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By utilizing time-dependent tensor-network algorithms in the (infinite) matrix-product-state rep-
resentation, we theoretically investigate the pump-probe spectroscopy of the one-dimensional ex-
tended Hubbard model at half filling. Our focus lies on nonequilibrium optical conductivity and
time- and angle-resolved photoemission spectroscopy experiments. In the spin-density-wave (SDW)
phase, we identify an in-gap state in the nonequilibrium optical conductivity due to the formation
of excitons (or doublon-holon pairs), generated by the pulse through nonlocal interactions. In the
strong-coupling regime, we discern additional multiple in-gap and out-of-gap states. In the charge-
density-wave (CDW) phase, we detect not only an in-gap state but also a finite Drude weight,
which results from the dissolution of charge order by photoexcitation. Analyzing time-dependent
single-particle excitation spectra directly in the thermodynamic limit confirms the origin of these
new states in the SDW and CDW phases as the excitation of newly emerged dispersions. Our
study illustrates that the pump-probe spectroscopy simulations in the thermodynamic limit furnish
unambiguous spectral structures that allow for direct comparison with experimental results, and
the integration of nonequilibrium optical conductivity and time- and angle-resolved photoemission
spectroscopy provides comprehensive insights into nonequilibrium states.

I. INTRODUCTION

Recent years have seen significant progress in studying
novel phenomena in materials driven out of equilibrium
by high-intensity laser irradiation [1, 2]. Emergent phe-
nomena, such as photoinduced (photoenhanced) super-
conductivity [3–13] and optical control of magnetic order
[14–21] in strongly correlated electron systems, have also
started to attract both experimental and theoretical at-
tention. In this context, pump-probe spectroscopy has
been a crucial tool for exploring nonequilibrium phenom-
ena in these materials. This technique involves exciting a
system with a high-intensity pump pulse, followed by ex-
amining the dynamical properties of the nonequilibrium
state through the linear response of a low-intensity probe
pulse.
Analyzing the nonequilibrium state of strongly cor-

related systems within a one-dimensional (1D) model
provides a beneficial starting point since the theoretical
treatment of a 1D system is simpler compared to two- or
three-dimensional systems. Despite being a special case,
essential characteristics of correlated systems can be elu-
cidated from 1D systems. Furthermore, the 1D Mott
insulator, which manifests in actual materials and has
been thoroughly studied in the literature, is of particu-
lar interest. Ultrafast phenomena of 1D Mott insulators,
such as organic salt ET-F2TCNQ [22–26] and halogen-
bridged transition-metal compounds [27–29], have been
intensively explored in preceding experiments because
their optical response is significantly influenced by the
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formation of doublon-holon bound states due to nonlocal
interactions resulting from photoexcitation.

From a theoretical perspective, photoinduced nonequi-
librium states in the model with nonlocal interaction
have been discussed in the literature [11, 30–36]. Nu-
merical simulations of pump-probe spectroscopy have re-
ported the emergence of light-induced in-gap states in
the half-filled 1D extended Hubbard model (1DEHM)
including nearest-neighbor Coulomb interaction. This
was achieved by examining the nonequilibrium optical
conductivity using time-dependent exact diagonalization
[37] and density-matrix renormalization group [38] tech-
niques. However, previous studies have shown system-
size dependencies in their results since their calculations
were conducted using finite clusters.

In this study, by employing time-dependent tensor-
network algorithms in the infinite matrix-product state
(iMPS) representation, we simulate the nonequilibrium
dynamics of the 1DEHM directly in the thermodynamic
limit to investigate nonequilibrium phenomena induced
by an intense, short-time pulse. We elucidate the dy-
namical properties of this system by examining the linear
response of a subsequent weak probe pulse, correspond-
ing to pump-probe spectroscopy experiments. Our fo-
cus lies primarily on optical conductivity and time- and
angle-resolved photoemission spectroscopy (TARPES) in
nonequilibrium situations.

Calculating with an infinite system offers the advan-
tage of distinguishing excitation spectra originating from
continuous levels from those from discrete levels. In
finite-system analyses, spectra may appear discretized
even if the excitation derives from continuous levels.
By directly simulating an infinite system, this issue can
be circumvented. Additionally, thanks to the high-



2

resolution calculation concerning momentum, we can eas-
ily obtain detailed peak structure and dispersion rela-
tions, facilitating unambiguous comparisons between the-
ory and experiments. Furthermore, we demonstrate that
the nonequilibrium dynamics can be comprehensively
understood by studying both optical conductivity and
TARPES in a complementary fashion. This study aims
to deepen the understanding of nonequilibrium phenom-
ena in strongly correlated electron systems and provide
valuable insights for experimental investigations.

The remainder of this paper is organized as follows. In
Sec. II, we introduce the 1DEHM and describe the nu-
merical method used in this study. In Sec. III, we present
the numerical results of nonequilibrium optical conduc-
tivity induced by an intense pump pulse. In Sec. IV,
we demonstrate the simulated single-particle excitation
spectra, which are expected to be observed in TARPES
experiments. Finally, we provide conclusions and future
outlook in Sec. V.

II. MODEL AND METHOD

In this section, we introduce the Hamiltonian of the
1DEHM and provide a brief explanation of the numerical
calculations that we performed.

A. Extended Hubbard model

We consider the 1DEHM at half filling. Under the
influence of a spatially uniform vector potential A(t), the
Hamiltonian is written as

Ĥ(t) = −th
∑

j,σ

(

ei
ae
~c

A(t)ĉ†j,σ ĉj+1,σ +H.c.
)

+ U
∑

j

(

n̂j,↑ −
1

2

)(

n̂j,↓ −
1

2

)

+ V
∑

j

(n̂j − 1)(n̂j+1 − 1), (1)

where ĉj,σ (ĉ†j,σ) is the annihilation (creation) operator
of an electron at site j with spin σ, th is the hopping
integral, U is the on-site interaction, and V is the in-
tersite interaction. We define the number operators of

the electrons as n̂j,σ = ĉ†j,σ ĉj,σ and n̂j =
∑

σ n̂j,σ. For
the sake of simplicity, the lattice constant a, the electron
charge −e, the Planck constant ~ and the speed of light
c are set unity, hereafter. In the strong-coupling limit,
where U, V ≫ th, the ground state (GS) of this model ex-
hibits a spin-density wave (SDW) state for U & 2V and a
charge-density wave (CDW) state for U . 2V [39]. Note
that the SDW-CDW transition occurs at V/th ≈ 5.124
for U/th = 10. In the following, we set th = 1 as energy
unit.

B. Time evolution

We simulate the time-dependent quantum state under
a high-intensity laser pulse with a vector potential given
by

A(t) = A0e
−(t−t0)

2/2σ2
0 cos(ω0t), (2)

where A0 is the amplitude, t0 is the central time, σ0 is
the width, and ω0 is the frequency of the pump light. To
numerically calculate the GS and the time-evolution dy-
namics, we employ the infinite time-evolving block deci-
mation (iTEBD) method [40, 41]. The quantum state at
time t is denoted as |ψ(t)〉, and we set |ψ(−∞)〉 as the
GS obtained by carrying out the imaginary-time evolu-
tion. We represent the time-evolution operator from t′

to t as Û(t, t′) = T exp
(

−i
∫ t

t′ dt
′′ Ĥ(t′′)

)

, where T is

the time-ordering operator, allowing us to write |ψ(t)〉 =
Û(t,−∞) |ψ(−∞)〉. We denote the expectation value at
time t as 〈· · ·〉t = 〈ψ(t)|· · ·|ψ(t)〉.
In the following section, we investigate nonequilibrium

dynamics when a pump pulse is applied to both the SDW
and CDW states of the 1DEHM. Namely, we focus on
nonequilibrium optical conductivity and single-particle
excitation spectra. For pump-pulse parameters, we fix
σ0 = 0.5 and setA0 = 0.3 for V 6= 0 andA0 = 0.6 for V =
0. To efficiently generate nonequilibrium states, ω0 is set
to the value where the optical conductivity in the GS
becomes the largest for each V . Optical conductivities in
the GS for various V are given in the next section.
In the time-evolution calculations for optical conduc-

tivity and single-particle excitation spectra, we set the
time step to δt = 0.01 and δt = 0.05, respectively, and
the bond dimensions to χ = 3000 and χ = 1500, re-
spectively. We apply the fourth-order Trotter decompo-
sition for optical conductivity and the second-order one
for single-particle excitation spectra.

III. NONEQUILIBRIUM OPTICAL

CONDUCTIVITY

We estimate the optical conductivity by examining the
response of an electric current to a weak electric field.
The current operator in a vector potential A(t) is written
as

ĴA(t) = −∂Ĥ
∂A

= th
∑

j,σ

(

ieiA(t)ĉ†j,σ ĉj+1,σ +H.c.
)

. (3)

Upon applying a weak electric field Epr(t) =
− ∂Apr(t)/∂t as a probe pulse in addition to the pump
pulse, the induced deviation in the current per site sat-
isfies

jpr(t) =
1

L

(

〈ĴA+Apr
〉t − 〈ĴA〉t

)

=

∫ t

−∞

σ(t, t′)Epr(t
′) dt′ ,

(4)
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where L is the system size and σ(t, t′) represents
the linear-response function for electric field. Since
the response function should satisfy causality, i.e.,
σ(t, t′) = θ(t − t′)σ(t, t′), Eq. (4) can be expressed
as jpr(t) =

∫∞

−∞
σ(t, t′)Epr(t

′) dt′. Taking the Fourier
transform of both sides with respect to t, we obtain
jpr(ω) =

∫∞

−∞
σ(ω, t′)Epr(t

′)eiωt′ dt′, where σ(ω, t′) ≡
∫∞

−∞
dt σ(t, t′)eiω(t−t′). Assuming that the probe pulse

Epr(t) is nonzero only within the period tpr ± τ/2,
where τ is much smaller than the characteristic time
scale of the system, and that σ(ω, t′) remains con-
stant during this period, we approximate jpr(ω) ≃
σ(ω, tpr)

∫∞

−∞
Epr(t

′)eiωt′ dt′ = σ(ω, tpr)Epr(ω) [42]. In
this case, the optical conductivity of the frequency ω at
probe time tpr can be evaluated from

σ(ω, tpr) =
jpr(ω)

i(ω + iη)Apr(ω)
, (5)

where Apr(ω) = Epr(ω)/i(ω + iη) with a damping fac-
tor η. Even though this factor is introduced for the
convergence of our numerical Fourier transformation, it
is associated with the lifetime of the quasiparticles due
to, for example, impurity scattering in actual materials.
In this way, we can directly determine equilibrium and
nonequilibrium optical conductivities in the thermody-
namic limit by means of the iTEBD method. We adopt

a weak, narrow probe pulse Apr(t) = A0,pre
−(t−tpr)

2/2σ2
pr ,

where ωA0,prσpr ≪ 1 is satisfied.
The advantage of this method is that it allows simul-

taneous calculation of the response to an external field
across all frequencies. This is because the probe pulse
can be regarded as a delta function when σpr is very
small compared to the characteristic time scale of the
system. In other words, this probe pulse is a superpo-
sition of waves at all frequencies. In particular, when
assuming σpr → 0, Eq. (5) yields the same result as
the optical conductivity obtained by applying the Kubo
formula, originally formulated for thermal systems, to a
nonequilibrium state [38, 42], while these were carried
out in finite systems. Note that the same method was
used to simulate the nonequilibrium optical conductivity
in previous studies [37, 38, 42–44]. The ultrashort probe
pulses used in this study are idealized, and in actual
pump-probe spectroscopy experiments, the probe pulse
is a wave packet with a finite width. The interpretation
of nonequilibrium optical conductivity is complicated by
the uncertainty relation between energy and time. There
is an ongoing debate about the theoretical description of
the optical conductivity observed in actual pump-probe
spectroscopy [42, 45, 46]. A detailed quantitative analy-
sis to reconcile the experimental results remains a subject
for future work. In the following, we set A0,pr = 0.05,
σpr = 0.05, and η = 0.1 for the computations of opti-
cal conductivity. We denote ∆tpr = tpr − t0 and rewrite
Eq. (5) as σ(ω,∆tpr).
Figure 1(a) shows the real parts of the optical con-

ductivity of the SDW states for U = 10 and various V
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FIG. 1. The real part of the optical conductivity of the
1DEHM for U = 10 in the GS at (a) SDW phase (V ≤ U/2)
and (b) CDW phase (V > U/2). The damping factor is set
to η = 0.1.

in the absence of the pump pulse [A(t) = 0], which is
consistent with previous dynamical density-matrix renor-
malization group studies [47, 48]. A broad peak appears
above a charge gap at V = 0, originating from the excita-
tions between the continuous levels of the upper-Hubbard
band (UHB) and the lower-Hubbard band (LHB). Turn-
ing on the intersite interaction V , the energy level of a
doublon-holon bound state (exciton) emerges, and de-
creases as V increases. The energy level of the exciton
becomes smaller than the bottom of the energy contin-
uum for V ≥ 2, leading to the emergence of a sharp peak
below the charge gap [49]. We should note that in our
numerical calculations, the amplitude of this excitonic
peak is finite due to the finite η and diverges as η → 0
[48]. The excitonic energy level becomes the lowest value
at the SDW-CDW transition point V ≃ U/2.

The optical conductivities of the CDW state V > U/2
are shown in Fig. 1(b). Here, the peak position of Reσ(ω)
increases as V increases. This peak position corresponds
to the energy required to dissociate a doublon.

The peak positions of the optical conductivities can be
readily estimated in the strong-coupling limit (U, V ≫
th). In this limit, the SDW state comprises singly-
occupied sites. Thus, the energy of the first-excited
state, characterized by the presence of an adjacent dou-
blon and holon, is approximately U − V . On the other
hand, doublons and holons align alternately in the CDW
state. Therefore, the first-excited state, where two adja-
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FIG. 2. The real part of nonequilibrium optical conductivity
of the 1DEHM at U = 10 and V = 3 (SDW phase) for various
probe times. The black solid line indicates the optical con-
ductivity in the GS. The pump-light frequency and intensity
are set to ω0 = 6.04 and A0 = 0.3, respectively.

cent sites become singly-occupied, requires an excitation
energy of approximately 3V − U .

A. SDW phase

We first show the nonequilibrium optical conductivity
of the 1DEHM with U = 10 and V = 3 in Fig. 2. The
pump-pulse frequency is set to ω0 = 6.04, where Reσ(ω)
reaches its maximum, see Fig. 1(a). By comparing the
spectra obtained at ∆tpr = 0 with those in the absence of
the pump pulse, we observe two characteristic features.
One is the large negative spectra at the pump-light fre-
quency ω = ω0, which may originate from the population
inversion of the electrons due to the pump-pulse irradia-
tion. This nonthermal state leads to stimulated emission
by the probe pulse, resulting in the negative optical con-
ductivity [50]. The other is the emergence of a new peak
at small ω, which implies the creation of an in-gap state.
This in-gap state is associated with two types of exci-
tons in the 1DEHM: even- and odd-parity excitons [37].
The energy level of the even-parity excitons is slightly
larger than that of the odd-parity excitons, and the op-
tical transitions to the even-parity excitons from the GS
are forbidden [51–53]. However, once a state enters the
odd-parity excitonic state due to the pump pulse, the
state can be further excited to an even-parity exciton
level by the subsequent probe pulse. Therefore, transi-
tions to the even-parity excitonic state, which are not
allowed from the GS, are realized.
Once the pump pulse has passed, the system begins to

relax via the recombination of doublons and holons. As
shown in Appendix A, this is evident from the gradual
decrease in double occupancy. The negative spectra at
ω = ω0 gradually turn into positive asymmetric ones,
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FIG. 3. The real part of the nonequilibrium optical conduc-
tivity of the 1DEHM at U = 20 and V = 6 (SDW phase).
The black and red solid lines are for the GS and the nonequi-
librium state at ∆tpr = 8, respectively. The labels above the
spectrum denote the new peaks that arise in the nonequilib-
rium state. The pump-light frequency and intensity are set
to ω0 = 13.55 and A0 = 0.3, respectively.

which implies the emergence of Fano resonance. In this
case, there is a quantum interference between the exciton
level and the doublon-holon continuum [38]. On the other
hand, the in-gap state remains over time. The reason
why the peak position with regard to the in-gap state at
∆tpr > 0 becomes smaller than that at ∆tpr = 0 can be
attributed to the Stark effect of the excitons [54, 55]. The
electric field of the pump pulse at ∆tpr = 0 enhances the
splitting between the even- and odd-parity exciton levels.
The energy of the in-gap state eventually stabilizes at
approximately ω ≈ 0.2.
To further scrutinize the aforementioned features, we

also examine the SDW state with a larger interaction
strength. Figure 3 shows the nonequilibrium optical con-
ductivity at U = 20 and V = 6 with ω0 = 13.55. In addi-
tion to the low-energy peak originating from two exciton
levels at small ω [37], labeled as α, we find that there
are two broad structures (β and γ) and a sharp peak at
ω ≈ 10.5 (δ) below the optical gap. Moreover, a new
peak arises at ω ≈ 21.1 (ε), which is located at a higher
energy than the exciton level. Apart from the peak α, the
origins of these peaks can be better understood from the
numerical results of nonequilibrium single-particle exci-
tation spectra, which we will discuss in the subsequent
section.

B. CDW phase

Figure 4 illustrates the real part of the nonequilibrium
optical conductivity upon application of the pump pulse
with ω0 = 6.34 to the CDW state with U = 10 and
V = 6. Similar to the SDW phase, the pump-pulse ir-
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FIG. 4. The real part of the nonequilibrium optical conduc-
tivity of the 1DEHM at U = 10 and V = 6 (CDW phase) for
various probe times. The black solid line indicates the optical
conductivity in the GS. The pump-light frequency and inten-
sity are set to ω0 = 6.34 and A0 = 0.3, respectively.

radiation results in a prominent negative spectrum at
ω = ω0. Following the passage of the pump pulse, the
spectral weight at this energy recovers to positive values,
eventually forming an asymmetric spectrum.

A notable change is the emergence of a new state at
ω ≈ 3.3 in the nonequilibrium state, which is consistent
with the previous study [37]. This in-gap state can be
interpreted from the newly formed bands in the single-
particle spectra, as we will be discussed later.

We also observe messy spectral structures for ω < 2
that are newly generated and strongly time-dependent.
At ∆tpr = 16, the Drude weight (i.e., the spectrum at
ω = 0) becomes finite, indicating photoinduced metal-
lization. Unfortunately, our iTEBD simulations are con-
strained to this time due to limited numerical accuracy
and computational-time restriction. Further time evolu-
tion, while maintaining accuracy, should allow the system
to reach a steady state.

IV. TIME- AND ANGLE-RESOLVED

PHOTOEMISSION SPECTRA

We now discuss the time-dependent single-particle ex-
citation spectra in the 1DEHM, taking into account
TARPES experiments. The intensity of single-particle
excitation spectra with momentum k and energy ω is

given by [56, 57]

A−(k, ω,∆tpr)

=
1

L

∑

j,ℓ,σ

e−ik(rj−rℓ)

∫ ∞

−∞

dt1

∫ ∞

−∞

dt2 e
iω(t1−t2)

× s(t1 − tpr)s(t2 − tpr)
〈

ĉ†ℓ,σ(t2,−∞)ĉj,σ(t1,−∞)
〉

−∞
,

(6)

where s(t−tpr) is an envelope function of the wave packet
of the probe pulse at central time tpr and ĉj,σ(t, t

′) =

Û †(t, t′)ĉj,σÛ(t, t′) is the Heisenberg representation. The
envelope function utilized in this study is a Gaussian
function written as

s(t− tpr) =
1√

2πσpr
exp

(

− (t− tpr)
2

2σ2
pr

)

, (7)

where σpr represents the width of the wave packet. To
simulate single particle excitation spectra in nonequilib-
rium, we construct the window state from the iMPS ob-
tained from the iTEBD method and employ the infinite-
boundary conditions with a uniform update scheme [58].
For more detail, refer to Ref. [59]. In addition, we define
the integrated photoemission spectra as

A−(ω,∆tpr) =

∫ π

−π

dk

2π
A−(k, ω,∆tpr), (8)

which in the following will be denoted as the time-
resolved density of states (TDOS).
Increasing the width of the probe-pulse wave packet

improves the energy resolution, but decreases the time
resolution due to the uncertainty relation. In this section,
we set the width of the probe pulse to σpr = 3. We find
that a window-state size of Lw = 64 is sufficient for this
case. We present calculations for the single-particle exci-
tation spectra of nonequilibrium states at ∆tpr = 0 and 8.
However, we have confirmed that the spectral shape for
∆tpr > 8 is almost unchanged from that for ∆tpr = 8,
implying that the single-particle excitation spectra are
essentially stationary over time after photoexcitation.

A. SDW phase

Let us first recall the results of single-particle excita-
tion spectra in the pure Hubbard model, i.e., V = 0 in
Eq. (1), as shown in upper panels of Fig. 5, which have
also been discussed in Ref. [59].
In the absence of the pump pulse [A(t) = 0], the

Bethe ansatz [60, 61] provides the exact energy disper-
sion, which explains the results for U = 10 in Fig. 5(a).
There are one spinon and two holon bands due to spin-
charge separation. The two holon bands are degenerate
at k = 0 and ±π, and their width is 4th. The spinon
and holon bands split at k = 0, while the upper holon
band merges with the spinon band at k = ±π/2. The



6

(a)

-1 -0.5  0  0.5  1
k/π

-12

-9

-6

-3

 0

 3

 6

ω
 0  0.1  0.2  0.3

(e)

-1 -0.5  0  0.5  1
k/π

-12

-9

-6

-3

 0

 3

 6

ω

(i)

-1 -0.5  0  0.5  1
k/π

-12

-9

-6

-3

 0

 3

 6

ω
(b)

-1 -0.5  0  0.5  1
k/π

-12

-9

-6

-3

 0

 3

 6

(f)

-1 -0.5  0  0.5  1
k/π

-12

-9

-6

-3

 0

 3

 6

(j)

-1 -0.5  0  0.5  1
k/π

-12

-9

-6

-3

 0

 3

 6

(c)

-1 -0.5  0  0.5  1
k/π

-12

-9

-6

-3

 0

 3

 6

(g)

-1 -0.5  0  0.5  1
k/π

-12

-9

-6

-3

 0

 3

 6

(k)

-1 -0.5  0  0.5  1
k/π

-12

-9

-6

-3

 0

 3

 6

-12

-9

-6

-3

 0

 3

 6

 0  0.1

(d)

A−(ω, ∆tpr)

GS
∆tpr = 8

-12

-9

-6

-3

 0

 3

 6

 0  0.1

(h)

A−(ω, ∆tpr)

-12

-9

-6

-3

 0

 3

 6

 0  0.1

(l)

A−(ω, ∆tpr)

FIG. 5. [(a)-(c), (e)-(g), and (j)-(k)] Calculated single-particle excitation spectra of the 1DEHM at [(a), (e), and (i)] ∆tpr = −∞

(GS), [(b), (f), and (j)] ∆tpr = 0, and [(c), (g), and (k)] ∆tpr = 8. [(d), (h), and (l)] TDOSs at ∆tpr = −∞ (black solid line)
and ∆tpr = 8 (red dashed line). The on-site interaction is set to U = 10, and the intersite interaction, the pump-light frequency,
and its intensity are set to [(a)-(d)] V = 0, ω0 = 8.0, and A0 = 0.6, [(e)-(h)] V = 3, ω0 = 6.04, and A0 = 0.3, and [(i)-(l)]
V = 6, ω0 = 6.34, and A0 = 0.3.

spinon-holon excitation continuum below the lower holon
band is visible for |k| ≥ π/2. The spectra obtained here
correspond to the LHB. A detailed comparison of the ex-
act results and the calculated spectra can be found in
Refs. [62–64].

We now turn to the case for the nonequilibrium state.
It should be noted that this photoexcited state is associ-
ated with the emergence of the so-called η-pairing state
[65–68], which is the exact eigenstate of the Hubbard
model [61, 69]. Figures 5(b) and 5(c) respectively show
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A−(k, ω,∆tpr) at ∆tpr = 0 and ∆tpr = 8. The pump
pulse induces a photoexcited state, leading to the emer-
gence of new spectral weights with a dispersion ranging
from k = −π to π above the Fermi level and exhibiting
a minimum at k = 0. A similar dispersion can also be
observed in finite-temperature photoemission spectra at-
tributed to thermally excited electrons [63, 70, 71]. This
observation suggests that the electrons in the LHB are
resonantly excited into the UHB by the pump pulse [72].
Simultaneously, a reduction in the spectral intensity of
the LHB occurs. The shift of the spectral weight after
pulse irradiation can also be confirmed in the results of
the TDOS, see Fig. 5(d).

Next, we introduce intersite interactions. Figure 5(e)
shows the single-particle excitation spectra in the GS of
the 1DEHM for U = 10 and V = 3. By introducing
V , the charge gap becomes slightly smaller; however, the
dispersion relation is almost the same as for the case
of V = 0. Unlike the optical-conductivity spectra, the
single-particle excitation spectra in the GS do not dis-
play features associated with excitons. This is because
photoemission involves the removal of a single electron
from the system, and therefore does not form a doublon-
holon bound state. We also find weak but new spectral
weights around k = ±π/2 and ω ≈ −10.3 appearing be-
low the LHB. While it is slightly difficult to see them in
the intensity plot of Fig. 5(e), they can be recognized in
the DOS illustrated in Fig. 5(h) as a black solid line.

Figures 5(f) and 5(g) show A−(k, ω,∆tpr) after the
pump pulse irradiation. In this case, the pump pulse
creates numerous doublons and holons, leading to the
formation of excitons due to the nonlocal interactions.
We find a new dispersion above the Fermi level, as in the
case of V = 0. However, unlike the case of V = 0, this
dispersion has the maximums at k = ±π/2. The differ-
ence between the maximum energy of the newly emerged
band and that of the LHB is almost equal to the ex-
citonic energy, estimated from the peak position of the
optical conductivity [ω ≈ 6.04, see Fig. 1(a)]. Therefore,
we can interpret that the new dispersion originates from
the excitons created by the pump pulse. This new band
has the same dispersion as the LHB and its visibility in-
creases with the intensity of the pump pulse (not shown
here).

To better clarify the state under the creation of ex-
citons by the pump pulse in the SDW phase, we also
present the results with larger interaction parameters.
Figure 6(a) shows the single-particle excitation spectra
in the GS at U = 20 and V = 6. Reflecting the large
interaction parameters, the LHB appears at a lower en-
ergy level. Figure 6(b) shows A−(k, ω,∆tpr) after the
pump-pulse irradiation, which resembles the dispersions
obtained by the interaction quench [73]. A new disper-
sion with the same shape as the LHB appears above the
Fermi level. The energy difference between the new band
and the LHB is the same as the excitonic energy esti-
mated from the peak position of σ(ω) (ω ≈ 13.55, see
Fig. 3).
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 0
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(c)

β

γ

δε

ω

A−(ω, ∆tpr)
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∆tpr = 8

FIG. 6. Calculated single-particle excitation spectra of the
1DEHM for U = 20 and V = 6 at (a) ∆tpr = −∞ (GS)
and (b) ∆tpr = 8. (c) The TDOS at ∆tpr = −∞ (black
solid line) and ∆tpr = 8 (red dashed line). The arrows in the
TDOS correspond to the optical excitations observed in the
nonequilibrium optical conductivity in Fig. 3. The pump-light
frequency and intensity are set to ω0 = 13.55 and A0 = 0.3,
respectively.

Furthermore, dispersionless flat bands, which may be
associated with charge-order fluctuations, also appear
both above and below the LHB [33, 73]. Recall that, in
the nonequilibrium optical conductivity after the pump-
pulse irradiation, four peaks β, γ, δ, and ε emerge in
addition to the peak α originating from the excitation
between different parity excitons (see Fig. 3). By com-
paring the peak positions in the optical conductivity with
the energy-level differences of the peaks in the DOS, we
can identify that the broad peak β is ascribed to the exci-
tation from the LHB to the flat band, the hump structure
γ originates from the excitation from the flat band to the
LHB, and the two peaks γ and ε arise from the excitation
from the flat bands to the newly emerging bands above
the Fermi level. The corresponding optical excitations
are depicted by black arrows in Fig. 6(c).

B. CDW phase

Finally, we examine the time-dependent single-particle
excitation spectra in the CDW phase, as shown in the
lower panels of Fig. 5 for U = 10 and V = 6. Under the
formation of charge ordering in the GS, the two holon
bands, which are degenerate at k = 0 and±π in the SDW
phase, split into a band with a cosine-type dispersion cen-
tered at ω ≈ −6 and a relatively flat band centered at
ω ≈ −9. Figures 5(j) and 5(k) show A−(k, ω,∆tpr) un-
der the influence of the pump pulse. Two new dispersions
emerge around the Fermi level. These results have been
previously reported by exact diagonalization for small
clusters [74]. Thanks to the higher-resolution spectra
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obtained directly in the thermodynamic limit, the ex-
citation from the band around ω ≈ −6 to the one around
ω ≈ −2.7 can be significantly distinguished, which is re-
lated to the in-gap state observed in the nonequilibrium
optical conductivity shown in Fig. 4.

V. CONCLUSIONS AND OUTLOOK

We explored the pump-probe spectroscopy of the
1DEHM at half filling in an infinite system. In the strong-
coupling regime, the GS of this model resides in the
SDW phase when U . 2V and in the CDW phase when
U & 2V . In the SDW phase, doublons and holons, which
is generated by the intense pump pulse, form bound
states known as excitons through nonlocal interactions.
In the CDW phase, the charge order dissolves due to pho-
toexcitation. The dynamical response in the nonequilib-
rium state was revealed using the iTEBD method.
We detected an in-gap state at small ω in the nonequi-

librium optical conductivity for the model with U = 10
and V = 3, which resides in the SDW phase. This state
can be interpreted as the transition between the odd-
parity exciton and the even-parity exciton. Furthermore,
we investigated a stronger interaction model with U = 20
and V = 6. In addition to this in-gap state originating
from the different parity excitons, we discovered that ad-
ditional peaks appear below and above the excitonic en-
ergy. The origin of these additional peaks can be under-
stood by examining the single-particle excitation spectra.
Specifically, the new dispersions appearing above and be-
low the LHB after the pump pulse irradiation are asso-
ciated with these new peaks in the optical conductivity.
We also observed that the LHB is replicated in a higher
energy region, where the energy difference is equal to the
excitonic energy.
Moreover, we examined the nonequilibrium optical

conductivity for the model with U = 10 and V = 6,
which resides in the CDW phase. In this case, we also
found an in-gap state after the pump pulse irradiation.
Additionally, we discovered that the Drude weight be-
comes finite, suggesting the metallization of the system.
The origin of this in-gap state can be understood from
the single-particle excitation spectra.
It would also be interesting to explore nonequilib-

rium physics close to SDW-CDW phase boundaries, al-
though this study focused on pump-probe spectroscopy
deep in the SDW and CDW phases. For instance, the
time-resolved single-particle spectral function has been
studied around these phase boundaries by means of the
exact-diagonalization technique [74]. Furthermore, a re-
cent study indicates peculiar optical responses in high-
harmonic generation near the phase boundary [75]. The
issue with performing (i)TEBD simulations near the
quantum phase transition point is the increasing bond di-
mensions required. It is thus highly desirable to improve
the accuracy of numerical techniques and simultaneously
reduce the computational time.

Lastly, we address the correspondence between our
theoretical findings and experimental observations. The
1D Mott insulator ET-F2TCNQ is well described by the
1DEHM with interaction parameters U = 10 and V = 3
[53]. In fact, the emergence of the in-gap state in the
optical conductivity after the pump pulse irradiation has
been observed. If TARPES becomes feasible in this mate-
rial, we expect that the single-particle excitation spectra
obtained in this study would also be observable. Another
approach to realizing our results is by employing a cold
atomic system [76]. With an artificial gauge field mimick-
ing the pump pulse, the observation of single-particle ex-
citation spectra may be feasible. It is worth emphasizing
that our calculations, performed on an infinite system,
allow for a direct comparison of the spectra observed in
future experiments with our results.
In this study, our focus was on nonequilibrium optical

conductivity and single-particle excitation spectra. Re-
cently, time-resolved resonant inelastic x-ray scattering
(RIXS) spectra have become observable through pump-
probe spectroscopy [77–79]. RIXS allows us to examine
the dynamical correlations of charge and spin, includ-
ing their momentum dependence, thereby enabling us to
obtain more detailed information on strongly correlated
materials. We anticipate further developments in theo-
retical studies of pump-probe spectroscopy using tensor-
network algorithms in the future.
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Appendix A: Double occupancy

Figure 7 shows the double occupancies

nd(t) =
1

L

∑

j

〈n̂,j,↑ n̂j,↓〉t (A1)

of the extended Hubbard model at U = 10 and V = 3
as functions of time, for various pump-pulse intensities.
Upon the pump-pulse irradiation, doublons and holons
are generated, leading to an increase in double occu-
pancy. Following the passing of the pump light, the sys-
tem begins to relax gradually. The relaxation process
of the photoexcited one-dimensional extended Hubbard
model is still unclear, but there are some suggestions,
such as the Auger recombination of doublons and holons
[81, 82].
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FIG. 7. The double occupancies of the 1DEHM at U = 10
and V = 3 for various A0 as functions of time. The gray solid
line indicates the time dependence of the pump pulse A(t).
We denote ∆t = t− t0 in the horizontal axis, where t0 is the
central time of the pump pulse. The pump-light frequency
and intensity are set to ω0 = 6.04 and A0 = 0.3, respectively.

The larger the value of A0, the more significant the
increase in the double occupancy. When a state is in-
tensely excited by a pump pulse, the entanglement of the
quantum state evolves throughout the system, suggesting
that the system can no longer be described by the iMPS.
Specifically, the truncation error reaches up to 4 × 10−5

in the calculation with A0 = 0.6. For A0 = 0.3, we con-
firmed that the truncation error is suppressed to below
4× 10−6.

Appendix B: Linear response theory of optical

conductivity

In an ideal scenario, the optical conductivity should
be calculated using Kubo formula, which is based on
the linear response theory and requires the calculation
of current-current correlation functions [38, 42, 83, 84].
This process necessitates the creation of a window state
with infinite-boundary conditions [58, 59] and the appli-
cation of the local current operator at the center of the
window state. Given the requirement for long-time simu-
lation to derive optical conductivities, the influence of the
local current operator applied at the center site extends
to the boundary before the calculation is finished. We
determined that, for a damping factor of η = 0.1, a win-
dow state of size Lw > 128 should be prepared. As this
incurs substantial computational cost, we have chosen to
employ the method delineated in the main text.

Appendix C: Numrical convergence of

nonequilibrium optical conductivity
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FIG. 8. The real part of the nonequilibrium optical conduc-
tivity of 1DEHM with U = 10 and V = 3 at ∆tpr = 8 using
(a) second-order and (b) fourth-order Trotter decompositions
for various bond dimensions χ. The pump-light frequency
and intensity are set to ω0 = 6.04 and A0 = 0.3, respectively.

As described in the main text, we employ a fourth-
order Trotter decomposition for optical-conductivity cal-
culations. This approach ensures the accuracy of the
numerical Fourier transformation, which necessitates ex-
tended simulation time. In this study, the induced devia-
tion in the current jpr(t) is calculated up to t− tpr ≤ 100.

Figure 8 shows the optical conductivity calculated us-
ing both second- and fourth-order Trotter decomposi-
tions. For optical conductivity with second-order Trotter
decomposition, the calculated spectra do not converge es-
pecially at the in-gap-state energy (ω ≈ 0.2) even when
the bond dimension is increased up to χ = 4500, indicat-
ing that we do not obtain the appropriate results. Con-
versely, the results of the fourth-order Trotter decomposi-
tion indicate that a bond dimension of χ = 3000 provides
sufficient accuracy for analyzing the optical-conductivity
spectra with finite frequency qualitatively. It is worth
noting that achieving full numerical convergence for the
Drude weight is challenging since it necessitates long-
time simulations maintaining high accuracy.

Appendix D: TARPES and Green’s function

By definition, Eq. (6) equals to

A−(k, ω,∆tpr)

=
1

L

∑

j,ℓ,σ

e−ik(rj−rℓ)

∫ ∞

−∞

dt1

∫ ∞

−∞

dt2 e
iω(t1−t2)

× s(t1 − tpr)s(t2 − tpr) 〈ψ(t2)|ĉ†ℓ,σÛ(t2, t1)ĉj,σ|ψ(t1)〉 .
(D1)

Upon partitioning the integration range of t2 into two
regimes, t2 > t1 and t2 < t1, we derive
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A−(k, ω,∆tpr) =
1

L

∑

j,ℓ,σ

e−ik(rj−rℓ)

∫ ∞

−∞

dt1

∫ t1

−∞

dt2 e
iω(t1−t2)s(t1 − tpr)s(t2 − tpr) 〈ψ(t2)|ĉ†ℓ,σÛ(t2, t1)ĉj,σ|ψ(t1)〉

+
1

L

∑

j,ℓ,σ

e−ik(rj−rℓ)

∫ ∞

−∞

dt1

∫ ∞

t1

dt2 e
iω(t1−t2)s(t1 − tpr)s(t2 − tpr) 〈ψ(t1)|ĉ†j,σÛ(t1, t2)ĉℓ,σ|ψ(t2)〉

∗
,

(D2)

and by replacing
∫∞

−∞
dt1
∫ t1
−∞

dt2 =
∫∞

−∞
dt2
∫∞

t2
dt1 in the first term, Eq. (D2) becomes

A−(k, ω,∆tpr) =
1

L

∑

j,ℓ,σ

e−ik(rj−rℓ)

∫ ∞

−∞

dt2

∫ ∞

t2

dt1 e
iω(t1−t2)s(t1 − tpr)s(t2 − tpr) 〈ψ(t2)|ĉ†ℓ,σÛ(t2, t1)ĉj,σ|ψ(t1)〉

+
1

L

∑

j,ℓ,σ

e−ik(rj−rℓ)

∫ ∞

−∞

dt1

∫ ∞

t1

dt2 e
iω(t1−t2)s(t1 − tpr)s(t2 − tpr) 〈ψ(t1)|ĉ†j,σÛ(t1, t2)ĉℓ,σ|ψ(t2)〉∗

= 2 Im





1

L

∑

j,ℓ,σ

e−ik(rj−rℓ)

∫ ∞

−∞

dt2

∫ ∞

t2

dt1 e
iω(t1−t2)s(t1 − tpr)s(t2 − tpr)G

<
jℓ(t1, t2)



, (D3)

where G<
jℓ(t1, t2) = i 〈ψ(t2)|ĉ†ℓ,σÛ(t2, t1)ĉj,σ|ψ(t1)〉 is the

lesser Green’s function. Initially, we calculate a sequence
of iMPS for each time by the iTEBD method. Sub-
sequently, we generate window states corresponding to

Û(t1, t2)ĉℓ,σ |ψ(t2)〉 and ĉj,σ |ψ(t1)〉. By evaluating the
inner product of these states, we numerically obtain the
integrand of Eq. (D3).
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12

Rev. B 89, 125123 (2014). [84] J. Ohara, Y. Kanamori, and S. Ishihara, Phys. Rev. B
88, 085107 (2013).


