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We discuss and demonstrate an unsupervised machine-learning procedure to detect topological
order in quantum many-body systems. Using a restricted Boltzmann machine to define a vari-
ational ansatz for the low-energy spectrum, we sample wave functions with probability decaying
exponentially with their variational energy; this defines our training dataset that we use as input to
a diffusion map scheme. The diffusion map provides a low-dimensional embedding of the wave func-
tions, revealing the presence or absence of superselection sectors and, thus, topological order. We
show that for the diffusion map, the required similarity measure of quantum states can be defined
in terms of the network parameters, allowing for an efficient evaluation within polynomial time.
However, possible “gauge redundancies” have to be carefully taken into account. As an explicit
example, we apply the method to the toric code.

I. INTRODUCTION

In the last few years, machine learning (ML) tech-
niques have been very actively studied as novel tools in
many-body physics [1–7]. A variety of valuable appli-
cations of ML has been established, such as ML-based
variational ansätze for many-body wave functions, appli-
cation of ML to experimental data to extract informa-
tion about the underlying physics, ML methods for more
efficient Monte-Carlo sampling, and employment of ML
to detect phase transitions, to name a few. Regarding
the latter type of applications, a particular focus has re-
cently been on topological phase transitions [8–31]. This
is motivated by the challenges associated with captur-
ing topological phase transitions: by definition, topolog-
ical features are related to the global connectivity of the
dataset rather than local similarity of samples. There-
fore, unless the dataset is sufficiently simple such that
topologically connected pairs of samples also happen to
be locally similar or features are used as input data that
are closely related to the underlying topological invari-
ant, the topological structure is hard to capture reliably
with many standard ML techniques [11, 12].

In this regard, the ML approach proposed in Ref. 12,
which is based on diffusion maps (DM) [32–35], is a
particularly promising route to learn topological phase
transitions; it allows to embed high-dimensional data
in a low-dimensional subspace such that pairs of sam-
ples that are smoothly connected in the dataset will be
mapped close to each other, while disconnected pairs will
be mapped to distant points. As such, the method cap-
tures the central notion of topology. In combination with
the fact that it is unsupervised and thus does not re-
quire a priori knowledge of the underlying topological
invariants, it is ideally suited for the task of topolog-
ical phase classification. As a result, there have been
many recent efforts applying this approach to a variety
of problems, such as different symmetry-protected, in-
cluding non-Hermitian, topological systems [36–41], ex-
perimental data [39, 42], many-body localized states [43],

and dynamics [44]; extensions based on combining DM
with path finding [36] as well as with quantum computing
schemes [45] for speed-up have also been studied.

As alluded to above, another very actively pursued ap-
plication of ML in physics are neural network quantum
states: as proposed in Ref. 46, neural networks can be
used to efficiently parameterize and, in many cases, opti-
mize variational descriptions of wave functions of quan-
tum many-body systems [47–56]. In particular, restricted
Boltzmann machines (RBMs) [4, 57] represent a very
popular neural-network structure in this context. For in-
stance, the ground states of the toric code model [58] can
be exactly expressed with a local RBM ansatz [59], i.e.,
where only neighboring spins are connected to the same
hidden neurons. When additional non-local extensions
to the RBM ansatz of Ref. 59 are added, this has been
shown to also provide a very accurate variational descrip-
tion of the toric code in the presence of a magnetic field
[60].

In this work, we combine the DM approach of Ref. 12
with neural network quantum states with the goal of cap-
turing topological order in an unsupervised way in in-
teracting quantum many-body systems. We use a local
network ansatz, with parameters Λ, as a variational de-
scription for the wave functions |Ψ(Λ)⟩ of the low-energy
subspace of a system with Hamiltonian Ĥ. While we
also briefly mention other possible ways of generating
ensembles of states, we primarily focus on an energetic
principle: we sample wavefunctions such that the proba-
bility of |Ψ(Λ)⟩ is proportional to exp(−⟨Ĥ⟩Λ /T ) where
⟨Ĥ⟩Λ = ⟨Ψ(Λ)| Ĥ |Ψ(Λ)⟩. As illustrated in Fig. 1(a), the
presence of superselection sectors in the low-energy spec-
trum of Ĥ implies that the ensemble of states decays into
disconnected subsets of states for sufficiently small T (at
least at fixed finite system size); these can be extracted,
without need of prior labels, with dimensional reduction
via DM (and subsequent k-means clustering), and thus
allow to identify topological order. For sufficiently large
T , more and more high-energy states are included and
all sectors are connected, see Fig. 1(b), as can also be
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readily revealed via DM-based embedding of the states.
Importantly, DM is a kernel technique in the sense

that the input data xl (in our case the states |Ψ(Λl)⟩)
does not directly enter as a high-dimensional vector but
only via a similarity measure S(xl, xl′), comparing how
“similar” two samples l and l′ are. In the context of
applying DM to the problem of topological classifica-
tion, it defines what a smooth deformation (“homotopy”)
of samples is. We discuss two possible such measures.
The first one is just the quantum mechanical overlap,
Sq(Λl,Λl′) = |⟨Ψ(Λl)|Ψ(Λl′)⟩|2, of the wave functions.
Although conceptually straightforward, its evaluation is
computationally costly on a classical computer as it re-
quires importance sampling. The local nature of our net-
work ansatz allows us to also construct an alternative
similarity measure that is expressed as a simple func-
tion of the network parameters Λl and Λl′ describing the
two states to be compared. This can, however, lead to
subtleties associated with the fact that two states with
different Λ can correspond to the same wave functions
(modulo global phase). We discuss how these “gauge re-
dundancies” can be efficiently circumvented for generic
states.

We illustrate these aspects and explicitly demonstrate
the success of this approach using the toric code [58],
a prototype model for topological order which has also
been previously studied with other ML techniques with
different focus [15–18, 59–61]. We show that the DM al-
gorithm learns the underlying loop operators wrapping
around the torus without prior knowledge; at low T , this
leads to four clusters corresponding to the four ground
states. At larger T , these clusters start to merge, as
expected. Interestingly, the DM still uncovers the under-
lying structure of the dataset related to the expectation
value of the loop operators. Finally, we also show that
applying a magnetic field leads to the disappearance of
clusters in the DM, capturing the transition from topo-
logical order to the confined phase.

The remainder of the paper is organized as follows. In
Sec. II, we describe our ML approach in general terms,
including the local network quantum state description
we use, the ensemble generation, a brief review of the
DM scheme of Ref. 12, and the similarity measure in
terms of neural network parameters. Using the toric code
model as an example, all of these general aspects are
then discussed in detail and illustrated in Sec. III. Finally,
explicit numerical results can be found in Sec. IV and a
conclusion is provided in Sec. V.

II. GENERAL ALGORITHM

Here, we first present and discuss our algorithm [see
Fig. 2(a)] in general terms before illustrating it using
the toric code as an example in the subsequent sections.
Consider a system of N qubits or spins, with associated
operators {ŝ} = {ŝi, i = 1, · · · , N}, ŝi = (ŝxi , ŝ

y
i , ŝ

z
i ),

and interactions governed by a local, gapped Hamilto-

nian Ĥ = H({ŝ}). We represent the states |Ψ(Λ)⟩ of this
system using neural network quantum states [46],

|Ψ(Λ)⟩ =
∑
σ

ψ(σ; Λ) |σ⟩ , (1)

where σ= {σ1, σ2, ..., σN |σi = ±1} enumerates configu-
rations of the physical spin variables in a local computa-
tional basis (e.g. sz-basis) and Λ is the set of parameters
that the network ψ depends on to output the wavefunc-
tion amplitude ψ(σ; Λ)= ⟨σ|Ψ(Λ)⟩ for configuration |σ⟩.
Because the physical Hilbert space scales exponentially
with the system size, there is a trade-off between the
expressivity versus efficiency when choosing a network
architecture (or ansatz) ψ, so that the weights Λ can ap-
proximate the state |Ψ(Λ)⟩ to a reasonable degree and
can at the same time be an efficient representation (with
minimal number of parameters Λ that scale as a polyno-
mial in N). To reach the ground state or, more generally,

the relevant low-energy sector of the Hamiltonian Ĥ for
the low-temperature physics, we minimize the energy in
the variational subspace defined by Eq. (1) using gradient
descent with a learning rate λ,

Λ → Λ− λ∂Λ ⟨Ĥ⟩Λ , ⟨Ĥ⟩Λ = ⟨Ψ(Λ)| Ĥ |Ψ(Λ)⟩ . (2)

Here, the quantum mechanical expectation value ⟨Ĥ⟩Λ is
evaluated using importance sampling (see Appendix B).

While there are exponentially many states in the
Hilbert space, the low-energy sector of a local Hamilto-
nian is expected to occupy a small subspace where states
obey area law entanglement [62, 63] whereas a typical
state obeys volume law [64, 65]. Motivated by these con-
siderations, we consider a class of networks that natu-
rally describe quantum states that obey area-law entan-
glement. Pictorially, in such networks, the connections
from the hidden neurons (representing the weights Λ) to
the physical spins are quasi-local [51, 53–55]. In that
case, it holds

ψ(σ,Λ) = ϕ1(σ1,Λ1)× ϕ2(σ2,Λ2)× · · · , (3)

where σȷ = {σk}k∈ȷ denote (overlapping) subsets of
neighboring spins with ∪ȷσȷ = σ and Λȷ are the sub-
sets of the network parameters (weights and biases) that
are connected to the physical spins in ȷ.

Algorithm 1 Ensemble generation

procedure ({Λ}Nn=1)
init: optimized parameters Λ
for k independent times do:

for n sampling steps do:
Propose new parameter Λp = f(Λt)
Accept with probability determined by energy

⟨Ĥ⟩Λ and ensemble parameter T :
Λt+1 = Paccept(Λ

′|Λ;T )

return the last m states for each k: {Λi|i = n −
m, ..., n}k
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Figure 1. (a) An illustration of a “low-energy” ensemble. Two (or more) initial states, |Ψ(Λ0)⟩ and |Ψ(Λ1)⟩, from two distinct
topological sectors are chosen as “seeds” (green dots). The dots denote the dataset (later fed into the DM), which are a set
of quantum states labeled by network parameters Λ. This dataset is generated using the procedure outlined in Sec. II A and
Algorithm. 1, where the next state Λ′ (blue dots at each arrow) is proposed by a random local perturbation and accepted
with probability based on the energy expectation ⟨H⟩Λ′ . In the small-T regime, the full dataset is not inter-connected by such
local perturbations and cluster among each topological sectors (at left and right valley). (b) An illustration of a “high-energy”
ensemble. The states are generated using the same algorithm as before, however with large T (compared to the energy gap
∆). In this regime, the dataset include some of the low-energy states (blue dots), but also some high-energy states (red dots).
Because the high-energy states are agnostic of the low-energy topological sectors, there exist paths (denoted by arrows among
dots in the elliptical blob) such that the two initial seeds from distinct topological sectors effectively “diffuse” and form one
connected cluster.

A. Dataset: network parameter ensembles

The dataset we use for unsupervised detection of topo-
logical order consists of an ensemble of wavefunctions
{|Ψ(Λ)⟩}l, parameterized by the set of network parame-
ters {Λ}l. While, depending on the precise application,
other choices are conceivable, we generate this ensem-
ble such that the relative occurrence of a state |Ψ(Λ)⟩ is
given by ρT (Λ) = exp(−⟨Ĥ⟩Λ /T )/Z, with appropriate
normalization factor Z. As such, a small value of the
“temperature-like” ensemble parameter T corresponds
to a “low-energy” ensemble while large T parametrize
“high-energy” ensembles.

In practice, to generate this ensemble, we here first op-
timize the parameters Λ via Eq. (2) to obtain wavefunc-
tions with lowest energy expectation values. As Eq. (1)
does not contain all possible states, this will, in general,
only yield approximations to the exact low-energy eigen-
states of Ĥ. However, as long as it is able to capture all
superselection sectors of the system as well as (a subset
of) higher energy states connecting these sectors, Eq. (1)
will be sufficient for our purpose of detecting topologi-
cal order or the absence thereof. We perform this op-
timization several times, Λ → Λ0

l , with different initial
conditions, to obtain several “seeds”, Λ0

l ; this is done
to make sure we have a low-energy representative of all
superselection sectors. Ideally the dataset is sampled di-
rectly from the the target probability distribution ρT , if
for instance, one has access to an experimental system
at finite temperature. Here, we adopt a Markov-chain-
inspired procedure for generating the ensemble based on
ρT for each of these seeds. Specifically, starting from a
state Λ, we propose updates on a randomly chosen local

block of parameters connected to the spins at sites ȷ,

Λ → Λ′ = {Λ1,Λ2, · · · , u(Λȷ), · · · ,ΛN}, (4)

where the update u only depends on Λȷ. The proposed
parameter Λ′ given the current parameter Λ is accepted
with probability

Paccept(Λ
′|Λ;T ) = min

(
1, e−

⟨Ĥ⟩
Λ′−⟨Ĥ⟩

Λ
T

)
. (5)

This means that if the proposed state Ψ(Λ′) has a lower
energy expectation value than Ψ(Λ), then the proposal
will be accepted; otherwise, it will be accepted with a
probability determined by the Boltzmann factor. The
entire ensemble generation procedure is summarized in
Algorithm 1.

B. Diffusion map

As proposed in Ref. 12, DM is ideally suited as an unsu-
pervised ML algorithm to identify the presence and num-
ber of superselection sectors in a collection of states, such
as {|Ψ(Λ)⟩}l defined above. To briefly review the key idea
of the DM algorithm [32–35] and introduce notation, as-
sume we are given a dataset X = {xl|l = 1, 2, ...,M},
consisting of M samples xl. Below we will consider the
cases xl = Λl and xl = |Ψ(Λl)⟩; in the first case, the
samples are the network parameters parametrizing the
wavefunction and, in the second, the samples are the
wavefunctions themselves.
To understand DM intuitively, let us define a diffusion

process among states xl ∈ X. The probability of state xl
transitioning to xl′ is defined by the Markov transition
matrix element pl,l′ . To construct pl,l′ , we introduce a
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Figure 2. (a) Overview of the ML algorithm applied in this work: the “seeds” {Λ0} are computed using variational Monte
Carlo (see Appendix B), a Markov-chain algorithm is used to generate the network parameter ensemble dataset (Sec. II A),
then a similarity metric is used for the definition of kernels in the DM method (Sec. II B and Sec. II C), and finally k-means
is applied to the low-dimensional embedding in the subspace provided by the dominant DM eigenvector components. (b) The
square lattice geometry for the toric code model, where the qubits ŝi are defined on the links of the lattice (grey dots). The

Hamiltonian [given in Eq. (16)] is written in terms of the operators P̂P (supported by spins on plaquette P denoted by the

red square) and star ŜS (supported by spins on star S denoted by the blue links). The two blue lines along x(y) directions

denote the Wilson loop operators Ŵ1,x̄(Ŵ2,ȳ) along the straight paths x̄(ȳ). (c) An illustration of the quasi-local ansatz in
Eq. (17). The ansatz is a product over local function ϕ of spins in plaquette (or star), which depends on parameters {wXj , bX}
for X = P (S) being plaquette (or star).

symmetric and positive-definite kernel kϵ(xl, xl′) between
states xl and xl′ . Then the transition probability matrix
pl,l′ is defined as

pl,l′ =
kϵ(xl, xl′)

zl
, zl =

∑
l′

kϵ(xl, xl′), (6)

where the factor zl ensures probability conservation,∑
l′ pl,l′ =1∀l. Then spectral analysis on the transition

probability matrix leads to information on the global con-
nectivity of the dataset X, which, in our context of X
containing low-energy states, allows to identify superse-
lection sectors and, thus, topological order [12]. To quan-
tify how strongly two samples xl and xl′ are connected,
one introduces the 2t-step diffusion distance [32–35],

D2t(l, l
′) =

∑
l′′

1

zl′′
[(pt)l,l′′ − (pt)l′,l′′ ]

2, (7)

where pt denotes the t-th matrix power of the tran-
sition probability matrix p. It was shown that D2t

can be computed from the eigenvalues λn and right
eigenvectors ψn of the transition matrix p: with

∑
l′ pl,l′ (ψn)l′ =λn (ψn)l, and in descending ordering

λn > λn+1, it follows

D2t(l, l
′) =

M−1∑
n=1

λ2tn [(ψn)l − (ψn)l′ ]
2 (8)

after straightforward algebra [35]. Geometrically, this
means that the diffusion distance is represented as a Eu-
clidean distance (weighted with λn) if we perform the
non-linear coordinate transformation xl → {(ψn)l, n =
0, . . .M − 1}. Furthermore, as the global connectivity
is seen from the long-time limit, t → ∞, of the diffu-
sion distance, the largest eigenvalues are most important
to describe the connectivity. To be more precise, let us
choose a kernel kϵ of the form

kϵ(xl, xl′) = exp

(
−1− S(xl, xl′)

ϵ

)
, (9)

where S is a local similarity measure which obeys S ∈
[0, 1], S(xl, xl′) = S(xl′ , xl), and S(x, x) = 1. Here
“local” means that S(xl, xl′) =

∑
i Si(xl, xl′) where

Si(xl, xl′) only depend on the configuration of xl and
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xl′ in the vicinity of site i. While we will discuss pos-
sible explicit forms of S for our quantum mechanical N
spin/qubit system in Sec. II C below, a natural choice for
a classical system of N spins, xl = {Sli, (Sli)2 = 1, i =

1, 2, . . . , N}, is Scl(xl, xl′) =
∑
i S

l
i · Sl

′

i /N . In Eq. (9),
ϵ plays the role of a “coarse graining” parameter that
is necessary as we only deal with finite datasets X: for
given X, we generically expect kϵ(xl, xl′) = pl,l′ = δl,l′
as ϵ → 0, i.e., all distinct samples are dissimilar if ϵ is
sufficiently small and all eigenvalues λn approach 1 [66].
In turn, for ϵ → ∞ the coarse graining parameter is so
large that all samples become connected, kϵ(xl, xl′) → 1;

due to
∑M
l′=1 pl,l′ = 1, we have pl,l′ → 1/M , which can

be written as p → êêT with M -component unit vec-
tor ê = (1, 1, . . . , 1)T /

√
M . Consequently, we will have

λn>0 → 0 (with eigenvectors ψn perpendicular to ê),
while the largest eigenvalue λ0 (with eigenvector ê) is
1 as before (as a consequence of probability conserva-
tion). For values of ϵ in between these extreme limits, the
DM spectrum contains information about X, including
its topological structure: as shown in Ref. 12, the pres-
ence of k ∈ N distinct topological equivalence classes in
X is manifested by a range of ϵ where λ1, . . . λk−1 are all
exponentially close (in ϵ) to 1, with a clear gap to λn≥k.
Furthermore, the different samples l will cluster—with
respect to the normal Euclidean measure, e.g., as can
be captured with k-means—according to their topologi-
cal equivalence class when plotted in the mapped k − 1-
dimensional space {(ψ1)l, (ψ2)l, . . . , (ψk−1)l}. In the fol-
lowing, we will use this procedure to identify the superse-
lection sectors in the ensemble of wave functions defined
in Sec. IIA. To this end, however, we first need to in-
troduce a suitable similarity measure S, to be discussed
next.

C. Local similarity measure

A natural generalization of the abovementioned classi-
cal similarity measure Scl =

∑
i S

l
i ·Sl

′

i /N , which can be
thought of as the (Euclidean) inner product in the clas-
sical configuration space, is to take the inner product in
the Hilbert space of the quantum system,

Sq(Λl,Λl′) = |⟨Ψ(Λl)|Ψ(Λl′)⟩|2. (10)

While this or other related fidelity measures for low-rank
quantum states could be estimated efficiently with quan-
tum simulation and computing setups [67–70], estimat-
ing Sq is generally a computationally expensive task on
a classical computer, as it requires sampling over spin
configurations for our variation procedure. To make the
evaluation of the similarity measure more efficient, we
here propose an alternative route that takes advantage
of the fact that we use a local ansatz for ψ(σ; Λ), see
Eq. (3). Our goal is to express the similarity measure

directly as

Sn(Λl,Λl′) =
1

Nȷ

∑
ȷ

f((Λl)ȷ, (Λl′)ȷ), (11)

where f only compares a local block of parameters de-
noted by ȷ and is a function that can be quickly evaluated,
without having to sample spin configurations. Further-
more, S(xl, xl′) = S(xl′ , xl) can be ensured by choos-
ing a function f that is symmetric in its arguments and
S ∈ [0, 1] is also readily implemented by setting Nȷ =

∑
ȷ

and appropriate rescaling of f such that f ∈ [0, 1]. The
most subtle condition is

Sn(Λl,Λl′) = 1 ⇐⇒ |Ψ(Λl)⟩ ∝ |Ψ(Λ′
l)⟩ , (12)

since, depending on the precise network architecture used
for ψ(σ; Λ), there are “gauge transformations” g ∈ G of
the weights, Λl → g[Λl], with

|Ψ(Λl)⟩ = eiϑg |Ψ(g[Λl])⟩ (13)

for some global phase ϑg. We want to ensure that

Sn(Λl,Λl′) = Sn(Λl, g[Λl′ ]) = Sn(g[Λl],Λl′) (14)

for all such gauge transformations g ∈ G. A general way
to guarantee Eq. (14) proceeds by replacing,

Sn(Λl,Λl′) −→ max
g,g′∈G

Sn(g[Λl], g
′[Λl′ ]). (15)

However, in practice, it might not be required to iterate
over all possible gauge transformations in G due to the lo-
cality of the similarity measure. In the following, we will
use the toric code and a specific RBM variational ansatz
as an example to illustrate these gauge transformations
and how an appropriate function f in Eq. (11) and gauge
invariance (14) can be implemented efficiently.

Finally, note that, while we focus on applying DM in
this work, a similarity measure in terms of neural network
parameters can also be used for other kernel techniques
such as kernel PCA. Depending on the structure of the
underlying dataset, DM has clear advantage over kernel
PCA: the former really captures the global connectivity
of the dataset rather than the subspace with most vari-
ance that is extracted by the latter. This is why kernel
PCA fails when identifying, e.g., winding numbers, in
general datasets where DM still works well [12]. Specifi-
cally for our case study of the toric code below, we find
that kernel PCA can also identify topological sectors for
small T and without magnetic field, h = 0, as a result of
the simple data structure; however, only DM works well
when h is turned on, as we discuss below.

III. EXAMPLE: TORIC CODE

Now we illustrate our DM-based ML algorithm using
the toric code model [58], defined on an Lx × Ly square
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Figure 3. Gauge freedom of RBM ansatz in Eq. (17). The
following transformations only lead to a global phase: (a)
Multiplying all the parameters of a plaquette (or star, not
shown) by a minus sign, see Eq. (18a); (b) A π shift of a
single parameter, see Eqs. (18b) and (18c); (c) A π/2 shift to
the weights crossed by a string l̄, defined by gl̄ in Eq. (18e).
The straight pink line represents the transformation on a non-
contractible loop denoted by gy; (d) Same as (c) but for loops
on the direct lattice and gl and gȳ, cf. Eq. (18d).

lattice with spin-1/2 operators or qubits on every bond,
see Fig. 2(b), leading to a total of N = 2LxLy spins;
throughout this work, we will assume periodic boundary
conditions. Referring to all four spins on the edges of
an elementary square (vertex) of the lattice as plaquette
P (star S), the plaquette and star operators are defined

as P̂P =
∏
i∈P ŝ

z
i and ŜS =

∏
i∈S ŝ

x
i , respectively. The

toric code Hamiltonian then reads as

Ĥtc = −JP
∑
P

P̂P − JS
∑
S

ŜS , (16)

where the sums are over all plaquettes and stars of the
lattice. All “stabilizers” P̂P , ŜS commute among each
other and with the Hamiltonian. Focusing on JP , JS > 0,
the ground states are obtained as the eigenstates with
eigenvalue +1 under all stabilizers. A counting argument,
taking into account the constraint

∏
S ŜS =

∏
P P̂P =1,

reveals that there are four, exactly degenerate ground

states for periodic boundary conditions.
To describe the ground-states and low-energy subspace

of the toric code model (16) variationally, we parameter-
ize ψ(σ; Λ) in Eq. (1) using the ansatz

ψrbm(σ; Λ) =
∏
P

cos(bP +
∑
j∈P

wPjσj)

×
∏
S

cos(bS +
∑
j∈S

wSjσj), (17)

proposed in Ref. 59, where every plaquette P (star S)
is associated with a “bias” bP (bS) and four weights
wP,j (wS,j), all of which are chosen to be real here, i.e.,
Λ = {bP , bS , wP,j , wS,j}. This ansatz can be thought
of as an RBM [46] (see Appendix A), as illustrated in
Fig. 2(c), with the same geometric properties as the un-
derlying toric code model. It is clear that Eq. (17) defines
a quasi-local ansatz as it is of the form of Eq. (3), with ȷ
enumerating all plaquettes and stars (and thusNȷ = 2N).
For this specific ansatz, the gauge transformations g ∈ G,
as introduced in Sec. II C above, are generated by the fol-
lowing set of operations on the parameters bP , bS , wP,j ,
and wS,j :

1. For X being any plaquette or star, multiplying all bi-
ases and weights of that plaquette or star by −1 [see
Fig. 3(a)],

gX,− : bX → −bX , wXj → −wXj , (18a)

leaves the wave function invariant [ϑg = 0 in Eq. (13)].

2. Adding π to either the bias or any of the weights as-
sociated with the plaquette or star X [see Fig. 3(b)],

gX,π,b : bX → bX + π, (18b)

gX,π,j :wXj → wXj + π, j ∈ X, (18c)

leads to an overall minus sign [ϑg = π in Eq. (13)].

3. For any closed loop ℓ (or ℓ̄) on the direct (or dual lat-
tice), adding π

2 to all weights of the stars (plaquettes)
that are connected to the spins crossed by the string
[see Fig. 3(c-d)],

gℓ : wSj → wSj +
π

2
, Sj ∈ ℓ, (18d)

gℓ̄ : wPj → wPj +
π

2
, P j ∈ ℓ̄, (18e)

leads to ϑg = 0 or π in Eq. (13) depending on the
length of the string. Note that any loop configuration
L, which can contain an arbitrary number of loops,
can be generated by the set {gS , gP , gx,y, gx̄,ȳ}, where
gS (gP ) creates an elementary loop on the dual (di-
rect) lattice encircling the star S (plaquette P ), see
Fig. 3(c,d), and gx,y (gx̄,ȳ) creates a non-contractible
loop on the direct (dual) lattice along the x, y direc-
tion. Since the length of any contractible loop is even,
ϑg = 0 for any string transformations generated by
gS and gP . Meanwhile, on an odd lattice, the gauge
transformations gx,y(gx̄,ȳ) involve an odd number of
sites and thus lead to ϑg = π.
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A highly inefficient way of dealing with this gauge re-
dundancy would be to use a choice of Sn in Eq. (11)
which is not invariant under any of the transformations
in Eq. (18); this would, for instance, be the case by just
taking the Euclidean distance of the weights,

Seu(Λl,Λl′) ∝ ||Λl − Λl′ ||2

=
∑
X

[
(blX − bl

′

X)2 +
∑
j∈X

(wlXj − wl
′

Xj)
2
]
,

where the sum over X involves all plaquettes and stars.
Naively going through all possible gauge transformations
to find the maximum in Eq. (15) would in principle rectify
the lack of gauge invariance. However, since the number
of gauge transformations scales exponentially with sys-
tem size N (holds for each of the three classes, 1.-3., of
transformations defined above), such an approach would
become very expensive for large N . Luckily, locality of
the ansatz and of the similarity measure allows us to con-
struct similarity measures that can be evaluated much
faster: as an example, consider

Sn(Λl,Λl′) =
1

2
+

1

10N

∑
X

max
τX=±

[
∑
j∈X

cos 2(τXw
l
Xj − wl

′

Xj) + cos 2(τXb
l
X − bl

′

X)
]
,
(19)

which clearly obeys Sn(Λl,Λl′) = Sn(Λl′ ,Λl),
Sn(Λl,Λl′) ∈ [0, 1], and locality [it is of the form
of Eq. (11) with ȷ enumerating all X]. Concerning gauge
invariance, first note that the choice of cos(·) immedi-
ately leads to invariance under Eq. (18a). Second, for
each X we only have to maximize over two values (τX)
to enforce invariance under Eqs. (18b) and (18c), i.e.,
the maximization only doubles the computational cost.

The “string” redundancy, see Eqs. (18d) and (18e),
however, is not yet taken into account in Eq. (19). It can
be formally taken care of by maximizing over all possible
loop configurations, denoted by L,

Sstr(Λl,Λl′) =
1

2
+

1

10N
max
L

{∑
X

max
τX=±

[
∑
j∈X

µL
Xj cos 2(τXw

l
Xj − wl

′

Xj) + cos 2(τXb
l
X − bl

′

X)
]}
,

(20)

where µL
Xj =−1 if Xj lives on a loop contained in L and

µL
Xj =1 otherwise. While there is an exponential num-

ber of such strings, Ref. 12 has proposed an algorithm
to efficiently find an approximate maximum value. In
our case, this algorithm amounts to randomly choosing a
plaquette P or a star S or a direction d = x, y and then
applying gS or gP or gd=x,y to Λl in Eq. (19). If this does
not decrease the similarity, keep that transformation; if
it decreases the similarity, discard the gauge transforma-
tion. Repeat this procedure Ng times. In Ref. 12, Ng
between 103 and 104 was found to be enough for a large

system consisting 18 × 18 square-lattice sites (total of
N = 2 × 182 Ising spins). On top of this, gS and gP
are local and, hence, the evaluation of the change of the
local similarity in Eq. (19) under any given gS or gP only
requires evaluation of O(N0) terms in (19), i.e., indepen-
dent of system size.

In the numerical simulations below, using Eq. (19)
without sampling over loop configurations L turned out
to be sufficient. The reason is that, for our Markov-chain-
inspired sampling procedure of Λl (see Appendix C), up-
dates that correspond to these loop transformations hap-
pen very infrequently. Furthermore, even if a few pairs
of samples are incorrectly classified as distinct due to the
string redundancy, the DM will still correctly capture
the global connectivity and, hence, absence or presence
of topological sectors.

Figure 4. (a) DM spectrum for topological phase at h = 0
and T = 0.1 using the neutral network similarity measure in
Eq. (19). Inset left: associated leading DM components; color
represents the loop observable expectations values defined in
(c-d), for ϵ indicated by the dashed line. Inset right: DM
spectrum in descending order at ϵ = 0.01 indicated by the
dashed line. (b) Same as (a), but using exact overlaps Sq

in Eq. (10) as metric. (c) Color map for the non-local loop
values ⟨W 1⟩, ⟨W 2⟩ in the left insets of (a) and (b). (d) Differ-

ent straight Wilson loops Ŵ1,x̄i (Ŵ2,ȳi) along x (y) direction,
denoted by blue (red) lines. The loop values in the color map
in (c) are spatial averages over all straight-loop expectation
values (as in the equations for ⟨W 1⟩, ⟨W 2⟩).



8

IV. NUMERICAL RESULTS

We next demonstrate explicitly how the general pro-
cedure outlined above can be used to probe and analyze
topological order in the toric code. We start from the
pure toric code Hamiltonian defined in Eq. (16) using
the variational RBM ansatz in Eq. (17). An ensemble of
network parameters is generated by applying the proce-
dure of Sec. IIA (see also Algorithm 1) for a system size
of N =18 spins; more details on ensemble generation, in-
cluding the form of u in Eq. (4), are given in Appendix C.
From now on, we measure all energies in units of JP and
set JS = JP = 1.

Let us first focus on the low-energy ensemble and
choose T = 0.1 in Eq. (5). For the simple similarity mea-
sure in Eq. (19), that can be exactly evaluated at a time
linear in system size N , we find the DM spectrum shown
in Fig. 4(a) as a function of ϵ in Eq. (9). We observe the
hallmark feature of four superselection sectors [12]: there
is a finite range of ϵ where there are four eigenvalues ex-
ponentially close to 1. The association of samples (in our
case states) and these four sectors is thus expected to be
visible in a scatter plot of a projected subspace spanned
by the first three non-trivial eigenvectors ψ1,2,3 [12]; note
the zeroth eigenvector (ψ0)l = C is always constant with
eigenvalue λ = 1 from probability conservation. In fact,
we can see these clusters already in the first two com-
ponents, see left inset in Fig. 4(a). Then a standard k-
means algorithm is applied onto this projected subspace
to identify the cluster number for each data point. Here,
we use the standard algorithm in sklearn [71] to find the
clusters given by diffusion map eigenvalues. To verify
that the ML algorithm has correctly clustered the states
according to the four physical sectors, we compute the
expectation value for each state of the string operators,

Ŵ1,x̄ =
∏
i∈x̄

ŝxi , Ŵ2,ȳ =
∏
i∈ȳ

ŝxi , (21)

where x̄(ȳ) are loops defined on the dual lattice winding
along the x(y) direction, shown as blue lines in Fig. 2(b).
We quantify the association of a state to physical sec-
tors by the average of a set of straight loops X (Y) wind-
ing around the x(y) direction, shown as blue (red) lines
in Fig. 4(d). Indicating this averaged expectation value
⟨W 1⟩, ⟨W 2⟩ in the inset of Fig. 4(a) using the color code
defined in Fig. 4(c), we indeed see that the clustering is
done correctly.

To demonstrate that this is not a special feature of the
similarity measure in Eq. (19), we have done the same
analysis, with result shown in Fig. 4(b), using the full
quantum mechanical overlap measure in Eq. (10). Quan-
titative details change but, as expected, four superselec-
tion sectors are clearly identified and the clustering is
done correctly. We reiterate that the evaluation of the
neural-network similarity measure in Eq. (19) [exact eval-
uation O(N)] is much fast than that in Eq. (10) (even
when it is computed with importance sampling). Note,
however, that once Sn is computed for all samples, the

Figure 5. (a) DM spectrum for the high-energy ensemble
at h= 0 and T = 1. The inset is the spectrum at ϵ = 0.03
indicated by the dashed line in the main panel; (b) Spatially
averaged straight Wilson loops ⟨W 1(2)⟩ [see Fig. 4(c-d)] along
two directions for the states in (a), where the color encodes
energy density ⟨H⟩/N ; (c) Leading DM components where
the color of the dots encodes ⟨W 1(2)⟩ using the color map in
Fig. 4(c); (d) DM spectrum for the trivial phase at h= 1.0
and T = 0.1 using the quantum metric Sq.

actual DM-based clustering takes the same amount of
computational time for both approaches. Consequently,
suppose there is a quantum simulator that can measure
the quantum overlap in Eq. (10) or any other viable sim-
ilarity measure for that matter, then we can equivalently
use the “measured” similarity for an efficient clustering of
the superselection sectors via the DM scheme. As a next
step, we demonstrate that the superselection sectors are
eventually connected if we take into account states with
sufficiently high energy. To this end, we repeat the same
analysis but for an ensemble with T = 1. As can be
seen in the resulting DM spectrum in Fig. 5(a), there is
no value of ϵ where more than one eigenvalue is (expo-
nentially) close to 1 and separated from the rest of the
spectrum by a clear gap. Here we used again the sim-
plified measure in Eq. (19), but have checked nothing
changes qualitatively when using the overlap measure.
To verify that this is the correct answer for the given
dataset, we again computed the expectation value of the
loop operators in Eq. (21) for each state in the ensemble.
This is shown in Fig. 5(b), where we also use color to
indicate the energy expectation value for each state. We
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can clearly see the four low-energy (blue) sectors (with
|W1,2| ≃ 1) are connected via high-energy (red) states
(with |W1,2| ≪ 1). This agrees with the DM result that
all states are connected within the ensemble (topolog-
ical order is lost). We can nonetheless investigate the
clustering in the leading three non-trivial DM compo-
nents ψ1,2,3. Focusing on a 2D projection in Fig. 5(c) for
simplicity of the presentation, we can see that the DM
reveals very interesting structure in the data: the four
lobes roughly correspond to the four colors blue, red, or-
ange, and green associated with the four superselection
sectors and the states closer to |W1,2| = 1 (darker color)
appear closer to the tips. Finally, note that the colors
are arranged such that the red and green [orange and
blue] lobes are on opposite ends, as expected since they
correspond to (W1,W2) ≃ (1,−1) and (−1, 1) [(−1,−1)
and (1, 1)].
Another route to destroying topological order proceeds

via application of a magnetic field. To study this, we
extend the toric code Hamiltonian according to

Ĥ ′
tc = Ĥtc − h

∑
i

ŝzi . (22)

Clearly, in the limit of h → ∞, the ground state is just
a state where all spins are polarized along ŝz and topo-
logical order is lost. Starting from the pure toric model
(h = 0) and turning on h reduces the gap of the “charge

excitations” defined by flipping ŜS from +1 in the toric
code groundstate to −1. Their condensation leads to a
second-order quantum phase transition [72–75].

Before addressing the transition, let us study the large-
h limit. We first note that our ansatz in Eq. (17) can cap-
ture the polarized phase as well. For instance, denoting
the “northmost” (and “southmost”) spin of the plaque-
tte P (and star S) by j0(P ) (and j0(S)), respectively, the
spin polarized state is realized for [see also Fig. 8(a) in
the Appendix]

bP = bS = −π
4
, wXj =

{
π
4 , j = j0(X),

0, otherwise.
(23)

In fact, the spin polarized state has many representations
within our RBM ansatz in Eq. (17), including represen-
tations that are not just related by the gauge transforma-
tions in Eq. (18). For instance, the association j → j0(X)
of a spin to a plaquette and star can be changed, e.g., by
using the “easternmost” spin. As discussed in more de-
tail in Appendix A 2, this redundancy is a consequence
of the product from of ψrbm(σ) in Eq. (17) and the fact
that ψrbm(σ) is exactly zero if there is a single j with
σj = −1; consequently, it is a special feature of the sim-
ple product nature of the spin-polarized ground state.
While in general there can still be additional redundan-
cies besides the aforementioned gauge transformations,
we do not expect such a structured set of redundancy to
hold for generic states. There are various ways of resolv-
ing this issue. The most straightforward one is to replace
the simple overlap measure Sn in Eq. (11) by the direct

Figure 6. DM spectra for low-energy ensembles with T = 0.3
at finite field h. (a) First 10 eigenvalues for various field val-
ues h= 0.475, 0.55, 0.575, 0.6, 0.7 at ϵ= 0.05. The dot marker
(h= 0.475) shows that the eigenvalue spectra have four-fold
degeneracy, indicating signature for topological order. In
comparison, for spectra marked by the triangular markers
(h ≥ 0.55), such degeneracy is absent. A transition field value
ht ≃ 0.55 is identified by observing that a gap opens in the
degenerate eigenvalue spectra. This is consistent with what
we have observed in the fidelity using the same dataset [see
Appendix B 1]. (b) Projected eigenvectors onto the first two
components for h= 0.475. The color encodes ⟨W 1(2)⟩ with the
color scheme of Fig. 4(c). The black cross marks the k-means
centers. (c) Same as (b) for h = 0.7. (d) Expectation for
averaged straight Wilson loops ⟨W 1(2)⟩ along two directions
for the states in (b). The color encodes the clustering results
from k-means in the projected subspace of the eigenvectors
shown in (b). (e) Same as (d) for ensemble shown in (c).

overlap Sq in Eq. (10) for a certain fraction of pairs of
samples l and l′. If this fraction is large enough, the DM
algorithm will be able recognize that clusters of network
parameters that might be distinct according to Sn actu-
ally correspond to identical wave functions. We refer to
Appendix A 3 where this is explicitly demonstrated. We
note, however, that kernel PCA will not work anymore
in this case; it will incorrectly classify connected samples
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as distinct as it’s based on the variance of the data rather
than connectivity. For simplicity of the presentation, we
use Sq for all states in the main text and focus on DM.
The DM spectrum for large magnetic field, h = 1, and

low temperatures, T = 0.1, is shown in Fig. 5(d). Clearly,
there is no value of ϵ for which there is more than one
eigenvalue close to 1 while exhibiting a gap to the rest
of the spectrum. This shows that, as expected, the mag-
netic field h has lead to the loss of topological order.
To study with our DM algorithm the associated phase

transition induced by h, we repeat the same procedure for
various different values of h. The resulting spectra for se-
lected h are shown in Fig. 6(a). We see that there are still
four sectors for h = 0.55 in the data that are absent for
h = 0.575 and larger values. While the associated criti-
cal value of h is larger than expected [72–74], this is not
a shortcoming of the DM algorithm but rather a conse-
quence of our simple local variational ansatz in Eq. (17).
In particular, one can analytically show that the sim-
ple RBM anstaz is able to capture the exact Toric code
state as well as exact polarized state (Appendix A), while
not faithfully capture states around the critical field. By
computing the fidelity as well as loop-operator expec-
tation values, we can see that a critical value around
h = 0.55 is the expected answer for our dataset (see
Appendix B 1). More sophisticated ansätze for the wave-
function are expected to yield better values, but this is
not the main focus of this work. More importantly, we
see in Fig. 6(b) that the DM clustering of the states cor-
rectly reproduces the clustering according to the aver-
aged loop operator expectation values ⟨W j⟩ (again indi-
cated with color). Note that we have further projected
the states onto a two-dimensional subspace of the three-
dimensional subspace identified by diffusion maps [76].
Alternatively, this can be seen in Fig. 6(d) where ⟨W j⟩
is indicated for the individual samples. Using four dif-
ferent colors for the four different clusters identified by
the DM, we see that all states are clustered correctly. As
expected based on the eigenvalues, there are no clear clus-
ters anymore for larger h, Fig. 6(c); nonetheless, naively
applying k-means clustering in ψ1,2,3 manages to discover
some residual structure of the wavefunctions related to
⟨W j⟩ as demonstrated in Fig. 6(e). Note that while in
Fig. 6(c) we have plotted the two-dimensional subspace,
diffusion maps predict the clustering by projecting down
to a 1d subspace of the leading eigenvector component
ψ1.

V. SUMMARY AND DISCUSSION

In this work, we have described an unsupervised ML
algorithm for quantum phases with topological order. We
use neural network parameters to efficiently represent an
ensemble of quantum states, which are sampled accord-
ing to their energy expectation values. To uncover the
structure of the superselection sectors in the quantum
states, we used the dimensional reduction technique of

diffusion map and provided a kernel defined in terms of
network parameters. As opposed to a kernel based on the
overlap of wavefunctions (or other quantum mechanical
similarity measures of states for that matter), this metric
can be evaluated efficiently (within polynomial time) on
a classical computer.

We illustrated our general algorithm using a quasi-local
restricted Boltzmann machine (RBM) and the toric code
model in an external field; the choice of network ansatz
was inspired by previous works [59, 60] showing the exis-
tence of efficient representations of the low-energy spec-
trum in terms of RBMs. Allowing for spatially inhomo-
geneous RBM networks, we identified the “gauge symme-
tries” of the ansatz, i.e., the set of changes in the network
parameters that do not change the wavefunction, apart
from trivial global phase factors. We carefully designed
a similarity measure that is gauge invariant—a key prop-
erty as, otherwise, identical wavefunctions represented
in different gauges would be falsely identified as being
distinct. We showed that the resultant unsupervised
diffusion-map-based embedding of the wavefunctions is
consistent with the expectation values of loop operators;
it correctly captures the presence of superselection sec-
tors and topological order at low energies and fields, as
well as the lack thereof when higher-energy states are in-
volved and/or the magnetic field is increased. We also
verified our results using the full quantum mechanical
overlap. Since our procedure is general, natural follow-
up works would explore applications to other models and
using other variational ansätze. In that regard, models
where the ideal variational ansatz (RBM or beyond) is
not known, seem particularly interesting.

On a more general level, our analysis highlights the
importance of the following two key properties of diffu-
sion maps: first, in the presence of different topological
sectors, the leading eigenvectors of diffusion maps cap-
ture the connectivity rather than, e.g., the variance as is
the case for PCA. For this reason, the clustering is still
done correctly even if a fraction of pairs of wavefunc-
tions are incorrectly classified as being distinct due to
the usage of an approximate similarity measure. This is
why complementing the neural-network similarity mea-
sure, which has additional, state-specific redundancies in
the large-field limit, by direct quantum mechanical over-
laps for a certain fraction of pairs of states is sufficient to
yield the correct classification. The second key property
is that diffusion map is a kernel technique. This means
that the actual machine learning procedure does not re-
quire the full wavefunctions as input; instead, only (some
measure of) the kernel of all pairs of wavefunctions in the
dataset is required. We have used this to effectively re-
move the gauge redundancy in the RBM parametrization
of the states by proper definition of the network similarity
measure in Eq. (20). Since the evaluation of full quan-
tum mechanical similarity measures, like the wavefunc-
tion overlap, are very expensive on classical computers,
an interesting future direction would be to use the emerg-
ing quantum-computing resources to evaluate a similarity
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measure quantum mechanically. This could then be used
as input for a diffusion-map-based clustering.

We finally point out that the ensemble of states we
used in this work, which was based on sampling states
according to their energy with respect to a Hamilto-
nian, is only one of many possibilities. The proposed
technique of applying diffusion map clustering using a
gauge-invariant kernel in terms of network parameters of
a variational description of quantum many-body wave-
functions can be applied more generally, in principle, to
any ensemble of interest. For instance, to consider arbi-
trary local perturbations, one could generate an ensemble
using finite depth local unitary circuits. Alternatively,
one could generate an ensemble based on (Lindbladian)
time-evolution to probe the stability of topological order
against time-dependent perturbations or the coupling to
a bath. We leave the investigation of such possibilities
for future works.

VI. CODE AND DATA AVAILABILITY

The Monte Carlo simulations in this work were im-
plemented in JAX [77]. Python code and data will be
available at https://github.com/teng10/ml toric code/.
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Appendix A: Variational Ansatz: Restricted
Boltzmann Machine

The variational ansatz in Eq. (17) is a further-restricted
restricted Boltzmann machine (RBM), first introduced
by Ref. 59. RBM is a restricted class of Boltzmann
machine with an “energy” function ERBM(σ,h; Λ) de-
pendent on the network parameters Λ, where σ are
physical spins and h = {h1, h2, · · · , hN |hi = ±1} are
hidden spins (or hidden neurons) that are Ising vari-
ables. The parameters Λ define the coupling strength
among the physical and hidden spins. The restric-
tion in RBM is that the couplings are only between
the physical spin σi and hidden spin hj with strength
−wij , so that the “energy” function takes the form
ERBM(σ,h; Λ)=−

∑
i aiσi−

∑
i bihi−

∑
ij wijσihj . It

is a generative neural network that aims to model a prob-

Figure 7. RBM representations of the four toric code ground
states in the eigenbasis [Eq. (A4)] of loop operators Ŵ1, Ŵ2

in Eq. (A3a).

ability distribution P based on the Boltzmann factor,

P(σ; Λ) =
1

Z

∑
h

e−ERBM(σ,h;Λ), (A1a)

normalization Z =
∑
σ,h

e−ERBM(σ,h;Λ). (A1b)

For the task of modeling a quantum wavefunction ampli-
tude ψ(σ; Λ), RBMs can be used as a variational ansatz
by extending the parameters Λ to complex numbers.

Further restricting parameters to the interlayer con-
nections to the plaquette and star geometry in the toric
code model [cf. Fig. 2(c)] and taking all parameters Λ to
be purely imaginary, we recover the ansatz in Eq. (17)

(up to normalization factor Z̃),

ψ(σ; Λ) =
1

Z̃

∑
X=P,S

∑
hX=±1

e−i
∑

X(wXjσj+bX)hX ,

=
1

Z̃

∏
X=P,S

cos(
∑
j∈X

wXjσj + bX). (A2)

The cos(·) factors come from summing over the hid-
den neurons and the ansatz factorizes into the product
of individual plaquette (star) terms because of the re-
stricted connections. The estimation of physical observ-
ables of a wave function based on the RBM ansatz re-
quires Monte Carlo sampling procedure which we discuss
in Appendix B.

https://github.com/teng10/ml_toric_code/
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Figure 8. (a-b) Two RBM representations Eq. (A8) of the polarized state. (c) A path that connects the presentation for two
spins in (a-b), which is explicitly shown in Table. I.

1. Ground states representation in different
topological sectors

Placing the toric code model in Eq. (16) on the torus
geometry, it is useful to define the loop operators,

Ŵ1 =
∏
i∈l̄x

ŝxi , Ŵ2 =
∏
i∈l̄y

ŝxi , (A3a)

V̂1 =
∏
i∈lx

ŝzi , V̂2 =
∏
i∈ly

ŝzi , (A3b)

where lx,y is a non-contractible loop along x, y direc-
tion, and l̄x,y is similar on the dual lattice. Note the
loop operators along two directions do not commute with

each other as
[
Ŵ1, V̂2

]
̸= 0 and

[
Ŵ2, V̂1

]
̸= 0. However,

since the hamiltonian commute with these loop operators[
Ŵ1,2, Ĥtc

]
=
[
V̂1,2, Ĥtc

]
=0, it follows that the ground

state subspace is four-fold degenerate and spanned by
the eigenvectors of the loop operators.

Suppose we work in the eigenbasis of Ŵ1,2; we define

the four orthogonal ground states |ψi⟩ (i = 0, 1, 2, 3) that
span L as,

Ŵ1 |ψ0⟩ = − |ψ0⟩ , Ŵ2 |ψ0⟩ = − |ψ0⟩ , (A4a)

Ŵ1 |ψ1⟩ = |ψ1⟩ , Ŵ2 |ψ1⟩ = |ψ1⟩ , (A4b)

Ŵ1 |ψ2⟩ = − |ψ2⟩ , Ŵ2 |ψ2⟩ = |ψ2⟩ , (A4c)

Ŵ1 |ψ3⟩ = |ψ3⟩ , Ŵ2 |ψ3⟩ = − |ψ3⟩ . (A4d)

The RBM ansatz in Eq. (A2) can represent eigenstates

of Ŵ1,2 with eigenvalues (W1,W2) = (±1,±1). Ref. [59]
gave an representation of |ψ0⟩ with parameters,

wPj =
π

4
, bP = 0, wSj =

π

2
, bS = 0. (A5a)

On a system with odd number of sites along x and y di-
rection, the other three degenerate states can be realized
analogously by fixing the weights associated to stars to
be wSj =0, bS =0. Then the four states can be chosen
by changing the wPj and bP as shown in Fig. 7.

2. Network parameter redundancies in polarized phase

In Sec. III, we identified a set of gauge transformations Eq. (18) that leave a generic wavefunction parameterized
by the RBM ansatz invariant up to a global phase. Such gauge transformations should be taken into consideration
when evaluating the similarity measure Sn. Moreover, we have numerically verified that for states generated close to
the exact toric code wave functions, Sn is a good proxy for the quantum measure Sq after explicit removals of such
redundancies via Sn in Eq. (19). However, as alluded to in the discussions of the large-h limit, there are state-specific
redundancies that are generally not related by the gauge transformations in Eq. (18).

Let us illustrate such redundancies here for the polarized state |Ψ⟩ = |1, · · · , 1⟩z which has all up spins in z-basis.
Notice that there is the same number of cos(·) factors in the wavefunction ansatz as the number of spins. As a result,
we can define a “covering” by assigning each individual spin to a single factor, and choosing the weights to ensure all
spins are up. Any such “covering” is a valid representation of the polarized state. For example, one representation is,

bP = bS = −π
4
, wSj =

{
π
4 , j = js(S),

0, otherwise,
and wPj =

{
π
4 , j = jn(P ),

0, otherwise.
(A6)
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where js(S) denotes the “southmost” spin in the star S and jn(P ) denotes the “northmost” spin in the plaquette
P [see Fig. 8(a)]. Any such coverings of the spins will correspond to a polarized state. For example, performing a
“rotation” leads to a different covering in Fig. 8(b). Actually, because most amplitudes in local-z basis are 0 so there
are so few constraints in the wave function amplitudes, a continuous set of weights exist to represent the polarized
state, so there are an infinite amount of redundancies for completely polarized state.

To illustrate this, let us consider an example of just two spins [the boxed region in Fig. 8(c)] with the same RBM
ansatz, which can be easily generalized to more spins. For two spins, such ansatz is given by,

ψΛ(σA, σB) = cos(bS + wSAσA + wSBσB) cos(bP + wPAσA + wPBσB), (A7)

where the weights Λ = {ΛS = {bS , wSA, wSB}, ΛP = {bP , wPA, wPB}} with ΛXj ∈ [0, π) for X = S or P fully
determine the two-qubits state. For example, the following two choices of weights [Λ1 and Λ2 pictorially in Fig. 8(c)]
both parametrize the polarized state:

Λ1 = {bS = −π
4
, wSA = 0, wSB =

π

4
, bP = −π

4
, wPA =

π

4
, wPB = 0}, (A8a)

Λ2 = {bS = −π
4
, wSA =

π

4
, wSB = 0, bP = −π

4
, wPA = 0, wPB =

π

4
}, (A8b)

ψΛ1,2 =

{
1, σA = σB = 1,

0, otherwise.
(A8c)

Now to illustrate the continuous redundancies, we construct a path in the parameter space to go from Λ1 to Λ2.
The path is composed of three steps [Fig. 8(c)],

Λ1
path 1−−−−→ Λ3

path 2−−−−→ Λ4
path 3−−−−→ Λ2, (A9)

where the intermediate parameters are given by,

Λ3 = {bS = 0, wSA =
π

4
, wSB = −π

4
, bP = −π

4
, wPA =

π

4
, wPB = 0}, (A10)

Λ4 = {bS = 0, wSA =
π

4
, wSB = −π

4
, bP = −π

4
, wPA = 0, wPB =

π

4
}. (A11)

Along each path component, referred to as path 1 through 3 in Table I, the parameters of S (or P ) are varied and the

Path 1 wSB = bS + wSA − π
2

ΛP fixed product ψ = ψS × ψP

Λ1 → Λ3 wSA : [0, π
4

), wSB : [π
4
,−π

4
), bS : [−π

4
, 0) wPA = π

4
, wPB = 0, bP = −π

4

cos(bX + wXA + wXB) ̸= 0 if bS + wSA ̸= n
2
π, n ∈ Z → 0 → 1 1 → 0 → 1

cos(bX + wXA − wXB) 0 0 ✓

cos(bX − wXA + wXB) cos(2bS − π
2

) → 0 0 0 ✓

cos(bX − wXA − wXB) 0 0 ✓

Path 2 ΛS fixed wPB = bP − wPA + π
2

Λ3 → Λ4 wSA = π
4
, wSB = −π

4
, bS = 0 wPA : [π

4
, 0], wPB : [0, π

4
], bP = −π

4

cos(bX + wXA + wXB) 1 1 1

cos(bX + wXA − wXB) 0 cos(2wPA − π
2

) → 0 0 ✓

cos(bX − wXA + wXB) 0 0 ✓

cos(bX − wXA − wXB) 0 0 ✓

Path 3 wSB = −bS + wSA + π
2

ΛP fixed

Λ4 → Λ2 wSA = π
4
, wSB : (−π

4
, 0], bS : (0,−π

4
] wPA = 0, wPB = π

4
, bP = −π

4

cos(bX + wXA + wXB) 1 1 1

cos(bX + wXA − wXB) 0 0 ✓

cos(bX − wXA + wXB) 0 0 ✓

cos(bX − wXA − wXB) 0 0 ✓

Table I. A path going from Λ1 to Λ2 is composed of three steps. Path 1 (Λ1 → Λ3) is smooth except at the point wSA =
π
4
, wSB = −π

4
, bS = 0, where the wavefunction vanishes. This is denoted by the red arrows in the first row. Path 2 and 3 are

both smooth. The last column illustrates that the wavefunction ψ remains in the polarized state along the path.
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other held fixed, while remaining in the exactly polarized state. The path is continuous except at a singular point on
path 1 where the wave function vanishes at Λsingular = {bS = 0, wSA = π

4 , wSB = −π
4 , bP = −π

4 , wPA = π
4 , wPB = 0}.

3. Resolving the special redundancies

In Appendix A 2, we explicitly showed that there can
be a large set of redundancies given a polarized state.
Hence, for simplicity in the main text, we have used the
direct overlap Sq in Eq. (10) as the relevant measure
at finite field values. As discussed in the main text, a
straightforward way to alleviate the redundancies in the
similarity measure Sn in Eq. (19) of the network parame-
ters is to complement it with the direct overlap. By using
a combination of both measures, we are able to reduce
the amount of computational cost of the direct overlap
by a fraction as the similarity is easy to compute. More
specifically, we define a mixed measure Sm by replacing
a random fraction (given by f) of the similarity measure

pairs {l, l′} by a rescaled overlap measure S̃q such that,

Sm(l, l′) =

{
S̃q(l, l

′) with probability f,

Sn(l, l
′) with probability 1− f.

(A12)

The following rescaling of the overlap measure Sq is nec-
essary as we want to include the two measures on an
equal-footing given by,

S̃q =
Sq − nq
mq − nq

· (mn − nn) + nn, (A13a)

mq = max(Sq), nq = min(Sq), (A13b)

mn = max(Sn), nn = min(Sn). (A13c)

For example, we see that the minimum of the rescaled
overlap is the same as the minimum of the similarity

min(S̃q) = min(Sn).
In Fig. 9, we demonstrate that by using a mixed mea-

sure with a fraction of f = 0.4 replacement, our algo-
rithm with DM is able to identify the presence (indi-
cated by the shaded blue region for smaller field values
h = 0.475 and h = 0.55) and absence (h = 0.7) of su-
perselection sectors across various field values, consistent
with the predictions of the algorithm using direct over-
lap (shown in Fig. 6). We note that in the case with a
mixed measure, DM is a natural technique as the algo-
rithm looks for connectivity; whereas kernel PCA would
fail to identify such transition (since a fraction of pairs of
wave functions are incorrectly considered to be dissimi-
lar by Sn, the leading kernel PCA components still show
four separated clusters up to the largest magnetic field,
h = 1).

Appendix B: Optimization with Variational Monte
Carlo

To find the ground state |Ψ(Λ0)⟩ ∝
∑

σ ψ(σ; Λ
0) |σ⟩,

we wish to minimize the energy expectation ⟨E⟩ =

0.2

0.4

0.6

0.8

1.0

k

h=0.475

0.2

0.4

0.6

0.8

1.0

k

h=0.55

0.00 0.02 0.04 0.06 0.08 0.10

0.2

0.4

0.6

0.8

1.0
k

h=0.7

Figure 9. DM spectra for different field values h =
0.475, 0.55, 0.7 at T = 0.3 using a mixed similarity measure
Sm with a fraction f = 0.4 in Eq. (A12). The blue shaded re-
gions highlight the existence of a range of ϵ with spectral gap
between the degenerate eigenvalues and the decaying eigen-
values, indicating underlying superselection sectors. As the
field value approaches the transition field hc, the range of
such region shrinks and disappears at high field h = 0.7, in-
dicating the absence of sectors.

⟨Ψ| Ĥ |Ψ⟩ / ⟨Ψ|Ψ⟩ (omitting the variational parameters
Λ0 in this section), which is bounded by the ground state
energy by the variational principle. An exact compu-
tation ⟨E⟩exact is costly as the summation enumerates
over exponentially many spin configurations σ as the sys-
tem size increases. Here we use variational Monte Carlo
(VMC) importance sampling algorithm to estimate such
expectation values. The idea is to compute relative prob-
ability between different configurations and sample from
the true wavefunction probability density |ψ(σ)|2, with-
out having to compute |ψ(σ)|2 for all σ. To perform
this algorithm, we initialize M random configurations
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{σi}Mi=1 and continue each with random walks based on
previous configurations, hence formingM Markov chains.
In particular, the Metropolis–Rosenbluth algo-

rithm [78] is used to propose the next configuration σ′
i

that is locally connected to ci according to function
g(σ′|σ). For the toric code model, we use two types
of proposals: spin flips and vertex flips. Here, we will
assume a probability of p for proposing spin flips and
analogously 1 − p for vertex flips that are equally likely
at all sites:

g(σ′|σ) =

{
p
ns
, for spin flips

1−p
nv
, for vertex flips

(B1)

where ns and nv are the number of all possible spin and
vertex flips. The acceptance of σ′ is determined by a
probability,

Paccept(σ → σ′) = min

(
|ψ(σ

′)

ψ(σ)
|2, 1

)
. (B2)

The random walks will be repeated long enough so
that the final configurations at the tail of the chains
ΣMC = {σf}Mi=b approximate samples drawn from the
probability distribution |ψ(σ)|2. A certain number b of
walkers in each chain are discarded to reduce the biases
from initialization of the chains. Then the expectation
of an observable Ô is given by,

⟨Ô⟩MC =

∑
σ ψ(σ)

∗⟨σ|Ô|Ψ⟩∑
σ|ψ(σ)|2

, (B3a)

=

∑
σ|ψ(σ)|2

⟨σ|Ô|Ψ⟩
ψ(σ)∑

σ|ψ(σ)|2
, (B3b)

=
1

M

∑
σ∈ΣMC

⟨σ|Ô|Ψ⟩
ψ(σ)

. (B3c)

Defining a local value of the operator Ô as,

Oloc =
⟨σ|Ô|Ψ⟩
ψ(σ)

, (B4)

then the Monte Carlo estimation is the average of
the local values in the Markov chain: ⟨Ô⟩MC =
1
M

∑
σ∈ΣMC

Oloc.

Next, to minimize ⟨E⟩, we can compute its gradient
with respect to the weights Λ0 in terms of the local energy
Eloc and wavefunction amplitude derivative Di:

∂Λi
⟨E⟩ = ⟨ElocDi⟩ − ⟨Eloc⟩⟨Di⟩ (B5a)

Eloc =
⟨σ|H |Ψ⟩
ψ(σ)

, Di =
∂Λi

ψ(σ)

ψ(σ)
(B5b)

Finally, we use gradient descent with learning rate λ,

Λi → Λi − λ∂Λi
⟨E⟩, (B6)

0.3 0.4 0.5 0.6
h

0.925

0.950

0.975

1.000

(h
)

Figure 10. Fidelity F as a function of field h. The red dashed
line is drawn to guide the eye, where the dip in fidelity indi-
cates the critical field value hc ≃ 0.57. This field value roughly
agrees with what the DM algorithm identifies in Fig. 6.

to minimize the energy expectation value. The gradient
descent is performed by using an adaptive Adam opti-
mizer [79]. We repeat this training step until empirical
convergence.
Note that the RBM ansatz can get stuck in local min-

ima. To find the toric code ground state, we initialize
the network parameters close to the analytic solutions in
Eq. (A5).

1. Fidelity

To find the approximate ground states at finite field
values h with step size ∆h, we initialize the weights to
be those from the previous field value h−∆h, and then
use the current optimized weights as the initialization for
the next step h + ∆h. A good indication of a quantum
phase transition is by inspecting the fidelity F(h) defined
as,

F(h) = |⟨ψ(h)|ψ(h+∆h)⟩|2. (B7)

The critical field hc is identified as a dip in the fidelity,
indicating an abrupt change in the ground state wave-
function. A field value of hc ≃ 0.57 (at dashed line in
Fig. 10) is found for the RBM ansatz. Note that one can
get more accurate field value by including loop expecta-
tions in the ansatz as done in Ref. 60.

Appendix C: Ensemble generation

Using the algorithm outlined under Algorithm 1, we
can generate physical ensembles characterized by param-
eter T = 0.1, 0.3, 1, starting from the initial seeds via
VMC optimization in Sec. B. The other choices of pa-
rameters for the ensembles are number of independent
chains k = 2, length of each chain n = 250, and number
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Figure 11. Illustration of the diffusion processes for different ensemble parameter T and field h at N = 18 spins. The loop
expectation values ⟨W 1,2⟩ form four distinct clusters in the two-dimensional plane for small T and h. For large T = 1. at all
fields and intermediate T = 0.3 at higher fields h > 0.57, the clusters “diffuse” and topological order is lost. Such “diffusion”
process can be visualized by color coding the energy expectation ⟨H⟩.

of samples kept m = n. The parameter proposal func-
tion we use consists of with probability pm randomly ap-
ply minus sign or randomly adding local noise at a single

spin site ȷ. More precisely,

f(Λ, ξ) =

{
f−,ȷ, with probability : pm,

flocal,ȷ, with probability : 1− pm,

(C1a)

f−,ȷ =

{
−(Λ)i, i ∈ ȷ

(Λ)i, i ̸∈ ȷ
(C1b)

flocal,ȷ =

{
uniform(0, ξ) + (Λ)i, i ∈ ȷ

(Λ)i, i ̸∈ ȷ
(C1c)

In the exact toric code state, f−,ȷ corresponds to act
σx operator at site ȷ to create a pair of m-particles. In
the trivial phase, depending on the parametrization of
the state, f−,ȷ could correspond to a single spin flip at
site ȷ. The hyperparameters are chosen to be pm = 0.3
and ξ = 0.2. In Fig. 11, we visualize the ensembles by
computing their loop expectations ⟨W j⟩ at different field
values.
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