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Kleinlein,1, 2 Jukka I. Väyrynen,4 Hartmut Buhmann,1, 2 and Laurens W. Molenkamp1, 2

1Physikalisches Institut (EP3), Universität Würzburg,

Am Hubland, 97074 Würzburg, Germany

2Institute for Topological Insulators, Am Hubland, 97074 Würzburg, Germany

3Department of Condensed Matter and Material Physics,

S. N. Bose National Centre for Basic Sciences, Kolkata 700106, India

4Department of Physics and Astronomy,

Purdue University, West Lafayette, Indiana 47907, USA

(Dated: October 17, 2023)

Under time reversal symmetry, quantum spin Hall edge channels are protected

against elastic backscattering. However, even for samples which exhibit conductance

quantization due to the quantum spin Hall effect, reproducible fluctuations shape

the quantization plateau when the chemical potential is tuned through the bulk gap.

Here, we examine those fluctuations in micron-sized HgTe quantum well devices.

By performing temperature and gate-dependent measurements, we conclude that

“charge puddles” in the narrow gap material have a Kondo-type interaction with

the edge channels resulting in the observed conductance fluctuations. Our results

provide insight into the underlying mechanisms of scattering in quantum spin Hall

edge channels.

∗ These authors contributed equally.
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After the first experimental observation of the quantum spin Hall effect in HgTe quan-

tum wells, the robustness of the conductance quantization in the presence of impurities

has been vigorously investigated. Although theory predicts that the helical edge channels

are protected against elastic backscattering under time reversal symmetry, all experimental

demonstrations of the quantum spin Hall effect, including the first report in 2007, show gate

voltage dependent reproducible fluctuations in the quantum spin Hall conductance [1–4].

These fluctuations have been attributed to inelastic scattering off of charge puddles, which

are common in narrow-gap semiconductors and are formed due to an inhomogeneous po-

tential landscape [2, 5–8]. In Ref. [7], Väyrynen et al. consider interactions of helical edge

channels with charge puddles small enough to show single electron charging effects: chang-

ing the gate voltage leads to charging of the puddle in single electron steps, which results

in fluctuations in the quantum spin Hall conductance due to resonant backscattering. They

further predict that Kondo effects in the puddle (depending on odd or even occupancy) lead

to a distinct temperature dependence of these conductance fluctuations.

We recently have been able to demonstrate Kondo effects on topological edge channels in

magnetically doped (Hg,Mn)Te quantum wells [9], which exhibit Kondo temperatures up to

∼ 3K. However, for the Kondo effects of charge puddles one expects a much lower Kondo

temperature (plausibly ≲ 100mK, as explained later) and up until now, it has not been

possible to verify the above predictions because conventional dry-etching, routinely used to

fabricate HgTe based quantum spin Hall microstructures, causes significant damage to the

edges and consequently creates a large number of scatterers in these devices [3, 5, 10], making

mechanistic studies problematic. We recently showed that a wet-etch fabrication process

results in high quality microstructures with mobilities similar to macroscopic devices [3]. In

this paper, we investigate the conductance fluctuations of quantum spin Hall edge channels

at different temperatures between 20mK and 2K in micron sized devices fabricated from

HgTe quantum wells using the wet-etch process. The fluctuations in conductance in the

regime of edge channel transport exhibit a characteristic temperature dependence which

can be related to interactions of the helical edge channels with a charge puddle acting as a

Kondo correlated quantum dot.
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I. MATERIAL GROWTH AND DEVICE FABRICATION

We use molecular beam epitaxy to grow a 7.5 nm thick HgTe quantum well sandwiched

between (Hg,Cd)Te barriers on a lattice-matched (Cd,Zn)Te substrate. A schematic of

the corresponding layer stack is shown in the inset of Fig. 1b. For a carrier density of

n ∼ 6×1011 cm−2, the mobility is µ ∼ 2×105 cm2V−1s−1 (which corresponds to a mean free

path of l ∼ 2.5µm). We fabricated a 4-terminal (Device 1) and a 3-terminal device (Device

2) as shown in the schematic of Fig. 1a and 1b respectively, using e-beam lithography and

chemical wet-etching. Details of the device fabrication can be found in Refs. [3, 11]. All

electrical transport measurements are performed in dilution refrigerators using low frequency

(∼ 13Hz) lock-in techniques.

II. FLUCTUATIONS OF THE QUANTUM SPIN HALL CONDUCTANCE IN

MICRON-SIZED DEVICE

The gate-voltage characteristics of Device 1 and Device 2 are shown in Fig. 1a and 1b,

respectively. A gate electrode can be used to tune the carrier density from n-type to p-type

conductance which ensures that the entire regime of topological edge channel transport is

accessible. Since Device 2 employs a thick dielectric layer (85 nm thick HfO2) compared

to Device 1 (14 nm thick HfO2), the gate efficiency of Device 1 is larger than in Device 2.

When the chemical potential is tuned through the bulk band gap, the conductance shows a

minimum for both devices, which corresponds to the quantum spin Hall regime. While for

Device 2, the conductance is close to the value expected from the Landauer-Büttiker model

(denoted by dashed lines in Fig. 1a and 1b) for the given measurement geometry, for Device

1, the conductance is lower than the expected value by 50%. Such deviation in conductance

from the expected quantized value has been observed before and attributed to scattering

from charge puddles [5]. Even though the conductance is close to quantization, we observe

fluctuations in the quantum spin Hall conductance for both devices. These conductance

fluctuations are reproducible for various gate sweeps at a fixed temperature. Even though

the absolute magnitudes of the conductance fluctuations are different in Device 1 and Device

2 (see Fig. 1), the relative conductance fluctuations ∆G/G and the temperature dependence

of the fluctuations are similar for both devices, as elaborated in the following.
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III. TEMPERATURE DEPENDENCE OF THE CONDUCTANCE

FLUCTUATIONS

A very distinct temperature dependence of the conductance fluctuations is observed for

the gate voltage regions indicated by the green boxes (see Fig. 1), which is displayed in

Fig. 2a and 2b for Device 1 and Device 2, respectively. The temperature dependence of

the conductance in extended gate voltage regions is shown in Fig. 1 and Fig. 2 of the

Supplemental Material [12], along with similar observations in an additional device. As

shown in Fig. 2, the amplitude of the conductance fluctuations increases monotonically as

the temperature decreases. In the high temperature limit (red curve), the conductance

traces exhibit alternating conductance peaks and valleys, which are indicated by vertical

lines. In the temperature evolution of the peaks, we observe the following main features:

the conductance value at peaks labelled as Pev – referred to as even peaks for reasons that

will become obvious below – remains essentially constant for all temperatures. However,

for the neighbouring peaks labelled as Podd – referred to as odd peaks – the conductance

decreases with decreasing temperature. To quantify the difference between odd and even

peaks, the temperature dependent change in conductance ∆G(T ) = G(T )−G(T ≈ 2K) is

shown in Fig. 3a and 3b for Device 1 and Device 2, respectively. In contrast, the conductance

at all valleys shows a similar temperature dependence: ∆G(T ) decreases with decreasing

temperature (right panels in Fig. 3a and 3b). The distinct temperature dependence of the

conductance fluctuations at odd and even peaks evidently is strongly reminiscent of the

conductance GQD of a Kondo-correlated quantum dot, that alternates between even and

odd electron occupancy as gate voltage is varied [13, 14]. Hence the peak labelling we have

chosen.

IV. INTERACTIONS BETWEEN HELICAL EDGE CHANNELS AND A

CHARGE PUDDLE ACTING AS A KONDO-CORRELATED QUANTUM DOT

To qualitatively explain various features of the conductance versus gate voltage traces

at different temperatures, we assume that a charge puddle, acting as a quantum dot, is

in close proximity to the helical edge channels, thus allowing for significant wave function

overlap (Fig. 4a). When the gate voltage is used to tune the electrochemical potential, we
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simultaneously change the potential for the edge channels as well as for the dot, which leads

to Coulomb oscillations of the edge-dot transmission amplitude (and conductance) (Fig. 4b).

Figure 4b and 4c show schematically the temperature dependence of the conductance of a

quantum dot and quantum spin Hall edge channels interacting with a dot, respectively. For

T > TK and at gate voltages where the dot is Coulomb blockaded (i.e., T < Ec, the charging

energy of the dot), any interactions of the dot with electrons outside are cut off. In this situ-

ation, the conductance of the helical edge channels remains close to the expected quantized

value. For gate voltages where the edge-dot transmission is high, the dot can interact with

the carriers in the helical edge channels. Spin-flip scattering of edge channel electrons with

those on the dot [7] results in backscattering, leading to a decrease in channel conductance.

Thus, valleys (peaks) in the conductance of the edge-dot-connection correspond to peaks

(valleys) in the quantum spin Hall conductance. On lowering the temperature, the reduced

thermal smearing causes the conductance of the edge-dot junction to increase for all peaks,

hence bringing about a decrease in the quantum spin Hall conductance for all valleys. For

T ∼ TK, the edge-dot transmission in odd valleys (occupancy with an odd number of elec-

trons, resulting in a net spin) increases strongly due to the Kondo effect [13, 14]. The dot

now can interact with edge channel electrons for all gate voltages where the dot occupation

number is odd, resulting in backscattering and hence a decrease in the quantum spin Hall

conductance for odd peaks. Thus, odd peaks in the quantum spin Hall conductance show

a strong temperature dependence. For an even occupancy the dot remains blockaded at

low temperatures, hence even peaks in the quantum spin Hall conductance show a weak

temperature dependence, remaining close to the quantized value. This model qualitatively

reproduces the features of conductance versus gate voltage curves at different temperatures

shown in Fig. 2.

The voltage spacing between neighbouring peaks Vpp, about 4mV for Device 1 and 10mV

for Device 2 (see Fig. 2), implies a charging energy of 2meV and 5meV, respectively. The

Coulomb blockade requirement EC > T is thus obeyed for both devices. A simple capacitor

model reveals charge puddle diameters of approximately 100 nm for both devices. Details of

these calculations are given in the Supplemental Material [12].

Additional charge puddles, further away from the edge channels and weaker in interac-

tions, may give rise to further conductance features that arise in the low temperature limit,

c.f. Fig. 2. The applied gate voltage tunes the chemical potential through all band edge and
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puddle states simultaneously, all with their own energetic substructure, which slightly mod-

ulates the observed periodicity of peaks and valleys. In extended gate voltage regions (that

are shown in the Supplementary Information) more charge puddles will be able to interact

with the edge channel, leading to an averaging out of the odd-even signal in the conductance

trace. Thus, the odd-even effect is observed only if the sample is in the quantum spin Hall

transport regime and a charge puddle (that is in the Coulomb blockade regime and overlaps

the edge channels) is charged/depleted simultaneously. This limits the observation to (a)

a high-quality sample with only few charge puddles as well as (b) a limited voltage range

where a single dominant charge puddle fulfils the backscattering requirements.

A comparison of our observations with the predictions of Ref. [7] reveals a major differ-

ence: while we observe that the quantum spin Hall conductance decreases away from the

expected quantized value with decreasing temperature, Ref. [7] predicts that the conduc-

tance increases monotonically with decreasing temperature. This is because of the exchange

mechanism that is being considered in [7]. Kondo scattering of helical edge channels has

previously been investigated by multiple works, starting with Maciejko et al.’s study based

on “isotropic” exchange, i.e. terms that conserve the z-component of the total spin in the

exchange Hamiltonian (z is the helical edge quantization axis), between edge channel carri-

ers and magnetic impurities in vicinity to the edge [15]. The theory described in the paper

tacitly assumes the spin of the magnetic impurities is allowed to relax, leading to a non-zero

net backscattering rate. In a later paper [16], Tanaka et al. show that in a strictly spin-

conserving system the backscattering rate vanishes in the dc limit. In such a picture, that

assumes zero spin relaxation, only “anisotropic” (spin-z-non-conserving) exchange would

lead to a net deviation of the edge channel conductance in the according model. Later

works (e.g. [7, 17]) use such higher order anisotropic exchange models to describe the Kondo

interaction between the edge channels and magnetic impurities, such as quantum dots. In

Ref. [7], anisotropic exchange scattering arises from the breaking of spin-rotation symmetry

within the dot, while Ref. [17] shows that the effect can also arise from symmetry breaking

on the edge.

However, we have recently shown experimentally that isotropic Kondo interactions actu-

ally do describe scattering with paramagnetic impurities in (Hg,Mn)Te quantum wells [9],

clearly indicating that the modeling of Ref. [15] is appropriate for our material system. At

the same time, this implies that the impurity spin should be allowed to relax when modeling
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Kondo interactions in HgTe. We show below theoretically that by including the possibility

of spin relaxation of the Kondo quantum dot, implicit in the qualitative model we dis-

cussed above, the isotropic exchange model does become consistent with our experimental

observations.

To calculate the expected temperature-dependent corrections to the quantized conduc-

tance due to isotropic exchange scattering and spin relaxation, we assume that the spin of

an edge channel electron s is coupled to a magnetic impurity which models the spin of the

dot S. The corresponding Kondo Hamiltonian takes the form HK = J0s · S where J0 is the

exchange coupling. This Hamiltonian leads to a Korringa spin flip rate τ−1
K = πT (ρJ0)

2f(T )

of the dot spin due to its coupling to the helical edge state. Here f(T ) is a temperature-

dependent factor that accounts for Kondo and/or Luttinger liquid renormalizations. At low

temperature (but above the bias voltage, eV ≪ kBT ), we have f(T ) ∝ T 2(1−K), where K

is the Luttinger liquid interaction parameter. Crucially, 1/τK also determines the rate of

backscattering of the edge electrons. However, since HK conserves the total spin projection

along the z-axis sz + Sz, it alone would not give rise to a conductance correction [7, 16] as

both left and right moving electrons would be backscattered at equal rates. This balance

will be broken when the spin S has an independent relaxation channel. Denoting the cor-

responding relaxation rate τ−1
bath, we show that the correction to the helical edge current is

δI ∝ eV
kBT (τK+τbath)

.

When the spin relaxation of the magnetic impurity is faster than consecutive backscatter-

ing events (τbath ≪ τK), the correction to the quantized conductance ∆G is fully determined

by the spin-flip rate due to isotropic exchange interaction,

∆G =
e2

4kBTτK
∝ T−2(1−K). (1)

The details of the calculation can be found in the Appendix. Following Refs. [9, 18], and

using the applicable device parameters, we calculate K ∼ 0.55 and 0.41 for Device 1 and

Device 2, respectively. Using these values for K, we fit the experimental data in the left

panels of Fig. 3 to Eq. 1 (dashed curves are the fit). The fitting parameters are the amplitude

and a constant offset (which corrects that T ∼ 2K is only estimating the high temperature

limit). The theoretical curve matches the experimental data well for Device 1. Plotting

the data of Device 1 in a double logarithmic scale (see [12]) further indicates that the

temperature dependence is indeed described by the power law of Eq. 1. This confirms that
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the observed temperature-dependent correction to the quantum spin Hall conductance can

indeed be described by isotropic exchange interactions with a charge puddle acting as a few

electron quantum dot that exhibits Kondo effects. For Device 2 the model also reproduces

the general trend of ∆G, though the fit is not as good as for Device 1. We attribute this

to the elevated base electron temperature during the experiment on Device 2 (a saturation

below ∼ 200mK can be seen in Fig. 3b, while Fig. 3a only saturates below ∼ 50mK). This

difference is because two different dilution refrigerators have been used for the two devices.

Within the scope of this work, the microscopic origin of the relaxation channel giving

rise to τbath cannot be exactly identified, but a list of candidates includes spin exchange

via (1) hyperfine interactions (contact hyperfine [19, 20] or mean-field [21]), (2) interactions

with a network of (bulk) charge puddles [5, 10], or (3) interactions with Hg+ acceptor-like

vacancies [22]. Out of the list of candidates, direct-exchange contact hyperfine interaction

seems most plausible because of the strong contribution from 6s electrons of Hg to the

electronic wave function of HgTe. Future investigation is needed to understand the spin

relaxation in detail.

V. DISCUSSION

In a recent work, we showed that the isotropic Kondo effect, discussed by Maciejko et

al. [15], appropriately describes scattering of helical edge electrons with paramagnetic Mn

dopants in (Hg,Mn)Te quantum wells [9]. Both Ref. [9] and the present work describe

scattering of quantum spin Hall edge channels at impurity states due to the same under-

lying mechanism, which is the isotropic Kondo effect. The two experiments deviate from

each other in representing the two opposite Kondo limits that were presented in Ref. [15]:

Below the Kondo temperature — which is around 3K for the strongly paramagnetic Mn

dopants — quantized conductance is observed in the very low temperature Kondo limit,

as the Kondo effect there becomes suppressed by Kondo shielding (Kondo cloud) [9]. The

high temperature Kondo limit could not be accessed in Ref. [9], because of thermal carrier

excitation at temperatures above ∼ 10K. In contrast, in the present work, we observe no

signs of saturation of the Kondo effect at low-temperatures before the electron tempera-

ture limit is reached, see Fig. 2a. We attribute the small Kondo temperature, significantly

below 100mK, to the weaker interaction between edge channels and charge puddles. The
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conductance approaches quantized conductance in the high-temperature limit. The range

of temperatures that we investigated is similar for both Ref. [9] and this work, as this is

the temperature range in which narrow gap semiconductors can be probed without signif-

icant thermal excitations above the bulk gap. Combining the findings of Ref. [9] and this

work, the experimental evidence of both temperature limits of the isotropic Kondo exchange

mechanism indicates that Maciejko et al.’s [15] early work reliably describes Kondo-based

backscattering mechanisms of quantum spin Hall edge channels over a broad temperature

range.

Almost fifteen years after the first observation of the quantum spin Hall effect, this work fi-

nally provides experimental insights into the mechanism that causes gate voltage-dependent

fluctuations in otherwise quantized samples. Charge puddles are identified as the domi-

nant source of backscattering in the helical edge channels. The microscopic mechanism of

backscattering involves an isotropic exchange between the helical edge channels and charge

puddles acting as Kondo quantum dots with spin relaxation. Puddles are present in any nar-

row gap material, and it is very likely similar mechanisms as shown here are at play in other

two-dimensional topological materials. This study lays the groundwork for further efforts to

reduce backscattering in quantum spin Hall devices leading to more efficient applications in

spintronics.
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VII. APPENDIX: HELICAL EDGE COUPLED TO A MAGNETIC IMPURITY

WITH A RELAXATION CHANNEL

We consider a helical edge (spin s) isotropically coupled to a magnetic impurity S at

some position x0 along the edge. The corresponding exchange interaction Hamiltonian is

HK = J0s(x0) · S . (2)

Additionally, we assume that the impurity spin S is coupled to an additional relaxation

channel, such as due to an environmental spin bath. We trace out the environment, giving

rise to a decay of S with a rate τ−1
bath, see Eq. (4) below.

We can write the backscattering current operator δI as the rate of change of the difference

between the number of right and left movers on the edge, δI = −ed(δN)/dt where δN =

(NR − NL)/2 [23]. On the helical edge, the operator δN is related to the z-component of

the total helical electron spin, δN = ℏ−1
∫
dxsz(x). The Hamiltonian HK conserves the

z-component of the total spin of the combined edge-impurity system, [HK, ℏδN + Sz] = 0.

For a magnetic impurity formed by a quantum dot, any spin projection is generally not

conserved. Nevertheless, one can choose a basis where the spin projection at the tunneling

point is quantized along the z-axis [7], which is what we have done here.

We take advantage of the conservation law by noting that d⟨Sz⟩/dt vanishes in the steady

state [7]. Thus, we can add this term to ⟨δI⟩ so that

⟨δI⟩ = −e
d

dt
⟨δN + ℏ−1Sz⟩ (3)

For d⟨Sz⟩/dt, we include the unitary time-evolution due to HK and non-unitary time-

evolution that models the spin relaxation due to an environment,

d

dt
⟨Sz⟩ =

i

ℏ
⟨[HK, Sz]⟩ − τ−1

bath ⟨Sz⟩ . (4)

The unitary piece cancels out due to the aforementioned conservation law [16], so that

⟨δI⟩ = eτ−1
bath⟨Sz⟩/ℏ . (5)

We are now left with the task of evaluating the steady state spin polarization ⟨Sz⟩. For

this, we use the Bloch equation which is obtained by tracing out both the spin bath as well

as the itinerant electrons of the helical edge [7, 23]. We find,

d

dt
⟨Sz(t)⟩ = −τ−1

K [⟨Sz(t)⟩ − Sf
z ]− τ−1

bath⟨Sz(t)⟩ . (6)
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Here τ−1
K = πT (ρJ0)

2f(T, V ) is the Korringa spin flip rate [24] due to the coupling to

the helical edge (density of states ρ). The function f contains the renormalization of the

exchange coupling,

f(T, V ) = K2

(
v/a

2πkBT

)2−2K

B

(
K + i

eV

2πkBT
,K − i

eV

2πkBT

)
cosh

(
eV

2kBT

)
, (7)

and K < 1 is the Luttinger liquid parameter repulsive interactions, a is the short-distance

cutoff, v is the helical edge velocity, and B is the beta function.

In the Bloch equation (6), Sf
z = (ℏ/2) tanh(eV/2kBT ) would be the steady state polar-

ization of the magnetic impurity if there we no spin relaxation due to the spin bath. The

polarization is caused by the coupling to the helical edge which obtains a magnetization

⟨sz⟩ ∝ eV when a bias voltage V is applied. The additional spin relaxation channel (relax-

ation rate τ−1
bath) due to, e.g., a spin bath will lead to a somewhat smaller steady state spin

polarization,

⟨Sz⟩ =
ℏ
2

τ−1
K

τ−1
K + τ−1

bath

tanh
eV

2kBT
, (8)

obtained by solving d
dt
⟨Sz(t)⟩ = 0 in Eq. (6). By using the steady state ⟨Sz⟩ in Eq. (5) yields

the steady state backscattering current,

⟨δI⟩ = e
1

2

τ−1
bathτ

−1
K

τ−1
K + τ−1

bath

tanh
eV

2kBT
. (9)

The linear response limit eV ≪ kBT was used in the main text. The prefactor ⟨δI⟩ has a

simple interpretation: it takes a total time τK+τbath for a helical edge electron to backscatter

(τK to backscatter and then τbath for the impurity spin to “reset”, allowing the next electron

to backscatter).
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FIG. 1. Conductance fluctuations in the quantum spin Hall regime. (a) The four-terminal

conductance G4t = IA,D/VB,C of Device 1 is plotted as a function of gate voltage VG at 17mK.

The dashed line indicates the expected quantization conductance (4 e2/h) for a four-terminal device.

The inset shows a schematic of the device. The letters A,B,C and D indicate ohmic contacts.

The distance between the contacts B and C is ∼ 1.7µm. (b) The two-terminal conductance

G2t = IA,C/VA,C of Device 2 is plotted as a function of VG at 27mK. The dashed line indicates

the expected quantization conductance (3/2 e2/h) for a three-terminal device. The inset shows a

schematic of the device along with the MBE grown layer stack. The distance between the contacts

A and C is ∼ 3µm. The width is ∼ 2µm for both devices. The CdTe, (Hg,Cd)Te bottom and top

barriers have a thickness of 50, 150 and 15 nm respectively. The green boxes indicate the regions

of interest for the study of fluctuations in these devices.
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FIG. 2. Odd-even patterns in the temperature dependence of the conductance fluctuations. (a)

G4t as a function of VG from 17mK (blue) to 1.7K (red) for Device 1. (b) G2t as a function of VG

from 27mK (blue) to 2K (red) for Device 2. The various conductance peaks are labelled as Pev

and Podd (indicated by vertical lines) while the valleys are labelled as V .
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FIG. 3. Temperature evolution of odd and even peaks. The temperature dependent change in

conductance ∆G(T ) = G(T )−G(THigh) of the peaks marked in Figure 2 for (a) Device 1 (THigh =

1.7K) and (b) Device 2 (THigh = 2.0K). The color code corresponds to the color map of the

labels for P and V introduce in Fig. 2. The dashed lines indicate fits to Eq. 1. In Device 2, the

temperature dependence saturates at ∼ 200mK which we attribute to higher electron temperature

during the measurement compared to Device 1 (∼ 50mK). The error bars are based on a maximum

error estimation in 0.2mV (Device 1) and 0.6mV (Device 2) windows around the vertical lines in

Fig. 2.
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FIG. 4. Fluctuations based on the interaction between edge channels and a charge puddle. (a) A

schematic of the helical edge channels and the Kondo quantum dot formed by a charge puddle in

vicinity of the edge channels. The inset indicates the wave function overlap of edge channels and

quantum dot states. The out-of-plane arrows indicate the orientation of the spin eigenstates of heli-

cal edge electrons (spin-momentum locked) and the quantum dot system which are not necessarily

parallel to each other, as further discussed in the Methods section). (b) Temperature dependence

of the conductance of a Kondo-correlated quantum dot as a function of occupation number, where

red indicates high (T > TK) and blue low temperatures (T ∼ TK). (c) An illustration of the cor-

responding Quantum spin Hall conductance due to the interaction between helical edge channels

and a Kondo quantum dot as described in the main text.
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