σ
1
2 |{ŝσi− 1

2

, ŝτi }〉 .
(68)

This is a unitary operator. In the above we only defined how

UDW acts on the dual spins, but the action on the original spins

can also be similarly defined. By definition, the STS transfor-

mation is defined to be the product NKT = N †UDWN . When

acting on an arbitrary basis state, we find the Kennedy-Tasaki

transformation ,

NKT |{sσi , sτi− 1
2

}〉 = 1

2L+1

∑

{s′σ
i
,s′τ

i− 1
2

}
(−1)

∑
L
j=1

(sσj +s′σj )(sτ
j− 1

2

+sτ
j+ 1

2

+s′τ
j− 1

2

+s′τ
j+ 1

2

)+(sτ1
2

+s′τ1
2

)(tσ+t′σ)

(
1 + (−1)tσ+t′σ+t̂τ

)(
1 + (−1)tτ+t′τ+t̂σ

)
|{s′σi , s′τi− 1

2

}〉
(69)

where t̂τ , t̂σ label the twist sectors in the intermediate state after one Kramers-Wannier transformation. Since they only appear

in the projectors in the second line, it means that the twist sectors in the intermediate state are completely determined by the

twist sectors of the initial and final states, hence (69) simplifies to

NKT |{sσi , sτi− 1
2

}〉 = 1

2L−1

∑

{s′σ
i
,s′τ

i− 1
2

}
(−1)

∑L
j=1

(sσj +s′σj )(sτ
j− 1

2

+sτ
j+1

2

+s′τ
j− 1

2

+s′τ
j+ 1

2

)+(sτ1
2

+s′τ1
2

)(tσ+t′σ) |{s′σi , s′τi− 1
2

}〉 .
(70)

B. Mapping between symmetry-twist sectors

Let us consider how the symmetry-twist sectors are mapped under the Kennedy-Tasaki transformation (70). We again start

with the general state |ψ〉. Assume |ψ〉 is in the sector labeled by (uσ, uτ , tσ, tτ ), i.e.

ψ{sσ
i
+1,sτ

i− 1
2

} = (−1)uσψ{sσ
i
,sτ

i− 1
2

}, ψ{sσ
i
,sτ

i− 1
2

+1} = (−1)uτψ{sσ
i
,sτ

i− 1
2

}

sσi+L = sσi + tσ, sτi− 1
2
+L = sτi− 1

2

+ tτ .
(71)

Let us determine the symmetry-twist sectors of the state NKT |ψ〉 under the Kennedy-Tasaki transformation. To see this, we

compute

NKT |ψ〉 =
∑

{s′σ
i
,s′τ

i− 1
2

}
ψ′

{s′σ
i
,s′τ

i− 1
2

} |{s′σi , s′τi− 1
2

}〉
(72)

where

ψ′
{s′σ

i
,s′τ

i− 1
2

} =
1

2L+1

∑

{sσ
i
,sτ

i− 1
2

}
ψ{sσ

i
,sτ

i− 1
2

}(−1)

∑
L
j=1

(sσj +s′σj )(sτ
j− 1

2

+sτ
j+1

2

+s′τ
j− 1

2

+s′τ
j+ 1

2

)+(sτ1
2

+s′τ1
2

)(tσ+t′σ)
.

(73)

To see u′σ and u′τ , we compute ψ′
{s′σ

i
+1,s′τ

i− 1
2

} and

ψ′
{s′σ

i
,s′τ

i− 1
2

+1} respectively. For ψ′
{s′σ

i
+1,s′τ

i− 1
2

}, shifting

s′σi by one amounts to multiplying the wavefunction by

(−1)tτ+t′τ , hence we arrive at

u′σ = tτ + t′τ . (74)

For ψ′
{s′σ

i
,s′τ

i− 1
2

+1}, shifting s′τ
i− 1

2

by one amounts to multi-

plying the wavefunction by (−1)tσ+t′σ , hence we arrive at

u′τ = tσ + t′σ. (75)

On the other hand, shifting s′σi by one can be undone by shift-

ing sσi by one, because they always come in the combination

s′σi + sσi . Hence we also have

u′σ = uσ, u′τ = uτ . (76)

Thus the mapping between the symmetry and twist sectors is

(u′σ, u
′
τ , t

′
σ, t

′
τ ) = (uσ, uτ , uτ + tσ, uσ + tτ ). (77)
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This map is represented in the Table II. These mappings

among symmetry/twist sectors are exactly of the same form

as (53) and (56) for the original Kennedy-Tasaki transforma-

tion for S = 1 chain.

(uσ, uτ ; tσ, tτ ) (0, 0) (1, 0) (0, 1) (1, 1)

(0, 0)

(1, 0)

(0, 1)

(1, 1)

TABLE II. Mapping between sectors under the Kennedy-Tasaki, i.e.

STS, transformation. The rows are labeled by (uσ, uτ ), and the

columns are labeled by (tσ, tτ ). The cells without an arrow map to

themselves. The two cells connected by an arrow are mapped to each

other.

C. Non-invertible fusion rules

We proceed to discuss the fusion rule involving NKT, Uσ

and Uτ . We first consider the fusion rule NKT × Uσ . This has

already been discussed in the previous subsection. We first

note that by definition of (66),

NKT |{sσi + 1, sτi− 1
2

}〉 = NKTUσ |{sσi , sτi− 1
2

}〉 . (78)

On the other hand, by the definition of the NKT (70), shifting

sσi by 1 amounts to multiplying

(−1)

∑L
j=1

sτ
j− 1

2

+sτ
j+ 1

2

+s′τ
j− 1

2

+s′τ
j+ 1

2 = (−1)tτ+t′τ . (79)

Hence

NKTUσ |{sσi , sτi− 1
2

}〉 = (−1)tτ+t′τNKT |{sσi , sτi− 1
2

}〉 . (80)

This justifies the fusion rule

NKT × Uσ = (−1)tτ+t′τNKT. (81)

By a similar calculation, we also find that

NKT × Uτ = (−1)tσ+t′σNKT. (82)

We further compute the fusion rule NKT ×NKT. By defini-

tion, we have

NKT ×NKT |{sσi , sτi− 1
2

}〉

=
1

4L−1

∑

{s′σ
i
,s′τ

i− 1
2

,s′′σ
i

,s′′τ
i− 1

2

}
(−1)

∑
L
j=1

(sσj +s′σj )(sτ
j− 1

2

+sτ
j+ 1

2

+s′τ
j− 1

2

+s′τ
j+ 1

2

)+(sτ1
2

+s′τ1
2

)(tσ+t′σ)

× (−1)

∑
L
j=1

(s′′σj +s′σj )(s′′τ
j− 1

2

+s′′τ
j+ 1

2

+s′τ
j− 1

2

+s′τ
j+1

2

)+(s′′τ1
2

+s′τ1
2

)(t′′σ+t′σ) |{s′′σi , s′′τi− 1
2

}〉 .

(83)

We first sum over s′σj which enforces sτ
j− 1

2

+ sτ
j+ 1

2

+ s′′τ
j− 1

2

+ s′′τ
j+ 1

2

= 0 mod 2. Solving this enforces sτ
j− 1

2

+ s′′τ
j− 1

2

to be a

constant cτ . In particular, this constraints tτ = t′′τ . We further sum over s′τ
j− 1

2

which enforces sσj + s′′σj to be a constant cσ . In

particular, this constraints tσ = t′′σ . Finally summing over cτ , cσ ∈ Z2, we find

NKT ×NKT |{sσi , sτi− 1
2

}〉 = 4
(
1 + (−1)tσ+t′σUτ

)(
1 + (−1)tτ+t′τUσ

)
|{sσi , sτi− 1

2

}〉 , (84)

which implies the fusion rule

NKT ×NKT = 4
(
1 + (−1)tσ+t′σUτ

)(
1 + (−1)tτ+t′τUσ

)
.

(85)

Same comments in Section II B also apply here. The non-

trivial signs mean that the presence of additional Z2 × Z2 op-

erators terminating on NKT’s modifies the fusion rule. Usually

when we refer to the fusion rule, we assume Z2×Z2 operators

are all turned off nearby NKT’s, hence tσ,τ = t′σ,τ = 0. After

this simplification, the fusion rule (85) is almost identical to

the standard fusion rule of the Z2 × Z2 Tambara-Yamagami

(TY) fusion category. The only difference is the phase 4 on the

right hand side. It means that our NKT is stacking of the dual-

ity defect in the Z2×Z2 TY category by a (0+1)d Z2 TQFT,

i.e. a two level quantum mechanics. Hence our NKT is a non-

simple operator, but a sum of two simple operators. Such a

simple operator turns out to implement the TST (rather than

STS) transformation.83

The most important information from the fusion rule (85)

is that NKT is a non-invertible operator satisfying the non-

invertible fusion rule, and hence the Kennedy-Tasaki transfor-
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mation associated with STS is a non-unitary transformation.

In particular, NKT annihilates any state that is odd under any

one of the Z2’s, i.e. has eigenvalue −1 under Uτ or Uσ, un-

der the periodic boundary condition (tσ,τ = t′σ,τ = 0). As

we discussed in Section III for the S = 1 chain, we may also

interpret NKT as an unitary operator acting on an extended

Hilbert space.

Despite the disadvantage that the operator NKT being non-

simple, we still prefer STS over TST in our definition, for

which the reason will become clear once we formulate the

Kennedy-Tasaki transformation for spin- 12 system on an open

chain.

D. Kennedy-Tasaki and Z2 × Z2 twisted gauging

We have derived the map between symmetry and twist sec-

tors under the Kennedy-Tasaki transformation implementing

STS, on the lattice. In this subsection, we derive the sec-

tor mapping using the partition function and the definition of

gauging. We start with the partition function of theory X with

a non-anomalousZ2×Z2 global symmetry whose background

fields are A1, A2, i.e. ZX [A1, A2]. The STS transformation

acts on the partition function as

ZSTSX [A′
1, A

′
2] =

1

|H0(X2,Z2)|4
∑

a1,a2,â1,â2

ZX [a1, a2](−1)
∫
X2

a1â2+a2â1+â1â2+A′

1â2+A′

2â1

=
|H1(X2,Z2)|
|H0(X2,Z2)|4

∑

a1,a2

ZX [a1, a2](−1)
∫
X2

a1a2+A′

1a2+A′

2a1+A′

1A
′

2

(86)

where a1 and a2 (â1 and â2) are dynamical gauge field of Z2 × Z2 in first (second) S transformation. H0(X2,Z2) and

H1(X2,Z2) are first and second cohomology on manifold X2 with Z2 coefficient.

To define the symmetry and twist sectors, we formulate the theory on the torus, and summing over gauge fields reduces to

summing over holonomies around the two non-contractible cycles.

ZSTSX [W ′t
1 ,W

′t
2 ,W

′x
1 ,W

′x
2 ] =

1

4

∑

wt
1
,wt

2
,wx

1
,wx

2

ZX [wt
1, w

t
2, w

x
1 , w

x
2 ](−1)w

t
1w

x
2+wx

1w
t
2

(−1)w
t
1W

′x
2 +wx

1W
′t
2 +wt

2W
′x
1 +wx

2W
′t
1 +W ′x

1 W ′t
2 +W ′t

1 W ′x
2 .

(87)

The partition function in terms of the holonomies and in terms

of the symmetry-twist sectors are related via

Z
(uσ ,uτ ,tσ,tτ )
X =

1

4

∑

wt
1
,wt

2

ZX [wt
1, w

t
2, tσ, tτ ](−1)uσw

t
1+uτw

t
2

(88)

and the inverse relation is

ZX [wt
1, w

t
2, w

x
1 , w

x
2 ] =

∑

uσ,uτ

Z
(uσ,uτ ,w

x
1 ,w

x
2 )

X (−1)uσw
t
1+uτw

t
2 .

(89)

Combining the above relations, we find the desired relation

Z
(u′

σ,u
′

τ ,t
′

σ ,t
′

τ )
STSX = Z

(u′

σ,u
′

τ ,u
′

τ+t′σ ,u
′

σ+t′τ )
X := Z

(uσ ,uτ ,tσ,tτ )
X .

(90)

This means that (u′σ, u
′
τ , u

′
τ + t′σ, u

′
σ + t′τ ) = (uσ, uτ , tσ, tτ )

which is equivalent to (77) as well as (53) and (56) for the

spin-1 system.

The fusion rule can also be reproduced from the partition

function approach. The fusion rules for the defect implement-

ing TST have been worked out in [44]. The similar calcula-

tion for STS can be worked out as well. We will not repeat

the exercise here.

VI. KENNEDY-TASAKI TRANSFORMATION ON AN

INTERVAL WITH TWO SPIN- 1
2

’S PER UNIT CELL: A

UNITARY TRANSFORMATION

We proceed to discuss the Kennedy-Tasaki transformation

for spin- 12 system on an open chain. While similar transforma-

tions on an open chain were discussed earlier [22,23], our con-

struction clarifies its connection to various modern concepts

related to SPT phases. Similarly to the Kramers-Wannier

transformation, we will find that although the operator NKT

implementing STS is non-unitary and satisfies non-invertible

fusion rule, the NKT under the free open boundary condition

is a unitary operator.

Suppose the open chain contains sites at coordinate i and

links at coordinate i− 1
2 , with i = 1, ..., L. We begin by mod-

ifying (70) such that only the terms that are fully supported

on the chain will be kept in the exponent, i.e. free boundary

condition. Concretely,

N open
KT |{sσi , sτi− 1

2

}〉 = 1

2L

∑

{s′σ
i
,s′τ

i− 1
2

}
(−1)

∑
L
j=1

(sσj +s′σj )(sτ
j− 1

2

+s′τ
j− 1

2

)
(−1)

∑L−1

j=1
(sσj +s′σj )(sτ

j+ 1
2

+s′τ
j+ 1

2

) |{s′σi , s′τi− 1
2

}〉 .
(91)
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We use the superscript to distinguish N open
KT defined on an in-

terval from the NKT defined on a ring. To check that it is a

unitary transformation, we simply consider the overlap,

〈{sσi , sτi− 1
2

}|N open†
KT N open

KT |{s′σi , s′τi− 1
2

}〉

=
L∏

j=1

δsσ
j
,s′σ

j
δsτ

j− 1
2

,s′τ
j− 1

2

.
(92)

Hence N open
KT is unitary and invertible, whose inverse is

N open†
KT .

Let us examine the Kennedy-Tasaki transformation of spin

operators on the open chain. We can immediately see that

the x-component of the spin operators σx
j , τ

x
j− 1

2

are invariant

under the Kennedy-Tasaki transformation:

N open
KT σx

jN open
KT

†
= σx

j , (93)

N open
KT τxj− 1

2

N open
KT

†
= τxj− 1

2

, (94)

since they are mapped to diagonal operators in τz , σz-basis

by the Kramers-Wannier transformation N . Since these di-

agonal operators commute with UDW, they are mapped back

to the original operators by N †. On the other hand, using the

Kramers-Wannier transformation (48) of the spin operators on

the open chain, and the transformation [58] by UDW

UDWτ
x
j− 1

2

U †
DW =

{
σz
j−1τ

x
j− 1

2

σz
j (j = 2, 3, . . . , L),

τx1
2

σz
1 (j = 1),

(95)

UDWσ
x
j U

†
DW =

{
τz
j− 1

2

σx
j τ

z
j+ 1

2

(j = 1, 2, . . . , L− 1),

τz
L− 1

2

σx
L (j = L),

(96)

and that σz , τz are unchanged by UDW as mentioned above,

we find

N open
KT σz

jN open
KT

†
=

(
j∏

k=1

τxk− 1
2

)
σz
j , (97)

N open
KT τzj− 1

2

N open
KT

†
= τzj− 1

2




L∏

k=j

σx
k


 . (98)

As a consequence of Eq. (93), the symmetry generators (66)

are also invariant. This feature that the symmetry is preserved

under the Kennedy-Tasaki transformation, as it is the case in

the original Kennedy-Tasaki transformation for spin-1 sys-

tems, is particularly convenient, and holds for STS but not

for TST . For TST on an open chain, the symmetry operator

will be mapped to a local operator, which is not the case for

the original Kennedy-Tasaki transformation. This is the main

reason we prefer STS over TST .

VII. GAPPED SPT IN SPIN- 1
2

SYSTEM FROM

KENNEDY-TASAKI TRANSFORMATION

The Kennedy-Tasaki transformation was designed to map

a Z2 × Z2 symmetry spontaneously broken (SSB) phase to a

Z2 × Z2 symmetry protected topological (SPT) phase. It is

straightforward to check at the level of partition function that

STS transformation relates the two, as shown in Section IV.

We will review how the SPT phase can be generated from the

Kennedy-Tasaki transformation for the spin- 12 system.

The Hamiltonian for the Z2 × Z2 SSB phase is

HSSB = −
L∑

i=1

(
σz
i−1σ

z
i + τzi− 1

2

τzi+ 1
2

)
(99)

where the degrees of freedom charged under two Z2’s are de-

coupled. Now we apply the Kennedy-Tasaki transformation.

On an open chain of sites 1, 2, . . . , L, the Hamiltonian reads

Hopen
SSB = −

L∑

i=2

σz
i−1σ

z
i −

L−1∑

i=1

τzi− 1
2

τzi+ 1
2

. (100)

Using Eqs. (97) and (98), we find

H
open

SPT = N open
KT H

open

SSB N open
KT

†

= −
L∑

j=2

σz
j−1τ

x
j− 1

2

σz
j −

L−1∑

j=1

τzj− 1
2

σx
j τ

z
j+ 1

2

.(101)

On the ring, the Kennedy-Tasaki dual of the SSB Hamilto-

nian (99) is given by

HSPT = −
L∑

j=1

(
σz
j−1τ

x
j− 1

2

σz
j + τzj− 1

2

σx
j τ

z
j+ 1

2

)
, (102)

with the boundary conditions as discussed in Sec. V.

The resulting Hamiltonian is precisely the cluster model de-

scribing the Z2 × Z2 gapped SPT [84]. For the sake of com-

pleteness, here we review how the edge states arise in the clus-

ter model defined on an open chain (101) [85]. The Hamilto-

nian (101) is a sum of commuting projectors. Thus, within the

ground-state subspace, all the projectors have eigenvalue one:

σz
j−1τ

x
j− 1

2

σz
j ∼ 1 (j = 2, 3, . . . , L), (103)

τzj− 1
2

σx
j τ

z
j+ 1

2

∼ 1 (j = 1, 2, . . . , L− 1). (104)

Using these relations, the symmetry generators (66) of the

Z2 × Z2 symmetry can be rewritten (within the ground-state

subspace) as Uσ,τ ∼ UL
σ,τ ⊗ UR

σ,τ , where

UL
σ = τz1

2

, (105)

UR
σ = τzL− 1

2

σx
L, (106)

UL
τ = τx1

2

σz
1 , (107)

UR
τ = σz

L. (108)

Thus, within the ground-space subspace, symmetry genera-

tors effectively act only at the localized regions near the ends

of the chain. Since the localized symmetry generators at each

end anticommute (Ua
σU

a
τ = −Ua

τ U
a
σ for a = L,R), there

must be a localized edge state producing two-fold degeneracy,

at each end.
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VIII. EQUIVALENCE BETWEEN KENNEDY-TASAKI

TRANSFORMATIONS IN SPIN-1 AND SPIN- 1
2

SYSTEMS

Finally, we discuss the relation between our Kennedy-

Tasaki transformation NKT in (91) for spin- 12 systems and the

original Kennedy-Tasaki transformation for spin-1 systems,

both on a ring and on an interval.

1. On a ring, the Kennedy-Tasaki transformation for spin-
1
2 system NKT and that for spin-1 system as defined in

(51) are equivalent.

2. On an interval, the Kennedy-Tasaki transformation for

spin- 12 system N open
KT and the original non-local unitary

operator UKT for spin-1 systems are almost equivalent,

up to a symmetry sector dependent sign. This sign is

potentially due to the choice of boundary conditions.

A. Relating the Hilbert space of spin-1 and two spin- 1
2

’s

The Hilbert space for each spin-1 is three dimensional,

whose basis states are denoted as |+〉 , |0〉 and |−〉. The

Hilbert space for two spin- 12 ’s is four dimensional, whose ba-

sis stats are denoted as |↑↑〉 , |↑↓〉 , |↓↑〉 and |↓↓〉. To make a

connection with the two basis, we start with the spin-1 basis

and bring in another spin-0 state to make a four dimensional

Hilbert space. The basis states are mapped as follows,

spin-1 :





|+〉 = |↑↑〉
|0〉 = 1√

2
(|↑↓〉+ |↓↑〉)

|−〉 = |↓↓〉
;

spin-0 :
1√
2
(|↑↓〉 − |↓↑〉)

(109)

where the spin-0 state is the additional state not belonging to

the original Hilbert space. In terms of Pauli operators, we have

Sx
i =

1

2
(σx

i + τxi− 1
2

), Sz
i =

1

2
(σz

i + τzi− 1
2

). (110)

The symmetry generators of Z2 × Z2 are Rx,z defined in

Eq. (5), which correspond to π rotations around the x and

z axises respectively. In terms of spin- 12 variables, the two

symmetry generators are given by

Rx = e
iπ
2

∑
L
j=1

(σx
j +τx

j− 1
2

)
= (−1)L

L∏

j=1

σx
j τ

x
j− 1

2

,

Rz = e
iπ
2

∑L
j=1

(σz
j +τz

j− 1
2

)
= (−1)L

L∏

j=1

σz
j τ

z
j− 1

2

.

(111)

We would like to further identify Rx = Uσ, R
z = Uτ

where Uσ,τ are defined in (66). To achieve this, we need

to perform a basis rotation such that the Pauli operators are

mapped as follows,




σx
i

σz
i

τx
i− 1

2

τz
i− 1

2


→




−σx
i τ

z
i− 1

2

σz
i

τz
i− 1

2

−σz
i τ

x
i− 1

2

.


 (112)

In terms of the rotated Pauli operators, the above Z2 × Z2

symmetry generators are indeed standard ones,
∏L

j=1 σ
x
j and∏L

j=1 τ
x
j− 1

2

.

B. Equivalence on a ring

We proceed to show that when defined on a ring, the

Kennedy-Tasaki transformation for spin- 12 systems, i.e. NKT,

is equivalent to that for spin-1 systems, which was defined in

Section III.

Recall that for spin-1 systems on a ring, we defined the

Kennedy-Tasaki transformation via specifying how the spin

operators transform, as shown in (51). To compare it with

NKT defined in (70), we first derive how the spin- 12 Pauli op-

erators transform on a ring. This can be achieved by showing

the following identities hold when acting on arbitrary basis

states |{sσi , sτi− 1
2

}〉,

NKTσ
z
i = (−1)tσ+t′σ

i∏

j=1

τ ′xj− 1
2

σ′z
i NKT,

NKTτ
z
i− 1

2

= (−1)tτ+t′τ

L∏

j=i

σ′x
j τ

′z
i− 1

2

NKT,

NKTσ
x
i = σ′x

i NKT,

NKTτ
x
i = τ ′xi NKT.

(113)

In brief, we have σz
i = (−1)tσ+t′σ

∏i
j=1 τ

′x
j− 1

2

σ′z
i , τ

z
i− 1

2

=

(−1)tτ+t′τ
∏L

j=i σ
′x
j τ

′z
i− 1

2

, σx
i = σ′x

i and τxi = τ ′xi . Let us

check how (110) and (112) together with (51) reproduces

(113). We first note that combination of (110) and (112) gives

Sx
j = 1

2τ
z
j− 1

2

(1 − σx
j ) and Sz

j = 1
2σ

z
j (1 − τx

j− 1
2

). We then

start with (51),



19

1

2
τzj− 1

2

(1− σx
j ) = Sx

j
(51)
= eiπ

∑j−1

k=1
S′x

kS′x
j = e

iπ
∑j−1

k=1
1
2
τ ′z

k−
1
2

(1−σ′x
k ) 1

2
τ ′zj− 1

2

(1 − σ′x
j )

=

(
j−1∏

k=1

σ′x
k

)
1

2
τ ′zj− 1

2

(1− σ′x
j )

= U ′
σ




L∏

k=j

σ′x
k


 1

2
τ ′zj− 1

2

(1− σ′x
j )

= (−1)u
′

σ




L∏

k=j

σ′x
k


 1

2
τ ′zj− 1

2

(1− σ′x
j ).

(114)

Comparing the first and the last expression, and using the relation tτ + t′τ = u′σ, this is nothing but the second identity in (113).

Similarly, we can also get

1

2
σz
j (1− τxj− 1

2

) = Sz
j

(51)
= eiπ

∑L
k=j+1

S′z
kS′z

j = e
iπ

∑
L
k=j+1

1
2
σ′z
k (1−τ ′x

k−
1
2

) 1

2
σ′z
j (1− τ ′xj− 1

2

)

=




L∏

k=j+1

τ ′
x
k− 1

2


 1

2
σ′z
j (1 − τ ′xj− 1

2

)

= U ′
τ

(
j−1∏

k=1

τ ′
x
k− 1

2

)
1

2
σ′z
j (1− τ ′xj− 1

2

)

= (−1)u
′

τ

(
j−1∏

k=1

τ ′
x
k− 1

2

)
1

2
σ′z
j (1− τ ′xj− 1

2

)

(115)

which, upon using u′τ = tσ + t′σ , reproduces the first equality in (113). This establishes that upon introducing the fourth spin-0

state, the Kennedy-Tasaki transformation for spin-1 systems on a ring is equivalent to that for spin- 12 systems.

C. Almost equivalence on an interval

We finally proceed to show that N open
KT and UKT are almost

equivalent up to a sign depending on the symmetry sectors on

an interval. Since on a closed chain they are equivalent, this

subtle sign may potentially come from the different choice

of boundary conditions. Below, we first recast the N open
KT as a

unitary operator in terms of Pauli operators, and then compare

it with UKT via the map (110) and (112).

a. Recasting N open
KT as an explicit unitary operator: The

Kennedy-Tasaki transformation (91) was defined via specify-

ing how NKT acts on the Hilbert space. It is useful to write

down the operator NKT in terms of Pauli operators explicitly.

As a first step, it is useful to note that NKT is the composi-

tion of N †UDWN , which implements STS. Here N † = N−1

on an open chain implementing Kramers-Wannier transforma-

tions. Note that the two S’s in STS act on different Hilbert

spaces, the second acts on the original one, and the first acts

on the dual one. On a closed chain S is self-conjugate, hence

we don’t distinguish S† and S. However, on an open chain

S† and S are different (dispite S is unitary), and correspond-

ingly N † and N are also different. For simplicity, on the open

chain, we still write the operation as STS, but should keep in

mind that it is implemented by the operator N †UDWN .

We can check N open
KT = N †UDWN explicitly. We first have

N |{sσj , sτj− 1
2

}〉 = 1

2L

∑

{ŝσ
j− 1

2

,ŝτ
j
}
(−1)

∑
L
j=2

(sσj−1+sσj )ŝ
σ

j− 1
2

+sσ1 ŝ
σ
1
2 (−1)

∑L−1

j=1
(sτ

j− 1
2

+sτ
j+ 1

2

)ŝτj +sτ
L−

1
2

ŝτL |{ŝσj− 1
2

, ŝτj }〉 . (116)

Its Hermitian conjugate is

N † |{ŝσj− 1
2

, ŝτj }〉 =
1

2L

∑

{sσ
j
,sτ

j− 1
2

}
(−1)

∑
L
j=2

(sσj−1+sσj )ŝ
σ

j− 1
2

+sσ1 ŝ
σ
1
2 (−1)

∑L−1

j=1
(sτ

j− 1
2

+sτ
j+1

2

)ŝτj +sτ
L−

1
2

ŝτL |{sσj , sτj− 1
2

}〉 .
(117)
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Then we can consider the product,

N †UDWN |{sσj , sτj− 1
2

}〉

=
1

4L

∑

{ŝσ
j− 1

2

,ŝτ
j
},{s′σ

j
,s′τ

j− 1
2

}
(−1)

∑L
j=2

(sσj−1+sσj )ŝ
σ

j− 1
2

+sσ1 ŝ
σ
1
2 (−1)

∑L−1

j=1
(sτ

j− 1
2

+sτ
j+ 1

2

)ŝτj +sτ
L−

1
2

ŝτL

× (−1)

∑L−1

j=1
ŝτj (ŝ

σ

j− 1
2

+ŝσ
j+1

2

)+ŝσ
L−

1
2

ŝτL
(−1)

∑
L
j=2

(s′σj−1+s′σj )ŝσ
j− 1

2

+s′σ1 ŝσ1
2

× (−1)

∑L−1

j=1
(s′τ

j− 1
2

+s′τ
j+1

2

)ŝτj +s′τ
L−

1
2

ŝτL |{s′σj , s′τj− 1
2

}〉 .

(118)

Summing over ŝτj for any j yields ŝσ
j− 1

2

= sτ
j− 1

2

+ s′σ
j− 1

2

for any j. Substituting the solution into the above equation, we find

that

N †UDWN |{sσj , sτj− 1
2

}〉

=
1

2L

∑

{s′σ
i
,s′τ

i− 1
2

}
(−1)

∑
L
j=1

(sσj +s′σj )(sτ
j− 1

2

+s′τ
j− 1

2

)
(−1)

∑L−1

j=1
(sσj +s′σj )(sτ

j+1
2

+s′τ
j+ 1

2

) |{s′σi , s′τi− 1
2

}〉 (119)

which is precisely the definition of N open
KT on an open chain in (91).

Having known that N open
KT = N †UDWN , it is now clear how to find the Pauli operator representation of N open

KT . We first

consider how the operators are mapped under the Kramers-Wannier transformation N ,

σ̂x
j− 1

2

N =

{
Nσz

1 , j = 1

Nσz
j−1σ

z
j , j = 2, ..., L

, σ̂z
j− 1

2

N = N
L∏

k=j

σx
k

τ̂xj N =

{
N τz

j− 1
2

τz
j+ 1

2

, j = 1, ..., L− 1

N τz
L− 1

2

, j = L
, τ̂zj N = N

j∏

k=1

τxk− 1
2

.

(120)

Since N is unitary according to Section II G, the above formula gives N †σ̂x,z

j− 1
2

N and N †τ̂x,zj N . We then apply the above

transformation to UDW, and we get

N †UDWN = N †(−1)
1
4

∑L
j=1

(1−σ̂z

j− 1
2

)(1−τ̂z
j )+

1
4

∑L−1

j=1
(1−σ̂z

j+ 1
2

)(1−τ̂z
j )N

= N †(−1)
1
4

∑L−1

j=1
(1−σ̂z

j− 1
2

σ̂z

j+ 1
2

)(1−τ̂z
j )+

1
4
(1−σ̂z

L−
1
2

)(1−τ̂z
L)N

= (−1)
1
4

∑L−1

j=1
(1−σx

j )(1−
∏j

k=1
τx

k−
1
2

)+ 1
4
(1−σx

L)(1−∏L
k=1

τx

k−
1
2

)

= (−1)
1
4

∑L−1

j=1
(1−σx

j )(1−(
∏

k>j τx

k−
1
2

)(
∏L

k=1
τx

k−
1
2

))
(−1)

1
4
(1−σx

L)(1−∏L
k=1

τx

k−
1
2

)

= (−1)
1
4

∑L−1

j=1
(1−σx

j )(1−
∏

k>j τx

k−
1
2

)
(−1)

1
4

∑
L
j=1

(1−σx
j )(1−

∏
L
k=1

τx

k−
1
2

)

=




L−1∏

j=1

∏

k>j

(−1)
1
4
(1−σx

j )(1−τx

k−
1
2

)


 (−1)

1
4
(1−∏

L
j=1

σx
j )(1−

∏
L
k=1

τx

k−
1
2

)
.

(121)

In the second equality, we used (−1)
1
4
(1−σ̂z

j− 1
2

+1−σ̂z

j+ 1
2

)(1−τ̂z
j )

= (−1)
1
4
(1−σ̂z

j− 1
2

σ̂z

j+ 1
2

)(1−τ̂z
j )

. Indeed, when τ̂zj = 1, both sides

are trivial. When τ̂zj = −1, both sides are 1 if (σ̂z
j− 1

2

, σ̂z
j+ 1

2

) = (1, 1), (−1,−1), but are −1 if (σ̂z
j− 1

2

, σ̂z
j+ 1

2

) = (1,−1), (−1, 1).

The same trick is also applied to the fifth and last equality. The final expression is the NKT in terms of Pauli operators,

N open
KT =




L−1∏

j=1

∏

k>j

(−1)
1
4
(1−σx

j )(1−τx

k−
1
2

)


 (−1)

1
4
(1−Uσ)(1−Uτ ). (122)

We note that this unitary operator is highly non-local.

b. Comparing UKT and N open
KT We finally proceed to re-

late UKT and N open
KT on an interval, defined for spin-1 and spin-

1
2 systems respectively. Using (110), the original Kennedy-
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Tasaki unitary operator UKT becomes

UKT =
∏

i>j

e
iπ
4
(σz

i +τz

i− 1
2

)(σx
j +τx

j− 1
2

)
. (123)

Further applying (112), the UKT becomes

UKT =
∏

i>j

e
iπ
4
σz
i τ

z

j− 1
2

(1−τx

i− 1
2

)(1−σx
j )

=
∏

i>j

e
iπ
4
(1−τx

i− 1
2

)(1−σx
j )
.

(124)

In the second equality above, we used the fact that the value of

σz
i τ

z
j− 1

2

= ±1, which only provides a sign, does not influence

the exponent mod 2π. This is precisely the first factor of NKT

in (122). Hence we have found that

N open
KT = UKT(−1)

1
4
(1−Uσ)(1−Uτ ). (125)

From (125), we find that the relation between N open
KT and UKT

depends on the symmetry sectors, labeled by the eigenvalues

(−1)uσ,τ of Uσ,τ . Concretely,

N open
KT =

{
UKT, (uσ, uτ) = (0, 0), (0, 1), (1, 0)

−UKT, (uσ, uτ) = (1, 1).
(126)

This completes the proof.

To summarize, we managed to define the Kennedy-Tasaki

transformation on a ring for both spin-1 and spin- 12 sys-

tems, and have shown their equivalence. Both of them are

non-unitary transformations, and satisfy non-invertible fusion

rules, and showed that the latter implements STS transfor-

mation. We also showed that when formulating them on an

interval, the transformation N open
KT for spin- 12 systems and the

original Kennedy-Tasaki transformation UKT for spin-1 sys-

tems are almost equivalent. Both of them are non-local and

unitary transformations.
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25 U. Schollwöck, O. Golinelli, and T. Jolicœur,

Phys. Rev. B 54, 4038 (1996).
26 H.-H. Tu, G.-M. Zhang, and T. Xiang,

Phys. Rev. B 78, 094404 (2008).
27 D. V. Else, S. D. Bartlett, and A. C.

Doherty, Phys. Rev. B 88, 085114 (2013),

arXiv:1304.0783 [cond-mat.str-el].
28 K. Duivenvoorden and T. Quella,

Phys. Rev. B 88, 125115 (2013).
29 K. Okunishi, Phys. Rev. B 83, 104411 (2011).
30 W.-J. Rao, G.-M. Zhang, and K. Yang,

Phys. Rev. B 89, 125112 (2014).
31 H. Yang, L. Li, K. Okunishi, and H. Katsura, arXiv preprint

arXiv:2203.15791 (2022).
32 J. C. Bridgeman and D. J. Williamson,

Phys. Rev. B 96, 125104 (2017).
33 H. Moradi, S. F. Moosavian, and A. Tiwari, (2022),

arXiv:2207.10712 [cond-mat.str-el].
34 H. Moradi, O. M. Aksoy, J. H. Bardarson, and A. Tiwari, (2023),

arXiv:2307.01266 [cond-mat.str-el].

http://dx.doi.org/10.1103/PhysRevB.80.155131
http://arxiv.org/abs/0903.1069
http://dx.doi.org/10.1103/PhysRevB.81.064439
http://dx.doi.org/10.1103/PhysRevB.85.075125
http://dx.doi.org/10.1103/PhysRevB.87.155114
http://arxiv.org/abs/1106.4772
http://dx.doi.org/10.1103/PhysRevLett.95.226801
http://dx.doi.org/10.1103/PhysRevLett.95.146802
http://dx.doi.org/10.1103/PhysRevLett.50.1153
http://dx.doi.org/10.1103/PhysRevLett.59.799
http://dx.doi.org/10.1103/PhysRevB.40.4709
http://dx.doi.org/10.1007/BF02097239
http://dx.doi.org/10.1103/PhysRevB.45.304
http://dx.doi.org/10.1088/0953-8984/2/26/010
http://dx.doi.org/10.1088/0031-8949/1989/T27/027
http://dx.doi.org/10.1103/physrevb.85.075125
http://dx.doi.org/10.2140/gt.2021.25.1165
http://arxiv.org/abs/1604.06527
http://dx.doi.org/10.1063/1.3149495
http://arxiv.org/abs/0901.2686
http://dx.doi.org/10.1007/JHEP12(2015)052
http://arxiv.org/abs/1406.7329
http://arxiv.org/abs/1404.6659
http://arxiv.org/abs/1403.1467
http://dx.doi.org/10.1103/PhysRevB.46.3486
http://dx.doi.org/10.1209/0295-5075/30/8/009
http://arxiv.org/abs/cond-mat/9501115
http://dx.doi.org/10.1103/PhysRevB.54.4038
http://dx.doi.org/10.1103/PhysRevB.78.094404
http://dx.doi.org/10.1103/PhysRevB.88.085114
http://arxiv.org/abs/1304.0783
http://dx.doi.org/10.1103/PhysRevB.88.125115
http://dx.doi.org/10.1103/PhysRevB.83.104411
http://dx.doi.org/10.1103/PhysRevB.89.125112
http://dx.doi.org/10.1103/PhysRevB.96.125104
http://arxiv.org/abs/2207.10712
http://arxiv.org/abs/2307.01266


22

35 E. Cobanera, G. Ortiz, and Z. Nussinov, Advances in physics 60,

679 (2011).
36 C.-M. Chang, Y.-H. Lin, S.-H. Shao, Y. Wang, and X. Yin,

JHEP 01, 026 (2019), arXiv:1802.04445 [hep-th].
37 L. Bhardwaj and Y. Tachikawa, JHEP 03, 189 (2018),

arXiv:1704.02330 [hep-th].
38 D. Aasen, R. S. K. Mong, and

P. Fendley, J. Phys. A 49, 354001 (2016),

arXiv:1601.07185 [cond-mat.stat-mech].
39 D. Aasen, P. Fendley, and R. S. K. Mong, (2020),

arXiv:2008.08598 [cond-mat.stat-mech].
40 R. Thorngren and Y. Wang, (2019), arXiv:1912.02817 [hep-th].
41 R. Thorngren and Y. Wang, (2021), arXiv:2106.12577 [hep-th].
42 Y. Fukusumi and S. Iino, Phys. Rev. B 104, 125418 (2021).
43 L. Lootens, C. Delcamp, and F. Verstraete, (2022),

arXiv:2211.03777 [quant-ph].
44 J. Kaidi, K. Ohmori, and Y. Zheng, (2021),

arXiv:2111.01141 [hep-th].
45 J. Kaidi, K. Ohmori, and Y. Zheng, (2022),

arXiv:2209.11062 [hep-th].
46 J. Kaidi, G. Zafrir, and Y. Zheng, (2022),

arXiv:2205.01104 [hep-th].
47 Y. Choi, C. Cordova, P.-S. Hsin, H. T. Lam, and S.-H. Shao,

(2021), arXiv:2111.01139 [hep-th].
48 Y. Choi, H. T. Lam, and S.-H. Shao, (2022),

arXiv:2205.05086 [hep-th].
49 Y. Choi, H. T. Lam, and S.-H. Shao, (2022),

arXiv:2208.04331 [hep-th].
50 Y. Choi, C. Cordova, P.-S. Hsin, H. T. Lam, and S.-H. Shao,

(2022), arXiv:2204.09025 [hep-th].
51 C. Cordova and K. Ohmori, (2022), arXiv:2205.06243 [hep-th].
52 L. Bhardwaj, L. Bottini, S. Schafer-Nameki, and A. Tiwari,

(2022), arXiv:2204.06564 [hep-th].
53 L. Bhardwaj, S. Schafer-Nameki, and J. Wu,

Fortsch. Phys. 70, 2200143 (2022), arXiv:2208.05973 [hep-th].
54 T. Bartsch, M. Bullimore, A. E. V. Ferrari, and J. Pearson, (2022),

arXiv:2208.05993 [hep-th].
55 L. Bhardwaj, S. Schafer-Nameki, and A. Tiwari, (2022),

arXiv:2212.06159 [hep-th].
56 T. Bartsch, M. Bullimore, A. E. V. Ferrari, and J. Pearson, (2022),

arXiv:2212.07393 [hep-th].
57 L. Li, M. Oshikawa, and Y. Zheng, (2023),

arXiv:2307.04788 [cond-mat.str-el].
58 T. Scaffidi, D. E. Parker, and R. Vasseur, Physical Review X 7,

041048 (2017), arXiv:1705.01557 [cond-mat.str-el].
59 R. Verresen, R. Thorngren, N. G. Jones, and F. Pollmann, arXiv

e-prints (2019), arXiv:1905.06969 [cond-mat.str-el].
60 R. Thorngren, A. Vishwanath, and R. Verresen, (2020),

arXiv:2008.06638 [cond-mat.str-el].
61 L. Li, M. Oshikawa, and Y. Zheng, (2022),

arXiv:2204.03131 [cond-mat.str-el].

62 R. Wen and A. C. Potter, (2022),

arXiv:2208.09001 [cond-mat.str-el].
63 Z. Nussinov, G. Ortiz, and

E. Cobanera, Phys. Rev. B 86, 085415 (2012),

arXiv:1203.2983 [cond-mat.mes-hall].
64 H. A. Kramers and G. H. Wannier, Phys. Rev. 60, 252 (1941).
65 J. B. Kogut, Rev. Mod. Phys. 51, 659 (1979).
66 C.-T. Hsieh, Y. Nakayama, and

Y. Tachikawa, Phys. Rev. Lett. 126, 195701 (2021),

arXiv:2002.12283 [cond-mat.str-el].
67 G. W. Moore and N. Seiberg,

Commun. Math. Phys. 123, 177 (1989).
68 J. Frohlich, J. Fuchs, I. Runkel, and C. Schweigert,

Phys. Rev. Lett. 93, 070601 (2004), arXiv:cond-mat/0404051.
69 J. Frohlich, J. Fuchs, I. Runkel, and C. Schweigert,

Nucl. Phys. B 763, 354 (2007), arXiv:hep-th/0607247.
70 J. Frohlich, J. Fuchs, I. Runkel, and C. Schweigert,

in 16th International Congress on Mathematical Physics (2009)

arXiv:0909.5013 [math-ph].
71 S. Seifnashri, “SCGP Workshop: Generalized Global Symmetries, Quantum Field

(2022).
72 “Non-anomalous” here refers to the nature of the symmetry that

can be gauged. The Z2 symmetry of the quantum Ising chain is

non-anomalous because it is on-site; see the beginning of this Sec-

tion.
73 Y. Fukusumi, Y. Tachikawa, and Y. Zheng,

SciPost Phys. 11, 082 (2021), arXiv:2103.00746 [hep-th].
74 W. Cao, M. Yamazaki, and

Y. Zheng, Phys. Rev. B 106, 075150 (2022),

arXiv:2206.02727 [cond-mat.str-el].
75 Y. Yao and M. Oshikawa, Physical Review Letters 126, 217201

(2021).
76 Y. Yao, L. Li, M. Oshikawa, and C.-T. Hsieh, (2023),

arXiv:2307.09843 [cond-mat.str-el].
77 T. D. SCHULTZ, D. C. MATTIS, and E. H. LIEB,

Rev. Mod. Phys. 36, 856 (1964).
78 J. C. Wang, Z.-C. Gu, and X.-G. Wen,

Phys. Rev. Lett. 114, 031601 (2015).
79 J. C. Wang and X.-G. Wen, Phys. Rev. B 91, 035134 (2015).
80 It is also possible to discuss one of the two Z2’s. However, for our

purpose we will not consider them in this work.
81 This should be distinguished from the situation in Section II where

each unit cell only supports one spin- 1
2

, and they either live on

sites or on links, but not both.
82 L. Li and Y. Yao, (2022), arXiv:2209.13450 [quant-ph].
83 Note that the line operator implementing TST is UDWNUDW

which has quantum dimension 2. On the other hand the defect im-

plementing STS is given by NKT = N †UDWN which has quan-

tum dimension 4. Indeed, their quantum dimensions differ by 2,

suggesting that the later is stacking a Z2 TQFT onto the former.
84 X. Chen, Y.-M. Lu, and A. Vishwanath, Nature communications

5, 1 (2014).
85 L. H. Santos, Phys. Rev. B 91, 155150 (2015).

http://dx.doi.org/10.1007/JHEP01(2019)026
http://arxiv.org/abs/1802.04445
http://dx.doi.org/10.1007/JHEP03(2018)189
http://arxiv.org/abs/1704.02330
http://dx.doi.org/10.1088/1751-8113/49/35/354001
http://arxiv.org/abs/1601.07185
http://arxiv.org/abs/2008.08598
http://arxiv.org/abs/1912.02817
http://arxiv.org/abs/2106.12577
http://dx.doi.org/10.1103/PhysRevB.104.125418
http://arxiv.org/abs/2211.03777
http://arxiv.org/abs/2111.01141
http://arxiv.org/abs/2209.11062
http://arxiv.org/abs/2205.01104
http://arxiv.org/abs/2111.01139
http://arxiv.org/abs/2205.05086
http://arxiv.org/abs/2208.04331
http://arxiv.org/abs/2204.09025
http://arxiv.org/abs/2205.06243
http://arxiv.org/abs/2204.06564
http://dx.doi.org/10.1002/prop.202200143
http://arxiv.org/abs/2208.05973
http://arxiv.org/abs/2208.05993
http://arxiv.org/abs/2212.06159
http://arxiv.org/abs/2212.07393
http://arxiv.org/abs/2307.04788
http://arxiv.org/abs/1705.01557
http://arxiv.org/abs/1905.06969
http://arxiv.org/abs/2008.06638
http://arxiv.org/abs/2204.03131
http://arxiv.org/abs/2208.09001
http://dx.doi.org/10.1103/PhysRevB.86.085415
http://arxiv.org/abs/1203.2983
http://dx.doi.org/10.1103/PhysRev.60.252
http://dx.doi.org/10.1103/RevModPhys.51.659
http://dx.doi.org/10.1103/PhysRevLett.126.195701
http://arxiv.org/abs/2002.12283
http://dx.doi.org/10.1007/BF01238857
http://dx.doi.org/10.1103/PhysRevLett.93.070601
http://arxiv.org/abs/cond-mat/0404051
http://dx.doi.org/10.1016/j.nuclphysb.2006.11.017
http://arxiv.org/abs/hep-th/0607247
http://dx.doi.org/10.1142/9789814304634_0056
http://arxiv.org/abs/0909.5013
https://scgp.stonybrook.edu/video/video.php?id=5450
http://dx.doi.org/10.21468/SciPostPhys.11.4.082
http://arxiv.org/abs/2103.00746
http://dx.doi.org/10.1103/PhysRevB.106.075150
http://arxiv.org/abs/2206.02727
http://arxiv.org/abs/2307.09843
http://dx.doi.org/10.1103/RevModPhys.36.856
http://dx.doi.org/10.1103/PhysRevLett.114.031601
http://dx.doi.org/10.1103/PhysRevB.91.035134
http://arxiv.org/abs/2209.13450
http://dx.doi.org/10.1103/PhysRevB.91.155150

