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The recent experimental observations of loop current in Sr2IrO4, YBa2Cu3O7, and Sr14Cu24O41

have inspired a theoretical study that broadly redefines loop current as a manifestation of quantum
liquid crystals. Using the density-matrix renormalization group method, here we investigate the
emergence of spin loop-current (sLC) textures in carrier-doped (i) excitonic insulators, (ii) orbital-
selective Mott insulators, and (iii) two-dimensional Mott insulators, modeled by a two-orbital Hub-
bard model on a ladder lattice in (i) and (ii) and a single-orbital Hubbard model on a square lattice
in (iii). Calculating the spatial distribution of spin current around a bond to which a pinning field
is applied, we find conditions for longer-ranged sLC correlations. In system (i), when using the
model parameters employed to describe the excitonic condensation, we find that a sLC texture
appears near half filling, associated with an excitonic condensation in a spin channel. In system
(ii), using typical sets of model parameters for BaFe2Se3, we find that a sLC texture appears at
electron fillings where a block-type antiferromagnetism develops. In system (iii), introducing a next-
nearest-neighbor hopping t′ ∼ −0.25 (in unit of the nearest neighbor hopping) suggested for high-Tc

cuprates, we find that an axial-sLC texture emerges at hole-carrier density δ = 0.125, where the
charge stripe simultaneously appears.

I. INTRODUCTION

Unexpected phenomena often emerge in quantum
many-body systems and are most pronounced when
strong quantum fluctuations are present in strongly cor-
related electron systems. According to Landau, many-
body phases of matter exhibit spontaneous symmetry
breaking at low temperatures, and phase transitions are
characterized by symmetry changes. However, for exam-
ple, quantum spin liquids do not break any symmetry
and hence are not characterized by any local order pa-
rameter, indicating the presence of quantum phases be-
yond the description of the Landau’s symmetry-breaking
theory. Furthermore, an intermediate state between
spontaneous symmetry-broken and symmetry-unbroken
states has been proposed as a quantum liquid crystal1–6.
Namely, a quantum liquid crystal is regarded as a quan-
tum state with partially broken spatial symmetry and
can exhibit unconventional properties since the partially
symmetry-breaking order can interplay with other intrin-
sic orders such as superconducting and magnetic orders.

A quantum nematic state7–12 is one of the most well-
known examples of quantum liquid crystals, but there
is another quantum liquid crystal with spontaneous loop
current. Although quantum states with loop current, also
called staggered-flux or orbital-antiferromagnetic states,
have a long history in the field of strongly correlated elec-
tron systems13–17, they have attracted renewed interest
in the last decade. This is due to the recent discovery

of a series of quantum states with various charge loop-
current (cLC) textures in Sr2IrO4

18,19, YBa2Cu3O7
20,21,

and Sr14Cu24O41
22 via the improved measurements of

the Kerr effect, polarized neutron scattering, magnetic
torque, and second-harmonic generation. Theoretically,
cLC textures have been extensively studied based on the
Hubbard models23–27 as a cLC long-range order28–30 or
its fluctuation31 suggested to characterize the pseudogap
phase in high-Tc cuprate superconductors. However, no
numerical evidence of cLC textures has been reported
in single- and three-orbital Hubbard models23–27. It has
been proposed that quantum states with cLC textures
can be present in a generalized Hubbard ladder32–35 and
spinless Hubbard model36–38 if unrealistic interactions for
real materials are introduced.

The recent experimental observations described above
have encouraged further theoretical investigation of loop-
current textures from a different point of view. One such
viewpoint is to explore the possibility of quantum states
with spin current rather than charge current39,40. Due to
the difficulty of treating strongly correlated electron sys-
tems, many theoretical studies rely on the mean-field or
perturbation theory. Here, instead, we address the ques-
tion of whether non-perturbative treatment can elucidate
quantum states with spin loop-current (sLC) textures in
the Hubbard models.

For this purpose, we employ the density-matrix renor-
malization group (DMRG) method to investigate the
possibility of quantum states with sLC in the Hubbard
models. In particular, we consider three kinds of strongly
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correlated electron systems in this paper: carrier-doped
(i) excitonic insulators, (ii) orbital-selective Mott insu-
lators, and (iii) two-dimensional Mott insulators, mod-
eled by a two-orbital Hubbard ladder with a crystal field
for (i) and (ii) and a single-orbital Hubbard model on
a square lattice for (iii). In the two-orbital model, we
introduce the Hund coupling and pair hopping in addi-
tion to the Coulomb interaction. Calculating the spatial
distribution of spin current around a bond to which a
pinning field is applied, we examine whether there are
cases where sLC correlations can be enhanced.

We find that such cases exist, i.e., sLC textures emerg-
ing for each of these systems (i)–(iii). In system (i), the
sLC correlations are enhanced, if we introduce an inter-
orbital hopping in the model. This is consistent with a
previous study of dynamical mean-field theory39. System
(ii) is known to exhibit a stripe- and block-type antifer-
romagnetic (AFM) phases41, which have been observed
experimentally in BaFe2X3 (X = Se, S)42–44. We find a
quantum state with sLC textures in the vicinity of the
block-type AFM phase. In contrast to system (i), the
inter-orbital hopping is not relevant to generating sLC
textures here. The carrier density where the sLC corre-
lations are significantly enhanced corresponds to that in
a generalized Kondo-Heisenberg model (GKHM) where
vector chirality order appears45. In system (iii), we find
that the sLC correlations are enhanced when we intro-
duce an appropriate value of the next-nearest-neighbor
hopping t′. The sLC textures found here emerge at hole
density δ = 0.125 and coexist with charge stripes having
the spatial modulation period of four.

Our findings clearly show that sLC textures can spon-
taneously emerge by introducing carriers and/or orbital
degrees of freedom to increase quantum fluctuations,
which induce quantum liquid crystalinity. Therefore, our
approach, which does not rely on the mean-field or per-
turbation theory, will bring a new perspective to the
study of quantum liquid crystals.

The rest of this paper is organized as follows. We first
introduce the phenomenological theory of a quantum liq-
uid crystal with sLC textures in Sec. II. We then show
the results of our DMRG study of two-orbital Hubbard
ladders in Sec. III. In Sec. III A, we numerically demon-
strate that sLC textures emerge in a carrier-doped exci-
tonic insulator. Here, the inter-orbital hopping and crys-
tal field are necessary for inducing the excitonic conden-
sation with sLC textures. In Sec. III B, we show that sLC
textures arise in a carrier-doped orbital-selective Mott
insulator, where the introduction of an appropriate car-
rier density and the different degree of localization in the
two orbitals are both necessary to achieve sLC textures.
Next, we show in Sec. IV the results on a single-orbital
Hubbard model on a square lattice, for which the inter-
mediate value of t′ is necessary for sLC textures that
emerge at hole density δ = 0.125. In Sec. V, we summa-
rize this paper. In Appendix A, we supplement the expla-
nation of the pinning-field approach used in our DMRG
study with further numerical results. In Appendix B,

we demonstrate numerically that the spontaneous hy-
bridization indeed occurs in the carrier-doped two-orbital
Hubbard model on a ladder lattice, suggesting an exci-
tonic condensation. In Appendix C, we provide addi-
tional analysis on the spin current induced by a pinning
field, which exhibits the power-low decay as a function
of distance from the bond at which a pinning field is ap-
plied.

II. QUANTUM LIQUID CRYSTAL WITH SPIN

LOOP-CURRENT TEXTURES

Quantum liquid crystals in two dimensions have been
discussed on the basis of the Pomeranchuk instability46

in the Landau’s Fermi liquid theory47,48. Considering a
charge channel, quantum liquid crystals can be described
with phase separation, charge nematic9, and cLC. Here,
we focus on a spin channel, which might yield sLC. In
the momentum space, the order parameters for quantum
liquid crystals in a spin channel are given as

〈Qa
l,x〉 =

∑

k,τ,τ ′

〈ψ†
τ (k)σ

a
ττ ′ψτ ′(k)〉 cos(lθk) (1)

and

〈Qa
l,y〉 =

∑

k,τ,τ ′

〈ψ†
τ (k)σ

a
ττ ′ψτ ′(k)〉 sin(lθk) (2)

along the x and y directions, respectively49,50, where
ψτ (k) is an annihilation operator for an electron with
momentum k and spin τ =↑, ↓, σa

ττ ′ indicates the (τ, τ ′)
element of the Pauli matrix σa with a = x, y, and z, and
θk is the azimuthal angle of k. l denotes an orbital an-
gular momentum and thus it is non-negative integer (for
quantum liquid crystals, l > 0).
A quantum liquid crystal with nonzero 〈Qa

l,x/y〉 might

be induced by the Pomeranchuk instability of the Fermi
surfaces46. The Landau parameters Fl quantifies the
strength of the forward scattering interactions among
quasiparticles at low energies close to the Fermi sur-
face in a spin channel. The thermodynamic stability
of the Fermi liquid state requires that the Landau pa-
rameters Fl should not be too negative. Namely, the
thermodynamic instability occurs when Fl < −(2l + 1).
The most typical Pomeranchuk instabilities are found
in the s-wave channel: the Stoner ferromagnetism with
〈Qa

0,x/y〉 6= 0 is induced at F0 < −1. For the p-wave

channel, 〈Qa
1,x/y〉 6= 0 represents spin currents flow-

ing along the x/y direction, leading to spin-dipole mo-
ments in momentum space. For l ≥ 149,50, 〈Qa

l,x/y〉

breaks spin-orbital symmetry as originally proposed in
3He48,51. An emergent Rashba52-Dresselhaus53-like spin-
orbit coupling can lead to a quantum state with sLC
textures49,50,54. In the following sections, we show the
numerical results of our microscopic study for quantum
states with sLC textures.
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III. TWO-ORBITAL HUBBARD LADDERS

A. Carrier-doped excitonic insulators

The order parameter 〈Qa
l,x/y〉 of a quantum liquid crys-

tal is a particle-hole pair condensation, which is analo-
gous to an exciton condensation in semimetals13,55–58.
The emergence of sLC textures associated with an exci-
ton condensation has been suggested previously in the
(dynamical) mean-field analysis39,59,60. The sLC tex-
tures is associated with an exciton condensation in the
spin channel, which is stabilized in the presence of the
Hund’s coupling and pair hopping61. Furthermore, the
pair field of an exciton condensation can be imaginary
when an inter-orbital hopping is suitably selected39,62.
Here, we numerically investigate sLC textures associ-

ated with an exciton condensation in the spin channel.
Our study is based on the two-orbital Hubbard model on
a ladder lattice. In the SU(2)-symmetric form, it is given
by the following Hamiltonian:

HTH =−
∑

〈i,j〉,γ,γ′,τ

tγγ′(c†i,γ,τcj,γ′,τ +H.c.)

+ U
∑

i,γ

ni,γ,↑ni,γ,↓ + (U − 5JH/2)
∑

i

ni,ani,b

− 2JH
∑

i

Si,a · Si,b + JH
∑

i

(P †
i,aPi,b +H.c.),

(3)

where c†i,γ,τ is the electron creation operator at site i with

spin τ (=↑, ↓) and orbital γ (= a, b). ni,γ =
∑

τ ni,γ,τ is
the total charge density operator for orbital γ at site i,

where ni,γ,τ = c†i,γ,τci,γ,τ .
The first term of the Hamiltonian HTH represents the

nearest-neighbor electron hopping from orbital γ at site
i to orbital γ′ at site j and vise versa with a hopping am-
plitude tγγ′. 〈i, j〉 is a nearest-neighbor pair of sites i and
j. The second term represents the intra-orbital Coulomb
interaction with its magnitude U . The third term repre-
sents the inter-orbital Coulomb interaction. The fourth
term represents the Hund’s coupling JH between spins
Si,γ = (Sx

i,γ , S
y
i,γ , S

z
i,γ) at different orbitals with Sa

i,γ =
1
2

∑

τ,τ ′ c
†
i,γ,τσ

a
ττ ′ci,γ,τ ′. The last term represents the on-

site inter-orbital pair hopping with Pi,γ = ci,γ,↑ci,γ,↓.
In addition, we extend this Hamiltonian by introducing

the following crystal-field splitting term

HCF =
∆

2

∑

i,τ

(ni,a,τ − ni,b,τ ). (4)

Therefore, the total Hamiltonian HETH of an extended
two-orbital Hubbard model (ETHM) is described by
HETH = HTH + HCF. Following Refs.39,63, we set the
model parameters as U = 4, JH = U/4, and (taa, tbb) =
(0.4,−0.2) in the unit of eV, which are used to capture
the basic features of perovskite cobaltites. Note that

we introduce the on-site inter-orbital pair hopping term,
which is ignored in Refs.39,59,60,62. At half filling, a band
(Mott) insulator is stable for large (small) ∆, while an
excitonic insulator can be realized for intermediate ∆.
The continuity equation along with the Heisenberg

equation of motion for a spin operator Sz
l,γ leads to a

spin-current operator

jsγγ′(r) := i (sgn tγγ′)
∑

τ

sτ
2

(

c†l,γ,τcm,γ′,τ − c†m,γ′,τ cl,γ,τ

)

(5)

for a bond (l,m) connecting sites l and m located at
position vector r, where sτ = +1 (−1) for τ =↑ (↓).
To investigate the spin current, we use a pinning-field
approach32,33,35,64–66, where we introduce a small pin-
ning field jsγγ′(r) on a bond (l,m) of orbitals γ and γ′

described by Hs
γγ′ = −h|tγγ′|jsγγ′(r) with h = 0.0001.

Note that conclusions obtained from this approach are
essentially the same as those obtained from correlation
functions33,35. In Appendix A, we demonstrate that
the pinning-field approach is useful for detecting numer-
ically current correlations that appear in the staggered
flux phase. The pinning-field approach has an advantage
because the DMRG method can calculate local quanti-
ties with much better accuracy than correlation func-
tions64,66. Although the computational cost increases be-
cause complex numbers have to be used, the pinning field
approach has been applied successfully for the DMRG
study of off-diagonal orders or fluctuations of supercon-
ducting pairs and current, which are usually difficult to
detect.
Figure 1 shows the results of 〈jsγγ′(r)〉 for three differ-

ent values of ∆ = 2.6, 3, and 3.4, when the inter-orbital
hoppings tab = tba = 0.05 are introduced. We choose
∆ ≃ 3 since spontaneous hybridization between orbital a
and b is obtained (see Appendix B), indicating an exci-
ton condensation. Note that this type of the inter-orbital
hoppings satisfying tabtba > 0 is usually referred to as
“even”. These results are obtained near half filling, i.e.,
electron density n = N/L = 1.92, where N is the to-
tal number of electrons and L = LxLy is the number
of sites. Note that n = 2 corresponds to half filling in
the ETHM. We evaluate the ground state for the two-leg
ladder with (Lx, Ly) = (24, 2), keeping χ = 2500 largest
density-matrix eigenstates and taking 40 sweeps, which
leads to a truncation error less than 10−11. The pin-
ning field is introduced in the bond of orbital b that is
indicated by an arrow with “pinning” in Fig. 1. Even
when the pinning field is applied to orbital a, the fol-
lowing argument remains qualitatively the same. Since
the expectation values of the spin current depend on h
and increase in proportion to the density of states at the
Fermi level, we normalize these quantities by |〈jsγγ′(r)〉|
at the bond applied with the pinning field in order to
compare the results among different electronic states.
We find in Fig. 1(b) that the signal of sLC is most

enhanced with clear sLC textures for ∆ = 3, where exci-
ton condensation in the spin channel is associated67. The
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FIG. 1. 〈jsγγ′ (r)〉 for the ETHM in the two-leg ladder with (Lx, Ly) = (24, 2) at electron density n = 1.92 close to half filling.

Their normalized magnitudes are shown by arrows with heatmap at the bond r for the intra-orbital (γ = γ′) and inter-orbital
(γ 6= γ′) spin current in the left and right panels, respectively (also see schematic drawings). Here, the legs of the ladder are
labeled as leg 1 and leg 2, and the small pinning field is applied at the bond in leg 2 for orbital b (indicated by “pinning”). The
model parameters are set to U = 4, JH = U/4, (taa, tbb) = (0.4,−0.2), and tab = tba = 0.05 with (a) ∆ = 2.6, (b) ∆ = 3, and
(c) ∆ = 3.4 in the unit of eV. The results indicated by blue dotted rectangles in (b) are also used in Fig. 12(a).
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FIG. 2. Same as Fig. 1 but for tab = −tba = 0.05.

spatial distribution of 〈jsaa(r)〉 and 〈jsbb(r)〉 away from the
bond with the pinning field, indicated by the blue dotted
rectangles in Fig. 1(b), decays in distance and approxi-
mately follows the power-law behavior (see Appendix C).
For larger and smaller values of ∆, i.e., ∆ = 2.6 and
∆ = 3.4, no sLC textures are observed in Figs. 1(a) and
1(c). Note that the presence of Hund’s coupling is crucial
for realizing the sLC texture, while the pair hopping is
irrelevant. We also find that all off-diagonal parts of spin
current 〈jsab(r)〉 and 〈jsba(r)〉, shown in Fig. 1(b), flow in

the same direction. At first glance, this behavior appears
to be a spontaneous flow of global spin current. However,
it turns out that the total spin current including both or-
bital diagonal and off-diagonal parts vanishes59,60, thus
satisfying the Bloch theorem68–71.

We can obtain sLC textures only when the even-type
inter-orbital hoppings are introduced. In other words, no
sLC textures emerge if the odd-type inter-orbital hop-
pings are introduced or if no inter-orbital hoppings are
introduced. Figure 2 shows the results of 〈jsγγ′(r)〉 for
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the odd-type inter-orbital hoppings tab = −tba = 0.05.
Indeed, we find that sLC textures are short-ranged. We
also obtain almost the same results as in Fig. 2 when
no inter-orbital hoppings are introduced. Therefore, the
symmetry of the inter-orbital hoppings is a key factor in
the generation of sLC textures. These features are in fact
consistent with the previous work based on the (dynami-
cal) mean-field theory39,59,60, and thus we conclude that
a sLC texture associated with an exciton condensation
in the spin channel can occur in the ETHM.
It should be noted, however, that our numerical results

are consistent with the previous studies only for the two-
leg ladder system. We find that the spatial distribution
of the spin current away from the bond with the pin-
ning field decays steeper in the three- and four-leg lad-
der systems than in the two-leg ladder system. Since an
excitonic condensation in the spin channel has been pro-
posed in Pr0.5Ca0.5CoO3 and Ca2RuO4

39,63, there is a
possibility of sLC textures being realized in these mate-
rials. However, our DMRG study suggests that having a
two-leg structure is also an important condition for the
emergence of sLC textures.

B. Carrier-doped orbital-selective Mott insulators

In the previous section, we have demonstrated that
sLC textures emerge in the ETHM and shown that the
inter-orbital hoppings play a crucial role in stabilizing
sLC textures associated with an exciton condensation
in the spin channel. Here, in this section, we shall
demonstrate that it is also possible to realize sLC tex-
tures in the ETHM without inter-orbital hoppings, i.e.,
tab = tba = 0. For this purpose, we set the model pa-
rameters to be U = 3.5, JH = U/4, ∆ = −1.6, and
(taa, tbb) = (−0.5,−0.15) in the unit of eV, which are
used to describe orbital-selective Mott insulators such as
BaFe2Se3

41. As in Sec. III A, we consider the two-leg lad-
der with (Lx, Ly) = (24, 2). Magnetic structures of this
model have been investigated by the DMRG method and
several types of block AFM order have been suggested41.
We calculate the ground state of the ETHM by using

the DMRG method, keeping χ = 2500 largest density-
matrix eigenstates and taking 40 sweeps, which leads to
a truncation error less than 10−7. Figures 3(a)–3(c) show
the results of 〈jsaa(r)〉 and 〈jsbb(r)〉 for three different elec-
tron densities n = 2.5, 2.67, and 2.83. In these calcula-
tions, we introduce the pinning field at the bond of or-
bital b indicated in the figure. However, the following
argument remains qualitatively the same even when the
pinning field is applied to orbital a. At n = 2.5, a (π, 0)
stripe order, i.e., AFM spin alignment along the legs and
ferromagnetic (FM) spin alignment along the rungs, ap-
pears. Since the magnetic structure has already been
studied41, here we focus on the possibility of the emer-
gence of sLC textures.
First, we do not find robust sLC textures for typical

values of electron density in the range of 2.0 . n . 2.5

and n ∼ 3. Indeed, the correlation of spin current is
short-ranged, as shown in Fig. 3(a) for n = 2.5 and
Fig. 3(c) for n = 2.83. These features are better quan-
tified by evaluating the Fourie transform of these quan-
tities, i.e., Jγ(q) =

∑

r
〈jsγγ(r)〉 cos(q · r). As shown in

Fig. 3(d) for n = 2.5 and Fig. 3(f) for n = 2.83, Jγ(q)
has a structure around q = (π, 0) and (0, 0), respec-
tively, but it is rather broad. In contrast, we find the
enhanced signal of sLC textures in the range of electron
density 2.63 < n < 2.71, where the correlation of spin
current is longer-ranged, as shown in Figs. 3(b) and 3(e)
for n = 2.67. The spatial distribution of 〈jsaa(r)〉 and
〈jsbb(r)〉 away from the bond with the pinning field, indi-
cated by the blue dotted rectangles in Fig. 3(b), decays
in distance and approximately follows the power-law be-
havior (see Appendix C). It should be noted that the cor-
relation of the spin current in Fig. 3(b) appears weaker
than that in Fig. 1(b).
We should note that the sLC textures found here are

unaffected by the introduction of the inter-orbital hop-
pings tab = ±tba = 0.05 also used in Sec. III A, which
indicates that the sLC textures found here in this sec-
tion are due to a mechanism different from the exciton
condensation in the spin channel. We also find that the
introduction of ∆ 6= 0 does not play an essential role.
Since the sLC signal becomes small when the ratio of
tbb/taa is closer to 1, the difference in the itinerancy of
electrons in orbitals a and b is important to the develop-
ment of sLC textures.
Recalling that noncollinear magnetism can produce

spin current72, vector chirality is one of the possible
origins for the sLC textures. It has been proposed in
Ref.45 that the correlation of vector chirality jnsbb (r) :=
(Sl,b × Sm,b)z = Sx

l,bS
y
m,b − Sy

l,bS
x
m,b of localized spins on

orbital b can be developed in the GKHM, which is an ef-
fective model of the ETHM in the strong coupling limit.
Note that the vector chirality operator jnsbb (r) is also re-
garded as a spin current operator defined on localized
spins. It is also interesting to notice that the electron
density n where sLC textures emerge is consistent for
both models, i.e., the ETHM studied in this paper and
the GKHM studied in Ref.45. However, the pattern of
sLC textures is different between these two systems. In
the ETHM, spin current flows in the leg direction for each
orbital a or b, as shown in Fig. 3(b). Because spin cur-
rents in these two orbitals flow in opposite directions, the
global spin current does not flow in total. In the GKHM,
on the other hand, spin currents generated by itinerant
electrons and by localized spins are inequivalent, which
may thus induce another kind of sLC textures, i.e., stag-
gered spin current circulating around 2× 2 plaquettes45.
We have also examined jnsγγ(r) in the ETHM and con-
firmed that the correlation of jnsγγ(r) is developed when
jsγγ(r) exhibits enhanced correlation.
Finally, we note that the sLC textures found here in the

ETHM coexist with charge stripes. Figure 4 shows the
results of na

+(x) :=
1
Ly

∑

y=1,2

(

〈ny
x,a〉 − n

)

and na
−(x) :=

1
Ly

∑

y=1,2

[

(−1)y〈ny
x,a〉

]

, where ny
x,a is an electron den-
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FIG. 3. 〈jsγγ′ (r)〉 with γ = γ′ for the ETHM in the two-leg ladder with (Lx, Ly) = (24, 2). Their normalized magnitudes are
shown by arrows with heatmap at the bond r for (a) n = 2.5, (b) n = 2.67, and (c) n = 2.83. Here, the legs of the ladder are
labeled as leg 1 and leg 2, and the small pinning field is applied at the bond in leg 2 for orbital b (indicated by “pinning”).
The model parameters are set to U = 3.5, JH = U/4, (taa, tbb) = (−0.5,−0.15), and ∆ = −1.6 in the unit of eV with the
inter-orbital hoppings tab = tba = 0. The results indicated by blue dotted rectangles in (b) are also used in Fig. 12(a). In (d),
(e), and (f), Jγ(q) are evaluated from the results shown in (a), (b), and (c), respectively. The diameter of the bubbles indicates
the value of Jγ(q) at different momentum (qx, qy). The lower and upper panels in each figure are for 〈jsaa(r)〉 and 〈jsbb(r)〉 or
Ja(q) and Jb(q), respectively.

sity operator at the xth rung (x = 1, 2, . . . , Lx) for leg
y and orbital a. These two quantities na

+(x) and na
−(x)

represent respectively the average and difference of the
numbers of electrons at legs 1 and 2 in each rung. When
the sLC textures emerge, we find that charge stripes also
appear probed in both na

+(x) and na
−(x), as shown in

Fig. 4 for n = 2.67 with (Lx, Ly) = (24, 2) (red circles)
and n = 2.66 with (Lx, Ly) = (32, 2) (black circles), indi-
cating the spontaneous formation of charge stripes both
along rungs and legs. After removing the contributions
from edges to reduce the finite-size effects, we find that
ña
+(qx) :=

∑

x n
a
+(x) cos(qxx) shows a peak structure

at qx ∼ 2 and similarly ña
−(qx) :=

∑

x n
a
−(x) cos(qxx)

shows a peak structure at qx ∼ 1, which correspond to
charge stripes with the period of λ ≃ 3 and 6 (in unit of
the lattice constant), respectively. These charge stripes
can trigger vector chirality when they form superlattice
structures that break local inversion symmetry73,74. In-
deed, the emergence of antisymmetric exchange, i.e., the
Dzyaloshinskii-Moriya interaction, has been proposed in
ABC-type superlattices75. The coexistence of vector chi-
rality and charge stripes is one manifestation of multifer-
roicity72,76. We should also note that the coexistence of

cLC textures and stripes has recently been reported in a
spinless Hubbard model38.

IV. SINGLE-ORBITAL HUBBARD MODEL ON

A SQUARE LATTICE

In Sec. III, we have demonstrated the emergence of
sLC textures in the two-orbital Hubbard model on a lad-
der lattice. Even with only a single orbital, the two-
dimensional Hubbard model exhibits very rich quantum
phases with highly-entangled spin and charge degrees of
freedom. In this section, we focus on sLC textures in the
single-orbital Hubbard model on a square lattice. There
are several proposals for sLC textures in the Hubbard
model on a square lattice. In the Hubbard model with a
single hole on a square lattice, the emergence of sLC tex-
tures has been suggested77. The sLC textures are driven
by a many-body Berry-like phase, i.e., phase string78–80

in the single-hole t-J model on a square lattice. We
should, however, note that total Sz is nonzero in Ref.77,
where time-reversal symmetry is explicitly broken in the
Hamiltonian. Even for total Sz being zero, the recent
theoretical analysis based on the functional renormaliza-
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FIG. 4. na
+(x) (upper panel) and na

−(x) (lower panel) for the
ETHM in the two-leg ladder. Red circles are for (Lx, Ly) =
(24, 2) at n = 8/3 ≃ 2.67 and black circles are for (Lx, Ly) =
(32, 2) at n = 85/32 ≃ 2.66. The model parameters are the
same as those used in Fig. 3

tion group method in Ref.40 has revealed the emergence
of sLC textures in a hole-doped Hubbard model on a
square lattice with further-neighbor hoppings. The sLC
textures found in this analysis are characterized with a
wave vector q = (π/2, π/2), which is diagonal and closely
related to the nesting vector of the Fermi surface40.
Here, we investigate sLC textures in the single-orbital

Hubbard model on a square lattice by using the DMRG
method. The Hamiltonian of the Hubbard model on a
square lattice is given as

Ht-t′-U =− t
∑

〈i,j〉,τ

(c†i,τ cj,τ +H.c.)

− t′
∑

〈〈i,j〉〉,τ

(c†i,τ cj,τ +H.c.) + U
∑

i

ni,↑ni,↓,

(6)

where c†i,τ is the electron creation operator at site i with

spin τ (=↑, ↓) and ni,τ = c†i,τ ci,τ . t and t
′ are the nearest-

neighbor and next-nearest-neighbor hoppings on a square
lattice, respectively, and U is the on-site Coulomb inter-

action. The sum indicated by 〈i, j〉 (〈〈i, j〉〉) runs over
all pair of nearest-neighbor (next-nearest-neighbor) sites
i and j.
We use a cluster of (Lx, Ly) = (8, 6) on a cylinder ge-

ometry, i.e., open and periodic boundary conditions along
x and y axes, respectively. Although we can treat even
larger clusters at the expense of accuracy, we avoid us-
ing too large clusters since the high computational accu-
racy is required to correctly calculate off-diagonal quan-
tities such as spin current. To treat a two-dimensional
cluster in the DMRG method, we construct a snakelike
one-dimensional chain out of the two-dimensional square
lattice, running from site at (0, 0) to site at (0, Ly − 1),
then from site at (1, Ly−1) to site at (1, 0), and this pat-
tern being repeated until we reach site at (Lx−1, 0). We
keep χ = 10000 largest density-matrix eigenstates and
take 40 sweeps in the DMRG calculations, leading to a
truncation error less than 5× 10−5.
Similar to Eq. (5), the spin current operator for the

single-band Hubbard model is defined as

js(r) := i (sgn t or t′)
∑

τ

sτ
2

(

c†l,τ cm,τ − c†m,τcl,τ

)

(7)

for a bond (l,m) connecting sites l and m located at a
position vector r. To investigate the spin current, we
introduce a small pinning field js(r) on a bond (l,m),
described by Hs = −h|t|js(r) with h = 0.0001, i.e., site
l located at (0, 2) and site m located at (0, 3) for our
cluster with (Lx, Ly) = (8, 6) (also see Fig. 5).
Figure 5 summarizes the results of 〈js(r)〉 for t′/t =

−0.3 and U/t = 9 with different hole concentrations
δ = 1 − n. We find that the correlation of 〈js(r)〉 is
rather short-ranged except for δ = 0.125. Note that half
filling is achieved at n = 1 for the single-orbital Hubbard
model. We also note that the global spin current in the x
direction should be zero due to the open boundary condi-
tions, whereas the spin current in the y direction should
be suppressed by L−1

y due to the periodic boundary con-

ditions71.
In addition to the hole concentration, several other

conditions are required for the emergence of the sLC
textures. Figure 6 shows the results of 〈js(r)〉 for dif-
ferent values of t′ at δ = 0.125, revealing that the pres-
ence of t′/t ∼ −0.25 is necessary to induce the robust
sLC textures. Figures 7(a)–7(c) show the results of
〈js(r)〉 for three different values of U/t = 4, 6, and 9
at δ = 0.125 and t′/t = −0.266. These results clearly
find that the sLC textures are most extended and en-
hanced when U/t is smaller. Figures 7(d)–7(f) show
J(q) =

∑

r
〈js(r)〉 cos(q · r) evaluated from the results

of 〈js(r)〉 in Figs. 7(a)–7(c). We find that the centroid
of J(q) is concentrated toward q ≃ (π, 0) with decreas-
ing U/t. We should also note that even when U/t = 4,
no sLC textures emerge if t′/t deviates significantly away
from −0.25.
It is interesting to compare the sLC textures obtained

here by the DMRGmethod with those reported in Ref.40.
Based on the functional-renormalization group method,
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FIG. 5. 〈js(r)〉 for the single-orbital Hubbard model with U/t = 9 and t′/t = −0.3 on the square lattice with (Lx, Ly) = (8, 6).
Their normalized amplitudes are shown by arrows with heatmap at the bond r for (a) δ = 0.042, (b) δ = 0.083, (c) δ = 0.125,
(d) δ = 0.167, (e) δ = 0.208, (f) δ = 0.25, (g) δ = 0.292, and (h) δ = 0.333. Here, the bond to which the small pinning field is
applied is indicated by “pinning” in (a). The same pinning field is also applied in (b)–(h), but it is not explicitly indicated.
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FIG. 6. Same as Fig. 5 but for three different t′ values (indicated in the figures) at δ = 0.125

the presence of sLC textures has been proposed in the
single-orbital Hubbard model with t′/t = −1/6, t′′/t =
1/5, and U/t = 3.3 at δ = 0.2, where t′′ is the third
nearest-neighbor hopping40. The suggested sLC textures
are characterized by wave vector q ≃ (π/2, π/2). The
similarity and difference of the results by our study and
their study40 are summarized as follows. Both studies
suggest that the introduction of relatively small or in-
termediate U/t and t′/t is crucial for the emergence of
the robust sLC textures. However, the sLC textures ap-
pear most significantly at δ = 0.125 in our study but at
δ = 0.2 in their study. The wave vector q characterizing
the spatial pattern of sLC textures is also different: while
the axial-sLC textures with q = (π, 0) are found by our
DMRG study, the diagonal-sLC textures with (π/2, π/2)
are obtained by their functional renormalization group
study40. The axial-sLC textures may be stabilized here
because we employ the cluster of a cylinder geometry.
However, more detailed study is deserved to clarify this
point.

Now we comment on the coexistence of sLC textures

and charge stripes at δ = 0.125. The hole density of
δ = 0.125 is well-known as the density at which the
charge stripes appear, and many previous studies have
been focused on this density81–93. In the Hubbard model
in the strong coupling region or the t-J model on a 4-
leg ladder under the cylinder geometry, the axial charge
stripes with a period of λ = 8 (in unit of the lat-
tice constant), characterized by its ordering wave vector
q = (π/4, 0), is stabilized at δ = 0.12590. Introducing
t′/t = −0.25, the λ = 4 charge stripes with its ordering
wave vector q = (π/2, 0) appears. Here, we shall show
that the charge stripes also appear on the 6-leg ladder
used in this section.
In order to quantify the charge distribution along

the x axis, i.e., the leg direction, we evaluate n(x) :=
1
Ly

∑Ly−1

y=0 〈ny
x〉, where n

y
x is an electron density operator

at the xth rung (x = 0, 1, . . . , Lx − 1) in leg y. Since the
computation of diagonal quantities such as the charge
density is not severely sensitive to the lower accuracy in
the DMRG method, we can evaluate this quantity n(x)
for a larger cluster with (Lx, Ly) = (16, 6). Since the clus-
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FIG. 7. (a)–(c) Same as Fig. 5 but for (a) U/t = 4, (b) U/t = 6, and (c) U/t = 9 at δ = 0.125 and t′/t = −0.266. The results
indicated by blue dotted rectangles are also used in Fig. 12(b). (d)–(f) J(q) evaluated form 〈js(r)〉 shown in (a)–(b), i.e., for
(d) U/t = 4, (e) U/t = 6, and (f) U/t = 9. The diameters of bubbles indicate the values of J(q).

ter is on a cylinder geometry, we expect that the axial
charge stripes are more stable. We indeed find in Fig. 8
that the axial charge stripes appear at δ = 0.125 and the
period of these stripes become longer with decreasing U .

To further discuss the period of the charge stripes,
we also evaluate n(qx) :=

∑

x n(x) cos(qxx) and the re-
sults are shown in Fig. 9. As shown in Fig. 9(a), when
t′/t = −0.3 and U/t = 4, n(qx) has a broad peak at
0.32 . qx/π . 0.80 for the cluster with (Lx, Ly) = (8, 6).
We can reduce the finite size effect when we consider
the cluster with (Lx, Ly) = (16, 6), for which the results
of n(qx) are shown in Figs. 9(b)–9(d) for three different
values of U/t = 4, 6, and 9. As shown in Fig. 9(b),
when t′/t = −0.3 and U/t = 4, n(qx) exhibits a peak at
0.25 . qx/π . 0.48, which indicates the charge stripes
with λ ≃ 5. This is consistent with the results obtained
by the variational Monte-Carlo study on a 6-leg Hubbard
ladder with t′93. With increasing U , the characteristic or-
dering wave vector of the charge stripes becomes larger,
as shown in Fig. 9(d) for U/t = 9, where n(qx) has a peak
at 0.45 . qx/π . 0.60, leading to λ ≃ 4. Since δ = 0.125
is a key factor in the development of the sLC textures,
it is most likely that the presence of λ ≃ 4 and 5 charge
stripes is crucial for the emergence of the sLC textures
found here. Assuming that a symmetry breaking leads to
the emergent spin-orbit coupling as discussed in Sec. II,
the electric field produced locally by charge stripes may
induce spin current by a similar mechanism to the spin
Hall effect94,95.

V. SUMMARY

We have studied sLC textures emerging in the ground
states of the Hubbard models by using the DMRG
method. Particularly, we have investigated carrier-doped
(i) excitonic insulators, (ii) orbital-selective Mott insu-
lators, and (iii) two-dimensional Mott insulators, mod-
eled by the ETHM on a two-leg ladder lattice in (i) and
(ii), and the single-orbital Hubbard model with the next-
nearest hopping t′ on a square lattice in (iii). In these
systems, we have obtained the enhanced sLC textures
developed around a bond to which the pinning field is
applied.

In system (i), we have found the emergence of sLC tex-
tures which is associated with an exciton condensation in
the spin channel. Using model parameters motivated for
excitonic insulators, we have found that the sLC corre-
lations are developed most significantly near half-filling
at electron density n = 1.92 when the crystal field and
the inter-orbital hoppings are suitably introduced. In
system (ii), we have used typical model parameters for
iron oxides such as BaFe2Se3 and found that the robust
sLC textures emerge in the ETHM without introducing
any inter-orbital hoppings. The sLC textures are devel-
oped most profoundly when a relatively large number
of carriers is introduced in the range of electron den-
sity 2.63 < n < 2.71 and the difference in itinerancy
of electrons in the the two orbitals is large. We have
also found that the sLC textures coexist with the charge
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FIG. 8. Charge density averaged over sites along the y
direction, n(x), for the single-orbital Hubbard model with
t′/t = −0.266 at δ = 0.125 on the square lattices with
(Lx, Ly) = (8, 6) (red circles) and (Lx, Ly) = (16, 6) (black
circles). The on-site Coulomb interaction is set to (a) U/t = 4
and (b) U/t = 9. For easier comparison, the results for
(Lx, Ly) = (8, 6) are displaced by 4 in the horizontal axis.

stripes formed in both rungs and legs. In system (iii), we
have found that the sLC textures are most enhanced and
extended at δ = 0.125 when t′/t ∼ −0.25 is introduced.
We also found that the sLC textures are most developed
when U decreases from U/t = 9 to U/t = 4. The λ ≃ 4
and 5 charge stripes also simultaneously appear when the
sLC textures emerge.

In conclusion, we have found the conditions under
which the sLC textures are developed in each of the three
systems (i)–(iii). Our results clearly demonstrate that
quantum many-body effects can induce local spin current
in the ground state. It is interesting to explore whether
the sLC textures can lead to the development of spintron-
ics in strongly correlated electron systems. Finally, we
note that the ground states with only short-ranged cLC
correlations have been found in all three systems (i)–(iii).
Namely, the expectation value of the charge current away
from the bond with the pinning field is nearly zero.
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FIG. 9. n(qx) for the single-orbital Hubbard model with
t′/t = −0.266 at δ = 0.125. (a) U/t = 4 on the square lattice
with (Lx, Ly) = (8, 6), and (b) U/t = 4, (c) U/t = 6, and (d)
U/t = 9 on the square lattice with (Lx, Ly) = (16, 6).
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Appendix A: Pinning-field approach

In Sec. III and Sec. IV, we introduce a small pinning
field h to the systems to study the spatial distribution of
sLC correlations. The pinning field approach have been
used previously to investigate cLC correlations33,35, and
here in this appendix we shall reproduce their results of
the cLC texture in our DMRG calculations to clarify the
role of the pinning field.
The Hamiltonian exhibiting a cLC texture reads

Ht-J-V =− t
∑

〈i,j〉,τ

(c̃†i,τ c̃j,τ +H.c.)

+ J
∑

〈i,j〉

(

S̃i · S̃j −
1

4
ñiñj

)

+ V1
∑

〈i,j〉

ñiñj + V2
∑

〈〈i,j〉〉

ñiñj , (A1)

which is a t-J model with the (next) nearest-neighbor
interaction V1 (V2) on a two-leg ladder lattice with open
boundary conditions. Here, c̃i,τ = ci,τ (1 − ni,−τ ), ci,τ is
the annihilation operator of an electron with spin τ (↑, ↓)

at site i, and ni,τ = c†i,τ ci,τ with −τ being the oppo-

site spin of τ . ñi =
∑

τ ñi,τ with ñi,τ = c̃†i,τ c̃i,τ =

ni,τ (1 − ni,−τ ) and (S̃i)a = 1
2

∑

τ,τ ′ c̃
†
i,τσ

a
ττ ′ c̃i,τ ′ =

1
2

∑

τ,τ ′ c
†
i,τσ

a
ττ ′ci,τ ′ is the a (= x, y, z) component of the

spin operator at site i. A charge current operator for a
bond (l,m) connecting sites l andm located at a position
vector r is defined as

jc(r) := i (sgn t)
∑

τ

(

c̃†l,τ c̃m,τ − c̃†m,τ c̃l,τ

)

. (A2)

To investigate charge current, we introduce a small pin-
ning field described by Hc = −h|t|jc(r) with h = 0.0001.
Notice here that the pining field is applied only at the
single bond r. The results for the spatial distribution of
〈jc(r)〉 on a two-leg ladder lattice with (Lx, Ly) = (20, 2)
are summarized in Fig. 11, where we set J/t = 0.4,
V1/t = 3, and V2/t = 1. The bond with the pinning
field is indicated by “pinning” in Fig. 11. We find that
indeed a cLC texture emerges at hole density δ = 0.1,
exhibiting staggered flow of charge current, which is in
good accordance with the staggered-flux order reported
in Ref.33. The introduction of finite V1 and V2 is a key
ingredient to induce the cLC texture in this system.

pinning 0

1

0.2

���

0.6

0.8

FIG. 10. 〈jc(r)〉 for the t-J model Ht-J-V given in Eq. (A1)
with J/t = 0.4, V1/t = 3, and V2/t = 1 on the two-leg ladder
with (Lx, Ly) = (20, 2) at hole density δ = 0.1. Their nor-
malized amplitudes are shown by arrows with heatmap at the
bond r. The bond to which the small pinning field is applied
is indicated by “pinning”.

2.6 3.0 3.4 3.8 4.2
0.0

0.2

0.4

FIG. 11. Hybridization average 〈v〉 between orbitals a and b
as a function of the crystal-field splitting ∆ for the ETHM in
the two-leg ladder with (Lx, Ly) = (24, 2) at electron density
n = 1.92 close to half filling. The model parameters are set
to U = 4, JH = U/4, (taa, tbb) = (0.4,−0.2), and tab = tba =
0.05 in the unit of eV.

Appendix B: Hybridization induced by exciton

condensation

In this appendix, we demonstrate the existence of an
exciton condensation in the ETHM defined by the Hamil-
tonian HETH [see Eqs. (3) and (4)] on a ladder lattice
studied in Sec. III A. For this purpose, we evaluate the

hybridization average 〈v〉 := 1
L

∑

i,τ 〈c
†
i,a,τ ci,b,τ 〉 between

orbitals a and b. Figure 11 shows our DMRG results
for U = 4, JH = U/4, (taa, tbb) = (0.4,−0.2), and
tab = tba = 0.05 in the unit of eV at electron density
n = 1.92, These parameters are the same as those used
in Fig. 1. Our calculations clearly find that 〈v〉 is nonzero
for 3 ≤ ∆ ≤ 3.8, thus including ∆ = 3 for which the sLC
textures emerge, as shown in Fig. 1(b).
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FIG. 12. Spatial distribution of spin current as a func-
tion of the distance x̃ from the bond to which the pinning
field is applied. (a) 〈jsaa(x̃)〉 and 〈jsbb(x̃)〉 for the carrier-
doped excitonic insulators (denoted by red circles) and for
the orbital-selective Mott insulators (denoted by blue circles)
in the area enclosed by the blue dotted rectangles in Fig. 1(b)
and Fig. 3(b), respectively. For comparison, power-law func-
tions 0.11/x̃ and 0.11/x̃2 are also plotted by the black dashed
and solid lines, respectively. (b) 〈js(x̃)〉 for the carrier-doped
two-dimensional Mott insulators in the area enclosed by the
blue dotted rectangles in Fig. 7(a), 7(b), and 7(c) for U/t = 4,
6, and 9, respectively. 〈js(x̃)〉 only for nearest-neighbor bonds
along the y direction is shown. For comparison, a power func-
tion 1/x̃ is also plotted by the black dashed line.

Appendix C: Power-low behavior of the spin current

induced by a pinning field

To give further insight on the sLC textures, here in this
appendix, we show log-log plots of the spatial distribution
of the spin current for the two-orbital Hubbard ladders in
Fig. 12(a) and for the single-orbital Hubbard model on a
square lattice in Fig. 12(b). Red circles in Fig. 12(a) show
the spatial distribution of 〈jsaa(x̃)〉 and 〈jsbb(x̃)〉 for the
carrier-doped excitonic insulators in the area enclosed by
the blue dotted rectangles in Fig. 1(b). Here, x̃ = x−10.5
is the distance form the bond to which the pinning field
is applied. Blue circles in Fig. 12(a) show the spatial
distribution of 〈jsaa(x̃)〉 and 〈jsbb(x̃)〉 for the carrier-doped
orbital-selective Mott insulators in the area enclosed by
the blue dotted rectangles in Fig. 3(b). Apart form the
vicinity of the boundaries of the systems, 〈jsaa(x̃)〉 and
〈jsbb(x̃)〉 in Fig. 12(a) appear to closely follow a power-
law behavior, indicated by the black dashed and solid
lines. The power-law decay seems to have the form of
x̃−l with 1 . l . 2.

Figure 12(b) shows the spatial distribution of 〈js(x̃)〉
for the carrier-doped two-dimensional Mott insulators
in the area enclosed by the blue dotted rectangles in
Figs. 7(a), 7(b), and 7(c) for U/t = 4, 6, and 9, re-
spectively. Here, 〈js(x̃)〉 only for nearest-neighbor bonds
along the y direction is plotted. x̃ = x+1 is the distance
form the bond to which the pinning field is applied. Be-
cause of the small cluster size, these results provide only
limited information, but we find that 〈js(x̃)〉 follows a
power-law behavior x̃−l with the exponent l that becomes
closer to 1 as U/t approaches 4.
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