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We propose a two-fluid description of fractional quantum Hall systems, in which one component
is a condensate of composite bosons and the other a Fermi liquid formed by composite fermions
(or simply electrons). We employ the theory to model the interface between a fractional quantum
Hall liquid and a (composite) Fermi liquid metal, where we find a penetration of quantum Hall
condensate into the metallic region reminiscent of the proximity effect in superconductor-metal
interfaces. We also find a novel and physically reasonable set of gapped quasielectron and neutral
modes in fractional quantum Hall liquids.

I. INTRODUCTION

The qualitative physics of a ν = 1/q (with q odd) frac-
tional quantum Hall (FQH) fluid is most simply under-
stood from the analogy with superconductivity provided
by the Chern-Simons-Ginzburg-Landau (CSGL) descrip-
tion of composite bosons (CB) [1, 2], while dissipative
states - either an ordinary metal or a composite fermion
(CF) liquid metal [3–7] - require a fermionic description.
An investigation of the interface between the two — and
the extent to which a quantum Hall (QH) “condensate”
can penetrate into a metallic region — motivates us to
develop a two-fluid description of a two-dimensional elec-
tron gas in a spatially varying magnetic field. To this
purpose, we introduce an effective field theory with two
fictitious flavors of electron - one described by a compos-
ite boson field and the other by a composite fermion field
- coupled to two fluctuating Chern-Simons (CS) gauge
fields.

There is an intrinsic issue with any such two-fluid de-
scriptions stemming from the indistinguishability of elec-
trons. However, under many circumstances where the
dynamical exchange of different groups of electrons is
slow, errors involved in treating them as distinguishable
are expected to be small. In the present treatment, the
exchange statistics of each flavor of electrons is treated
exactly through the statistical CS field. Dynamical terms
that exchange flavors involve instanton configurations in
which large-scale rearrangements of the gauge fields in
spacetime arise, which are argued to be relatively unim-
portant in various situations considered here. At an intu-
itive level, this is similar to treatments in which the elec-
trons in a full Landau level (LL) are treated as forming
an incompressible fluid background, over which electrons
in a higher, partially filled Landau level form a distinct
quantum system.

When the system is strictly uniform, and at special
fillings that are well described by one component, the
other component of the two fluids is clearly redundant.
However, novel QH states can arise when a CB conden-
sate and a CF liquid (CFL) coexist. Moreover, when
the electron density or the magnetic field strength varies

spatially, our mixed theory becomes useful in many cir-
cumstances. In particular, we apply it to two specific
problems:

We first use the two-component approach to study
point-like excitations of Laughlin states. While quasi-
holes are plausibly describable as simple vortex excita-
tions in the composite boson condensate, a correspond-
ingly compelling CSGL description of quasielectrons is
lacking [8]. Based on a saddle-point analysis, we con-
struct a class of novel soliton solutions corresponding
to quasielectrons and neutral excitations (a version of
a Girvin-MacDonald-Platzman mode [9]), which do not
admit a natural representation in terms of a pure CB pic-
ture. We find that depending on the details of the inter-
actions, properties of the quasi-particles (e.g. energy and
quadrupole moment) can change discontinuously without
any other significant changes in the nature of the QH
state itself.

In the second application, we consider the interface
between a ν = 1/q (odd q) QH region and a metallic
regime with B = 0 or with ν = 1/q′ (even q′). Far
from the interface, the two regions are well described by
a CB condensate and a CFL (which is simply an electron
liquid when q′ = 0), respectively. For simplicity, we con-
sider a situation in which the electron density is uniform
and solve for the saddle-point profile of the CB conden-
sate. When the magnetic field is slowly varying, we find
that the condensate roughly follows it, allowing it to ex-
tend deep into the predominantly metallic region, which
is reminiscent of the proximity effect in superconductor-
metal interfaces.

In Sec. II we discuss the phenomenological considera-
tions and the formalism of the proposed two-component
effective field theory. In Sec. III, we briefly discuss the
filling fractions that can potentially be described by the
two-fluid picture. In Sec. IV, we apply our formulation
to point-like excitations in Laughlin states. In Sec. V,
we analyze the saddle-point solution of a problem with
a spatially varying magnetic field modeling a QH-metal
interface. Finally, in Sec. VI we speculate on the possible
implications of these results and further extensions.



2

FIG. 1: An illustration of the statistical angles between
particle-flux composites introduced by the CS terms in Eq. 2,
which corresponds to q = 3, q′ = 0 and q′′ = 1 in the flux
attachment matrix.

II. FORMALISM

In this section, we present the two-fluid theory consist-
ing of CBs described by the complex scalar fields ϕ and
ϕ⋆, CFs described by the Grassman fields ψ and ψ†, and
emergent dynamical gauge fields a and b in the presence
of a background electromagnetic field A. Throughout
this paper, we will adopt the following convention: Greek
letters (µ, ν, . . . ) are used for spacetime indices (0, 1, 2
represent t, x, y), and Latin letters (i, j, . . . ) are used only
for the spatial indices; the sign convention is such that
xµ = (t, x, y) and the metric gµν = diag(1,−1,−1). We
absorb a factor of electron charge |e| in the definition of
A and adopt units such that ℏ = c = 1. The Lagrangian
density of the theory then reads:

L =ϕ⋆ [i∂0 + a0 +A0]ϕ− 1

2m

∣∣∣(−i∇⃗+ a⃗+ A⃗
)
ϕ
∣∣∣2

+ ψ† [i∂0 + b0 +A0]ψ − 1

2m

∣∣∣(−i∇⃗+ b⃗+ A⃗
)
ψ
∣∣∣2

+ LCS + LInt

[
|ψ|2, |ϕ|2

]
(1)

LCS =− 1

4π

(
a b

)
K−1

da

db

 (2)

where we have adopted a short-handed notation for ex-
terior derivatives, e.g. adb = ϵµνηaµ∂νbη, and

K ≡

 q q′′

q′′ q′

 (3)

enforces the flux-attachment constraints according to the
equations of motion of a and b:

ϵµνσ

∂νaσ
∂νbσ

 = 2πK

Jµϕ
Jµψ

 (4)

where J0
ϕ = ρϕ = |ϕ|2, J0

ψ = ρψ = |ψ|2 are the densi-

ties of CBs and CFs, and J iϕ, J
i
ψ are the current vectors.

LInt

[
|ψ|2, |ϕ|2

]
is a potential that represents the interac-

tions among particles. We divide the interactions into the

sum of a short-range and a long-range piece, the former of
which we effectively treat as a point-contact interaction,

LInt[|ϕ|2, |ψ|2] =−
[
V1ρ

2
ϕ/2 + V2ρϕρψ

]
− Vlong range[|ϕ|2 + |ψ|2] (5)

where V1 and V2 are effective parameters. We note that
due to Grassman algebra, |ψ|4 vanishes such that the ψ
particles do not self-interact.
With this flux attachment structure and ϕ, ψ being

bosonic and fermionic fields, as illustrated in Fig. 1, one
can see that the self statistics of ϕ and ψ particles are
fermionic for odd q and even q′. We will restrict our
choices of q and q′ accordingly, and regard the two com-
ponents as two different flavors of electrons. The mutual
statistical angle between the two flavors is determined
by q′′. In principle, this two-fluid theory should also in-
clude terms that can transmute ϕ and ψ particles, e.g.
ϕ†ψ, revealing their common underlying nature - elec-
trons. However, such terms cannot exist on their own
and must be accompanied by monopole operators that
globally rearrange the spacetime configuration of the CS
gauge fields a and b. (The nature of such terms is dis-
cussed in App. A.) Such terms are thus unimportant as
long as we are studying time-independent saddle-point
solutions to the theory.

We expect this theory to effectively describe a single-
component electron fluid in the presence of a background
magnetic field B ≡ −ϵij∂iAj . The electron density ρ =
ρϕ+ρψ = |ϕ|2+ |ψ|2 is thus a sum of the densities of the
two artificial species.

III. UNIFORM STATES

We first analyze the filling fractions that are naturally
described by this two-fluid theory. To derive those frac-
tions, we note that the effective magnetic fields seen by
ϕ and ψ particles in a uniform system are:

Bϕ =B − 2π(qρϕ + q′′ρψ) (6)

Bψ =B − 2π(q′′ρϕ + q′ρψ) (7)

When Bϕ = 0, we expect the CBs to form a conden-
sate, and when Bψ = 2πρψ/νCF with νCF an integer,
CFs to fill |νCF| effective LLs. Thus, the four integers
q, q′, q′′, νCF specify a QH state. Specifically, our hybrid
picture suggests the following wave-function ansatz for
the electrons:

Ψ (z) = A

∏
i<j

(si − sj)
q
∏
k<l

(wk − wl)
q′

(8)

∏
i,k

(si − wk)
q′′

Ψmix (s, s̄;w, w̄)

 e−
∑
i |zi|

2/2

where s ≡ (s1, . . . , sNϕ) and w ≡ (w1, . . . , wNψ ) are the
complex coordinates of, respectively, the CBs and the
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CFs, z ≡ (s1, . . . , sNϕ ;w1, . . . , wNψ ) are the collection
of all the coordinates, Ψmix (s, s̄;w, w̄) is a many-body
wave-function of the mixture of CBs and CFs, A repre-
sents an anti-symetrization over all coordinates. In writ-
ing the wavefunction into this form we have assumed a
symmetric gauge for the background field, and the com-
plex coordinates are defined as zi = (xi − iyi)/lB where

lB ≡ 1/
√
B is the magnetic length. Depending on the fill-

ing fraction, one may further enforce a projection of the
wave function onto the lowest LL (LLL). For the current
case, Ψmix (s, s̄;w, w̄) = ϕ(s, s̄)ψ(w, w̄), where ϕ(s, s̄) = 1
is a Bose condensate wavefunction [2, 10], and ψ(w, w̄)
(modulo the final Gaussian factor) is a Slater determi-
nant of CFs in |νCF| filled effective LLs. We will call a
state defined in this way the [q, q′, q′′, νCF] state; its filling
fraction is

ν =
2πρ

B
=
q + q̃′ − 2q′′

qq̃′ − (q′′)2
(9)

with q̃′ ≡ q′+1/νCF, while the density ratio between the
two components is

ρϕ/ρψ = (q̃′ − q′′)/(q − q′′). (10)

It is necessary that ν > 0 and ρϕ/ρψ ≥ 0; for q′′ = even,
there is an additional issue of whether the state vanishes
upon anti-symmetrization, as discussed below.

Clearly, these states include many familiar ones. States
with νCF = 0 are pure CB states that correspond to
Laughlin states at ν = 1/q [11]. States with q′′ = q̃′ are
pure CF states, which is possible only if |νCF| = 1 or ∞,
given the integer constraint of q′, q′′ and νCF [39]. For
νCF = ∞ they correspond to a composite Fermi liquid
(CFL) with ν = 1/q′, while for νCF = ±1 they are a CF
version of the Laughlin state at ν = 1/(q′ ± 1).
Turning to multi-component states (which have been

discussed within pure CB or CF approaches [12–15]),
note that states with νCF = ±1 and q′′ ̸= q̃′ = q have
equal densities of CFs and CBs and the same filling frac-
tion and Hall responses as (q, q, q′′) Halperin states [16],
the anti-symmetrized version of which are in turn re-
lated to various hierarchical states [10] and Read-Rezayi
states [17]. The simplest example is [3, 2, 2, 1] which has
ν = 2/5 like the (3, 3, 2) Halperin state. The identifica-
tion between these two states is precise if the CFs are
taken to occupy the lowest Landau level. Since when q′′

is even, the (q, q, q′′) Halperin states vanish upon anti-
symmetrization, so do the corresponding [q, q∓1, q′′,±1]
states; indeed, as pointed out in Ref. [10], in order to give
a correct wavefunction for this sort of hierarchical state,
an additional degree of freedom - “orbital spin” - should
be included in order to differentiate the wavefunctions of
the two components. Within our framework, this could
be conveniently achieved by considering a state in which
the CFs fill the first effective LL and leave the zeroth ef-
fective LL empty, as in the conventional CF construction.

One of the most interesting new possibilities revealed
by this approach is a coexistence of a CB condensate

and a CFL ([q, q′, q′′ ̸= q′, νCF = ∞]). Note that, in this
case, the Fermi sea volume of the compressible CF state
times the spatial area per flux quantum is not equal to the
filling fraction ν, signaling a deviation from the Luttinger
relation [18]. Similar physics have been proposed in the
context of doped spin liquids - when part of the electrons
form a topologically ordered state while the remaining
part forms a Fermi liquid, such states of matter have
been dubbed “Fermi Liquid∗” (FL∗) [19]. In the same
spirit, we name the coexisting phases of CB condensate
and a CFL “composite Fermi liquid∗” (CFL∗). To give
an example, [1, 0, 2,∞] is such a state describing ν = 3/4,
in which 2/3 of the electrons form a condensate while 1/3
of the electrons form a CFL.

We mention that similar trial uniform wavefunctions
(but not field theory formalisms) that have coexisting
CBs and CFs have been proposed in Refs. [20, 21], where
they were used to describe the transition between a CFL
state and a CB condensate state in a QH bi-layer.

IV. QUASI-PARTICLE IN LAUGHLIN STATES

In Ref. [1], Zhang, Hansson, and Kivelson described
the Laughlin FQH liquids at ν = 1/q using the CB part
of Eq. (1), i.e. the CSGL theory. In addition to the
correct FQH response, the saddle-point treatment of this
theory provides natural vortex solutions that describe the
fractionally charged anyonic quasiholes. However, the
theory also has deficiencies—among other things, it does
not simply capture the intra-LL magneto-roton spectrum
at small momentum. Also, the natural candidate for a
quasielectron, namely a fundamental anti-vortex, is un-
appealing in that the charge density vanishes at the cen-
ter of the quasiparticle [22]. In this section, we show
how the extension of the CSGL theory to our two-fluid
theory allows for more general and physically appealing
quasiparticle solutions (including quasielectrons and neu-
tral excitations), which are the bound states of vortices
of the CB condensate and several CFs. Exploiting the
freedom to choose different values of q′ and q′′ (as long
as q′ is even), we find distinct soliton solutions of the
saddle-point equations having the lowest energy for dif-
ferent ranges of interaction strength, all of which have the
same charge and orbital spin, but different quadrupole
moments. We present the main results here and defer
the detailed discussions to App. B.

A. Formal considerations

We first consider the topological properties of the pos-
sible soliton excitations. In App. B 1 we derive that,
for a soliton bound state made from nv vortices and nψ
CFs (with both nv and nψ integers), the charge Q, self-
statistical angle θstat, and orbital spin Sz (for rotationally
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invariant systems) are given by,

Q = −nψ +
nv + q′′nψ

q
(11)

θstat = qπQ2 mod 2π (12)

Sz = Lzψ +
(q′ − q)nψ − qQ

2
, (13)

where Lzψ is the angular momentum carried by the CFs.
The self-statistical angle is independent of the sign of the
charge and satisfies a familiar charge-statistics relation.

With these general topological properties of the exci-
tations, we may constrain the composition of the solitons
that are of interest. In this work, for concreteness, we will
investigate the quasi-holes, quasielectrons, as well as cer-
tain neutral excitations. On physical grounds, we have
only explicitly considered quasiparticles that satisfy the
topological non-relativistic spin-statistics relation [23]

qQ = −2Sz (14)

which leads to the constraint

(q − q′)nψ = 2Lzψ . (15)

B. Results

We have carried out explicit calculations with q = 3
(i.e. for the ν = 1/3 Laughlin state), and looked for soli-
ton solutions for various compositions and different val-
ues of q′ and q′′ consistent with Eq. 15. To be concrete,
we have fixed V1 = V2 = V and (since the solitons are rel-
atively small) have neglected the long-range part in the
effective interaction in Eq. 5. Then, we numerically solve
the saddle-point equations δLδϕ ,

δL
δψ = 0 (see Appendix. B 2

for details). For simplicity, we assume rotational symme-
try of the soliton, such that only the radial dependence
of the field amplitudes needs to be accounted for. In or-
der to self-consistently solve these coupled saddle-point
equations, we performed a numerical calculation with a
relaxation algorithm on a radial coordinate discretized
into at least 5000 mesh points for r/lB ∈ [0, 12]. Each
solution we obtained was verified to be convergent to a
relative precision of 10−2 in the value of the energy. Due
to limited computational resources, we only considered
cases with “small” soliton solutions that is with |nv| ≤ 5
and nψ ≤ 2.

Indeed, we found multiple solutions for each case of
fractional charge Q = ±1/3 and 0. As shown in Fig. 2,
those solutions have distinct energies E and quadruple
moments Q4 ≡ −

∫
d2r⃗r2[ρ(r) − ρ̄], and are stable in

different ranges of the interaction strengths V . These
observations suggest that, depending on the microscopic
details of the interactions, the nature of the lowest energy
excitations may be entirely modified without any changes
in the ground state properties.

As one may expect, the pure CB vortex solution has
the lowest energy among the solutions for quasi-holes.

By contrast, for quasielectrons, there are various com-
posite solutions consisting of CB vortices and CFs which,
for an intermediate range of interaction strengths, have
lower energies than the anti-vortex solution. These com-
posite solutions also have more realistic density profiles
than the naive anti-vortex solution: As shown in Fig. 3,
the density ρ(r) of the bare anti-vortex solution vanishes
at the origin, has a large density modulation extending
over a wide range of r. In contrast, ρ(r) for a composite
solution is much smoother.

Especially, we note that, in a wide range aroundmV ≈
5, the most stable quasielectron solution (nv, nψ, L

z
ψ =

−1, 2, 1) is given by a flux attachment matrix with q′ = 2,
and can be viewed as a bound state of −1 vortices of
ν = 1/3 FQH fluids and 2 CFs at ν = 1/2. This fact hints
at the “naturalness” of these composite solutions. Even-
tually, the energetic advantage of these types of novel
composite solutions in our simplified calculation (at least
for those with positive nv) suggests that in future serious
numerical simulations with realistic setups, one should
consider the more general class of wave functions Eq. 8
with Ψmix(s, s̄;w, w̄) = ϕ(s, s̄)ψ(w, w̄) where ψ(w, w̄) is a
few-body fermion wavefunction to be optimized in subse-
quent variational calculations, and ϕ(s, s̄) =

∏
i(si−η)nv .

Remarkably, besides novel quasielectron solutions, we
also found localized neutral excitations that have not yet
been theoretically predicted. It may be an exciting pos-
sibility that these might describe the intra-LL magneto-
roton excitations. We find that, in the regime where such
excitation is stabilized, its energy is less than the sum of
the energies of a quasielectron and a quasi-hole, indicat-
ing that this may be a Girvin-MacDonald-Plazman mode
distinguishable from the (quasi-)particle-hole continuum
at zero momentum.

We now compare our proposal to existing descriptions
of the quasielectron. In the CF picture, a quasielectron
is an extra CF in the next effective LL. This is a simple
picture, but it is not immediately evident that this exci-
tation is a fractionally charged anyon. In the CB picture,
this is clear since an effective anti-vortex has the correct
charge and topological properties. However, as already
mentioned, the charge distribution of an elementary anti-
vortex is unphysical, an issue that does not arise for the
energetically favored vortex.

The quantity Sz is a localized orbital angular momen-
tum, or “orbital spin”, which is unrelated to the funda-
mental spin of the electrons. In numerical calculations,
the orbital spin can be deduced from the relation between
the number of particles and the number of flux quanta for
the ground state on a sphere and is consistent with the
value predicted by the spin-charge relation (14). For the
Laughlin quasiparticles discussed here, Sz = ±1/2 so in
the CF picture the difference between the quasihole and
the quasielectron is naturally explained since the latter
has a single CF in the first effective LL, which involves an
extra unit of Lz compared to the states in LLL. In the CB
picture, the orbital spin can be interpreted as the angular
momentum of a charge-vortex bound state, which is most
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(a) (b) (c)

(d) (e) (f)

FIG. 2: For a ν = 1/q = 1/3 FQH state described by Laughlin state, as functions of the (short-range) interaction strength
V = V2 = V1, we compute the energy E and the quadruple moment Q4 of different soliton solutions with charge Q = 1/3
(quasi-hole) in panels a and d, Q = 0 (neutral excitations) in panels b and e, and Q = −1/3 (quasielectron) in panels c and
f. E, V , Q4 are repectively measured in units of cyclotron frequency ωc = B/m, inverse mass 1/m, and squared magnetic
length l2B = 1/B. The label represents the value of nv, nψ, L

z
ψ (vorticity, CF number, and CF angular momentum), and the

corresponding values of q′, q′′ can be inferred from Eqs. 11 and 15. The curves are plotted in the range of interaction strength
where the solitons are stable. Except for the vortex and the anti-vortex (1, 0, 0 and −1, 0, 0) which have been studied in Ref. [22],
all other solutions plotted have nψ = 2, i.e. two CFs are bounded to the vortices.

FIG. 3: Representative density profiles ρ(r) of quasielec-
tron excitation with Q = −1/3 out of a ν = 1/3 FQH state
described by a Laughlin state, with (left panel) the anti-
vortex solution, and (right panel) the composite solution with
nv, nψ, L

z
ψ = −1, 2, 1 and q, q′, q′′ = 3, 2, 3. Both profiles are

obtained at mV ≈ 5.5, and magnetic length lB =
√

1/B is
set to 1. In (b), ψ0 and ψ1 represents the CF states with
angular momentum Lz = 0, 1 respectively.

easily explained in terms of a descendant vertex operator
in a conformal field theory [24]. It is quite pleasing that
the preferred quasielectron solution discussed above nat-
urally fits in the CFT description. Details on this are in
App. B 3. We also note that there are other approaches
to quasielectron wave functions, as e.g. in Ref. [25]. To
summarize: Although the composite solutions for quasi-
electron in our formalism seem complicated, we stress
that they require fewer ad hoc assumptions compared to
existing schemes. They do not rely on any concept of “ef-
fective Landau level” as in CF theories, nor an artificially
introduced orbital spin as in an effective CB theory [10].

V. QH INTERFACES

In this section, we apply our theory to a smooth inter-
face B(x) between two regions with different magnetic
fields. Far to the left, B(r⃗) → B− = 2πqρ̄, at which
a ν = 1/q FQH state (with νCF = 0) is stable, while
far to the right, B(r⃗) → B+, at which there is the com-
pressible state [q, q′, q′′, νCF = ∞] with ν given in Eq. 9.
For instance, this includes the case in which q′′ = q′,
B+ = (q′/q)B−, and the state at x → ∞ is a CFL with
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ν = 1/q′; for q′′ ̸= q′ the compressible state is a CFL∗.
In all cases, we assume that we can take a single value
of q, q′, and q′′ in describing the state of the system for
all positions. We further assume the electron density is
constant ρ(r⃗) = ρ̄ when viewing the system at distances
larger than a scale ℓρ, which is a presumed consequence
of the presence of long-range Coulomb interactions and
the condition of charge neutrality. In our treatment, we
will impose ρ = ρ̄ as a constraint.
We will consider smooth B(r⃗) profiles, which vary over

a length scale L that is greater than all the microscopic
length scales

L≫ lB , ℓρ, ℓmf (16)

where lB is the lager magnetic length for B = B± and
ℓmf is a CF mean free path discussed below.

Due to disorder broadening, the CF compressibility, κ,
can be taken to be approximately constant. Therefore,
we use a local expression for the CF kinetic energy,

Ekin = ρ2ψ/(2κ) (17)

This term thus acts as a potential, and effectively pro-
vides a “Fermi degenerate pressure”. Meanwhile, due to
disorder scattering, we assume that the CFs are dissipa-
tive and thus cannot support any persisting current,

J iψ = 0, (18)

when considering phenomena at length scales above the
mean free path ℓmf of the CFs. We note that both as-
sumptions about the physics of the CFs can be improved,
e.g. by introducing more sophisticated local response
terms.

The goal of this section is to derive the interpolating
behavior between the two regions, and especially deter-
mine how the CB component ρϕ changes over the inter-
face. A detailed derivation for a representative case can
be found in App. C.

We start our analysis by adopting the dual representa-
tion of CB part of the theory. To do so, we parametrize
Jµϕ = ϵµνσ∂νhσ/(2π) with a hydrodynamic field h and

rewrite the CB Lagrangian in (1) as

Lϕ[h, a] =
1

2π
(a+A)dh+

mJ⃗2
ϕ

2ρϕ
− (∇ρϕ)2

8mρϕ
. (19)

We note that by rewriting the theory into this form, we
have assumed that the CBs remain condensed and vor-
tices are expelled so that the quasi-particle current which
couples to h can be neglected.
Next, we treat the CF part of the theory in an effective

manner. The constraints on the density will be imposed
by a Lagrangian multiplier field η, which can be inter-
preted as representing the effects of the long-ranged inter-
actions. Including the effective kinetic energy in Eq. 17
and incorporating the zero current condition in Eq. 18,

we have written the effective Lagrangian for the CFs as,

Lψ,eff[ρψ; b; η] =ρψ(b0 +A0)−
ρ2ψ
2κ

+ η(ρϕ + ρψ − ρ̄) . (20)

We will seek steady-state solutions for spatially non-
uniform magnetic fields B(r⃗) and with no electric field.
We then pick a static gauge, h(x⃗, t) = h(x⃗) for the
hydrodynamic field, statistical gauge field b, and back-
ground field, such that all terms containing time deriva-
tives can be dropped from the Lagrangian. Finally, we
shift b→ b+ q′′h to obtain an effective Lagrangian:

Leff[ρψ;h, b; η]

=ρψ(q
′′h0 + b0 +A0)−

ρ2ψ
2κ

+ η(ρϕ + ρψ − ρ̄)

− 1

4πq′
bdb− V1

2
ρ2ϕ − V2ρϕρψ +

m(∇h0)2

2(2π)2ρϕ

− (∇ρϕ)2

8mρϕ
+

q

4π
hdh+

1

2π
Adh (21)

where ρϕ = −Bh
2π ≡ 1

2π (∂1h2 − ∂2h1) should be under-
stood. We see that b still attaches q′ flux to each CF.
In App. C, we investigate the full set of saddle-point

equations, but the ones obtained by varying h and ρψ are
particularly useful,

δL
δh0

: q′′ρ̄+ (q − q′′)ρϕ

− B

2π
− m

(2π)2
∇(

1

ρϕ
∇h0) = 0 (22)

δL
δhi

: ϵij∂j

{
qh0 + η − V1ρϕ − V2ρψ − m2(∇h0)2

2(2π)2ρ2ϕ

+
1

8m

[
2∇(

1

ρϕ
∇ρϕ) +

(∇ρϕ)2

ρ2ϕ

]}
= 0 (23)

δL
δρψ

: q′′h0 + η − ρψ/κ− V2ρϕ = 0 (24)

where we have used the constant density constraint as
well as the other equations of motion. The physical
meaning of Eq. 22 is that the local net magnetic field
seen by the CBs, Bϕ = B−2π(qρϕ+q

′′ρψ), induces a CB
current; Eq. 23 means that the net potential experienced
by CBs modulates the density profile; Eq. 24 implies that
the net force on the CFs is zero. From Eqs. 24 and 23,
we see that η indeed can be interpreted as an electric po-
tential seen by both ϕ and ψ provided by the long-range
interactions.
For simplicity, from here on, we assume that the mag-

netic field strength only depends on x, i.e. the interface
is along y axis.
As already mentioned, we will show that the CB con-

densate extends into the interface. To study this “prox-
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imity” effect, we define

δρ(x) ≡ ρϕ(x)− ρB(x) (25)

ρB(x) ≡
[B(x)/2π − q′′ρ̄]

[q − q′′]
. (26)

This parametrization is such that if δρ(x) = 0, the ef-
fective magnetic field seen by the ϕ particles, Bϕ, would
vanish.

Integrating Eq. 22, we obtain a formal solution for
h0(x) as a functional of ρϕ(x):

h0(x) =(q − q′′)
(2π)2

m

∫ x

−∞
dx′ρϕ(x

′)

∫ x′

−∞
dx′′δρ(x′′)

(27)

Combining Eqs. 23 and 24, and substituting in the
above formal solution Eq. 27, gives an integro-differential
equation,

(q − q′′)2(2π)2
∫ x

−∞
dx′ρB(x

′)

∫ x′′

−∞
dx′′δρ(x′′)

=mṼ [ρ̄− ρϕ(x)]−
1

4

[
ρ̈ϕ
ρϕ

− (ρ̇ϕ)
2

2ρ2ϕ

]
x

. (28)

where we define Ṽ ≡ 2V2 − V1 − 1/κ.
This equation is in general hard to solve analytically.

However, an approximate solution (which we will com-
pare with the exact numerical solution later) can be ob-
tained as follows:

• Noting that all the fields should vary at scale L≫
ℓB ∼ 1/

√
ρ, we drop the terms in Eq. 28 that

involve explicit spatial derivatives.

• Since we already assumed CB remains condensed
with no quasiparticles, the net field seen by the CBs
should be small compared to the CB density, i.e.
|δρ| ≪ ρϕ, so we can approximate explicit factors
of ρϕ by ρB .

These approximations, which we will more carefully jus-
tify later, allow us to solve for δρ(x) and h0(x) analyti-
cally:

δρ(x) ≈ − mṼ

(q − q′′)2(2π)2
d2

dx2
[ln ρB(x)] (29)

h0(x) ≈
Ṽ

(q − q′′)
[ρ̄− ρB(x)] . (30)

Since J iϕ = ϵij
∂jh0

2π , the total current along the interface
can be computed as well:

Iy =
h0(−∞)− h0(∞)

2π
=
Ṽ (B+ −B−)

[2π(q − q′′)]2
(31)

Eqs. 29-31 are the central results of this section, which
suggests that for the setups and assumptions we are tak-
ing, the density profile of the CB condensate, ρϕ(x), fol-
lows ρB(x); the deviation δρ(x) is controlled by a phe-

nomenological parameter mṼ , and is small as long as
the magnetic field is slowly varying. This result suggests
that the CB condensate may well “penetrate” into the
interface region where it coexists with the metallic com-
ponent, which is the QH proximity effect we alluded to
earlier. Heuristically, this effect further leads to a nearly
quantized QH response in an essentially metallic regime.
We now examine more carefully the justification for the

two approximations used to solve Eq. 28. To safely ne-
glect the spatial derivatives, it is necessary that |mṼ |(ρ̄−
ρϕ) ≫ 1/L2. In order to safely approximate ρϕ with ρB ,
we need |δρ| ≪ ρϕ, which, according to Eq. 29, implies

|mṼ |/L2 ≪ ρϕ. Thus the approximations in obtaining
the solution are justified as long as

1

L2(ρ̄− ρϕ)
≪ |mṼ | ≪ L2ρϕ (32)

Given L ≫ ℓB , this is always satisfied as long as ρϕ and
ρψ = ρ̄ − ρϕ are not too small compared to ρ̄. It breaks
down far enough into the pure CB or CF regime, but for
large L it holds over a broad intermediate range of x on
the interface.
To test the qualitative correctness of the solution in

Eq. 29, we numerically solved Eq. 28 for various mṼ
with q = 1, q′′ = q′ = 0, which corresponds to a ν = 1
QH to a B = 0 metal interface. [In Fig. 5 of App. C
we show the analagous results for q = 3.] Indeed, for a
magnetic field configuration with a finite interface width
(which in Fig. 4 we have taken to be L = 5l0 where
l0 is the magnetic length deep in the QH regime), we
find that ρϕ(x) roughly follows ρB(x) (i.e. the properly
scaled magnitude of B(x) in this case) with a deviation

that is roughly proportional to mṼ (which can be seen

by comparing the results with mṼ = 9 and 18). More-
over, as expected, where the inequality in Eq. 32 is not
satisfied, extra features exist in the numerical solution: i)

Especially for larger values of mṼ , ρϕ decreases toward
0 much more slowly than does B(x) deep in the metal-
lic regime. However, it should be noted that there is no
reason for our theory to apply in the regime where ρϕ is
small, so the tail behavior is not physically meaningful.
ii) There is a small oscillatory component visible in the

case of a small mṼ = 6 result with an onset at the edge
of the pure CB regime. This piece becomes progressively
more pronounced for still smaller values of mṼ , and is a
potentially physically interesting effect that is not cap-
tured by the approximate solution from Eq. 29.

Slightly generalizing the theory in this section, the cur-
rent formalism may also be used to study QH-QH inter-
faces at different filling fractions, which are specified by
the same q, q′, q′′ but two different integer fillings for CF.
One may further consider an FQH-Metal-FQH junction
with a relatively narrow metal region with B not reach-
ing the value corresponding to the metallic state. Then,
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FIG. 4: The density profile ρϕ(x)/ρ̄ numerically solved from
Eq. 28 with q = 1 and q′ = q′′ = 0 for magnetic field profile
B(x) = B0

(
1− tanh x

L

)
/2 with L = 5l0, where l0 = 1/

√
B0

and ρ̄ = B0/(2π) are respectively the magnetic length deep in
the QH regime x→ −∞ and the electron density. The black
dashed line is B(x)/B0.

based on the above analyses, the CB condensate density
ρϕ remains finite across the junction, so that its phase
coherence and QH response might be maintained despite
the large variation in the magnetic field strength across
the junction.

VI. DISCUSSIONS

The physical excitations in the compressible phase of
a half-filled LL (and related phases) are not quite quasi-
particles [40], but there is nonetheless no doubt that the
correct starting description is in terms of Fermi-surface
excitations of a CFL. An FQH liquid can be described ei-
ther in terms of filled LLs of CFs or in terms of the CSGL
theory of CBs. The latter provides a more direct descrip-
tion of the essential physics in terms of a precise corre-
spondence with superconductivity — the quantized Hall
conductance comes from the ability of the condensate to
carry a dissipationless current; the incompressibility from
the Meissner effect; and the charge and statistics of the
quasi-particles from flux quantization [26]. Conversely,
it has been shown that an approach based on CF wave
functions can account, with remarkable quantitative pre-
cision, for much of the low-energy excitation spectrum —
something that is generally beyond the scope of any field-
theoretic approach. In particular, a simple treatment of
the short-scale structure of the quasielectron and of the
collective mode spectrum has been lacking from CSGL
perspective.

In general, a field theory can only be expected to cap-
ture the long-distance properties of a physical system,
and as such, describe the system close to a critical point
if not elsewhere. A compelling (and at least partially suc-

cessful) account of QH plateau transitions in the presence
of disorder has been achieved from the CB perspective by
analogy with the magnetic field-driven superconductor-
to-insulator transition [27], or from the field theories with
a CF perspective [28, 29]. Theoretically, consistent for-
mulations of the QH to QH nematic phase transition
based on CSGL [30, 31] or other field theories [32–34]
have been constructed, where the transition is associated
with the softening and condensation of a q⃗ = 0⃗ quadrupo-
lar mode. A similar approach can also describe the tran-
sition from a fractional Chern insulator to a regular band
insulator.

In general, the existence of a “web of dualities” [35]
allows any given problem to be described from multiple
perspectives — some of which involve bosonic and some
fermionic fields. The question of which is best boils down
to which gives a more direct and effective description of
the physically important degrees of freedom.

We have focused here on an analogy with the proxim-
ity effect in the theory of superconductivity. The saddle
point analysis we have presented suggests (but certainly
does not prove) that the QH condensate can extend deep
into an otherwise metallic region. One might as well
attempt a fermionic description of this effect; in Fig. 6
(App. D) we show the local density of states (LDOS) for
non-interacting electrons in the presence of a spatially
varying magnetic field that interpolates between a value
corresponding to the ν = 1 QH effect to a zero magnetic
field. By eye, one can see that a peak in the LDOS that
one can associate locally with the lowest LL remains well-
articulated relatively far into the metallic regime. This is
suggestive of the same basic physics we have found from
an alternative perspective, but it is not obvious where to
go from this observation. We thus suggest that the ob-
servation of the persistence of QH coherence through a
metallic region would constitute a compelling confirma-
tion of the existence in a direct physical sense of a QH
condensate.

Indeed, we were initially inspired to undertake this
study by preliminary studies of the Hall response of a
2DEG confined to the surface of a cylinder and subjected
to a magnetic field. The field can be arranged so that
there are regions of QH fluids separated by metallic re-
gions, which is precisely the geometry we have considered
in Sec. V. For fields such that there is a region of QH
fluid on the top and bottom, this experimental geome-
try is analogous to that of an SNS junction familiar from
the study of superconductivity. It is an ideal geometry
for exploring the penetration of a QH condensate into a
metallic region.

It is our belief that the two-component CS field theory
we developed to treat this problem can be of broader util-
ity. In this context, we have shown that it permits a phys-
ically plausible treatment of the quasielectron and that
it may allow a new approach to characterizing charge-
neutral collective excitations from the CB perspective.
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transformation

U = exp i

Nϕ∑
i<j

arg(r⃗i − r⃗j) +

Nϕ∑
i

Nψ∑
j

arg(r⃗i − s⃗j)

 (A1)

and note

U†(−i∇⃗r⃗i + A⃗)U = (−i∇⃗r⃗i + a⃗(r⃗i) + A⃗) (A2)

where

a⃗(r⃗) =

Nϕ∑
r⃗j ̸=r⃗

∇⃗r⃗ arg(r⃗ − r⃗j) +

Nψ∑
j

∇⃗r⃗ arg(r⃗ − s⃗j) (A3)

and similarly

U†(−i∇⃗s⃗i + A⃗)U = (−i∇⃗s⃗i + b⃗(s⃗i) + A⃗) (A4)

where

b⃗(s⃗) =

Nϕ∑
j

∇⃗s⃗ arg(s⃗− r⃗j) . (A5)

The corresponding statistical magnetic fields are

Bϕ(r⃗) = ϵij∂iaj = 2π

Nϕ∑
r⃗j ̸=r⃗

δ2(r⃗ − r⃗j) + 2π

Nψ∑
j

δ2(r⃗ − s⃗j)

= 2πρϕ(r⃗) + 2πρψ(r⃗) (A6)

Bψ(s⃗) = ϵij∂ibj = 2π

Nϕ∑
j

δ2(s⃗− r⃗j) = 2πρϕ(s⃗) .

where the density is a sum of delta functions at the particle positions. These are precisely the constraints in (6)

obtained by varying the multiplier fields a0 and b0. Note that the statistical vector potentials a⃗ and b⃗ have support
in the full space.

So far everything is standard, but we now generalize the transformation (A1) to be time-dependent in such a way
that particle k goes from being a composite boson for t < τk to being a fermion for t > τk:

U = exp i

Nϕ∑
i<j

arg(r⃗i − r⃗j) +

Nϕ∑
i ̸=k

Nψ∑
j

arg(r⃗i − s⃗j) +

Nψ∑
j

arg(r⃗k − s⃗j)θ(τk − t)

 . (A7)

The corresponding statistical Bϕ field is still given by (A6), except that there is no delta function at position rk, while
the Bψ field is,

Bψ(s⃗) = ϵij∂ibj = 2π

Nϕ∑
i ̸=k

δ2(s⃗i − r⃗j) + 2π δ2(s⃗i − r⃗k)θ(τk − t) .

So for t < τk we have the old relations (A6), while for t > τk the CB at r⃗k has lost its attached unit of b-flux. The
statistics are now no longer correct, but this can be fixed if we relabel: r⃗k → s⃗Nψ+1 so Nψ → Nψ+1. Since the newly

born CF is already attached to an a-flux, the net effect of the transmutation is that the kth CB loses its b-flux and is
transformed into a CF.

This process is also accompanied by a δ-function pulse of electric circulation. To see this note that there will be an
extra potential term in the Schrödinger equation

b̃0 ≡ U†(t)i∂tU(t) = −
Nψ∑
j

arg(r⃗k − s⃗j)δ(t− τk) (A8)
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and since we use a static gauge where b⃗(r⃗) is time-independent, the electric field comes entirely from b̃0, and all the
CFs see a pulse of the electric field,

Ẽψ(sj) = −ẑ × s⃗j − r⃗k
|s⃗j − r⃗k|2

δ(t− τk) (A9)

which is precisely the amount to reflect the instantaneous disappearance of one unit of flux at position a r⃗k as seen
by the particles at positions s⃗j . To see this note

∆Φ =

∫ τk−ϵ

τk−ϵ
Φ̇ =

∫ τk+ϵ

τk−ϵ
δ(t− τk)

∮
Ck
ds⃗ · ẑ × s⃗− r⃗k

|s⃗− r⃗k|2
δ(t− τk) ,

=

∫
Ck
dθ = 2π , (A10)

where we used Faraday’s law in the second equality, and the contour Ck encircles r⃗k and is parametrized by the polar
angle θ; ẑ is the unit vector perpendicular to the plane. For q ̸= q′′ there would also be a similar instantaneous
pulse of electric Eϕ field seen by the remaining CBs. In either case, the correct commutation relation is retained by
transforming the CB to a CF as already pointed out.

Appendix B: Detailed discussions on the composite quasiparticles

1. Formal consideration

To derive the topological properties of the possible composite soliton solutions, we reparameterize the current of
CB, Jµϕ = 1

2π ϵ
µνη∂νhη, with a hydrodynamic field h which further couples to the current of the vortices Jv. In this

dual representation, the terms that are relevant to the topological properties read

Ltopo =
1

2π
(a+A+

q

2
ω)dh+ h · Jv + (b+A+

q′

2
ω) · Jψ + LCS (B1)

where we used the short-hand notation a · b = aµb
µ, and introduced the background spin connection of the base

manifold, ω, with the prescription introduced in [36]. Integrating out a and defining β ≡ (b− q′′h), it takes the form
of the Wen-Zee theory [37]:

Ltopo =
q

4π
hdh+

1

2π
hd
(q
2
ω +A

)
+ h · (Jv + q′′Jψ)

− 1

4πq′
βdβ +

(
β +

q′

2
ω +A

)
· Jψ (B2)

It thus becomes clear that now we have two decoupled CS fields, and β simply attaches q′ flux to each CF.

Integrating out h and β, we get the response action:

Ltopo =− 1

4πq

(q
2
ω +A

)
d
(q
2
ω +A

)
− π (Jv, Jψ)

 1
q

q′′

q

q′′

q
q′′2−qq′

q

 1

d

Jv
Jψ


+A ·

[
−1

q
Jv +

q − q′′

q
Jψ

]
+ ω ·

[
−1

2
Jv +

q′ − q′′

2
Jψ

]
(B3)

where the symbol 1
d represents the inverse operator of exterior derivative.
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Now let’s assume we have found a bound state consisting of nv vortices and nψ CFs, then we may rewrite the
response action for the current of these quasi-particles, JQP, with the substitution Jv = nvJQP and Jψ = nψJQP:

L =− 1

4πq

(q
2
ω +A

)
d
(q
2
ω +A

)
+

[
nψ − nv + q′′nψ

q

]
A · JQP

− π

[
(nv + q′′nψ)

2

q
− q′n2ψ

]
JQP

1

d
JQP

+

[
Lzψ +

q′nψ − (nv + q′′nψ)

2

]
ω · JQP (B4)

Note that, besides the angular momentum carried by the gauge fields, we also have included the possible angular
momentum Lzψ carried by the CF states in such an excitation. Finally, the charge, statistical phase, and angular
momentum of this excitation can be read off from the effective action, which are respectively

Q = −nψ +
nv + q′′nψ

q
(B5)

θstat = qπQ2 mod 2π (B6)

Sz = Lzψ +
q′nψ − (nv + q′′nψ)

2
= Lzψ +

(q′ − q)nψ − qQ

2
(B7)

2. The saddle point equations

To obtain the composite quasiparticles, we derive the saddle point equations for ϕ and ψ:

δL
δϕ⋆

= 0 =⇒ 1

2m
(−i∇+ a⃗+ A⃗)2ϕ+ V (ρϕ + ρψ − B̄

2πq
)ϕ− a0ϕ = 0 (B8)

δL
δψ† = Enψ =⇒ 1

2m
(−i∇+ b⃗+ A⃗)2ψn + V (ρϕ −

B̄

2πq
)ψn − b0ψn = Enψn (B9)

where all En < 0 states are occupied, and the currents are

J iϕ = −Jϕ,i =
1

m
Re
[
ϕ⋆(−i∇+ a⃗+ A⃗)iϕ

]
(B10)

J iψ = −Jψ,i =
∑
n

1

m
Re
[
ψ⋆n(−i∇+ b⃗+ A⃗)iψn

]
(B11)

(remember that Ai = (A⃗)i in our convention).
In polar coordinates (r, θ) of the space, we seek rotationally symmetric solutions by decomposing the ϕ and ψ field

into an amplitude part f(r) and a phase part e−imzθ. In this coordinate, the uniform background magnetic field can

be characterized by Aθ ≡ A⃗ · êθ = B̄r
2 (symmetric gauge), and the above equations and the flux attachment conditions

translate intoaθ(r)
bθ(r)

 = −2π

r

∫ r

0

dr′ r′K

 f2ϕ(r
′)∑

n f
2
ψn

(r′)

 (B12)

a0(r)
b0(r)

 =

∫ ∞

r

dr′
2π

m
K

 f2ϕ

[
−mzϕ

r + aθ(r
′) +Aθ(r

′)
]

∑
n f

2
ψn

[
−mzψn

r′ + bθ(r
′) +Aθ(r

′)
]
 (B13)

0 =
−1

2m

(
f ′′ϕ +

f ′ϕ
r

)
+

[
1

2m

(
−
mz
ϕ

r
+ aθ +Aθ

)2

+ V

(
f2ϕ +

∑
n

f2ψ − B̄

2πq

)
− a0

]
fϕ (B14)

Enfψn =
−1

2m

(
f ′′ψn +

f ′ψn
r

)
+

[
1

2m

(
−
mz
ψn

r
+ bθ +Aθ

)2

+ V

(
f2ϕ − B̄

2πq

)
− b0

]
fψn (B15)
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For each set of (nv, nψ, L
z
ψ) and thus (q, q′, q′′) we choose, we constrain the value of mz

ϕ = nv and
∑nψ
n=1m

z
ψn

= Lzψ.
Then, we solve the coupled differential equations by a mixed-iteration method for both fϕ ad fψn . In each iteration, we
first solve fϕ with a relaxation method, and then solve fψn by diagonalizing the linear operator (which is, eventually,
the Hamiltonian for ψ). We determine the stability of the solution by inspecting whether the ψ modes we are keeping
have negative energy, and they are the only ones that do so, i.e. the vortices do trap exactly nψ CFs with angular
momentum Lzψ.
After obtaining the solution, the total energy of a soliton can be calculated as

E =

∫
d2r

1

2m

∣∣∣(−i∇⃗+ a⃗+ A⃗
)
ϕ
∣∣∣2 + 1

2m

∣∣∣(−i∇⃗+ a⃗+ A⃗
)
ψ
∣∣∣2 + V [|ψ|2, |ϕ|2] (B16)

=
π

m

∫ ∞

0

dr r

{[(
dfϕ
dr

)2

+ f2ϕ

(
−
mz
ϕ

r
+ aθ +Aθ

)2
]

+
∑
n

[(
dfψn
dr

)2

+ f2ψn

(
−
mz
ψn

r
+ bθ +Aθ

)2
]
+ 2mV [ρϕ, ρψ]

}
(B17)

3. Relation to the CFT quasielectron

In the CFT approach, QH wave functions are expressed as correlators of operators that represent electrons and
quasiparticles [38]. In the simplest case, these operators are vertex operators in a scalar CFT, but in other cases, they
can be combined with Majorana or parafermion operators. With this in mind, we define the normal-ordered vertex
operators,

V (z) = : ei
√
qφ(z) : (B18)

H1/q(η) = : e
i√
qφ(η) : , (B19)

where the normal ordering symbol : :, will be suppressed in the following. The free massless boson field, φ, is
normalized so as to have the (holomorphic) two-point function

⟨φ(z)φ(w)⟩ = − ln(z − w) , (B20)

so that the vertex operators obey the relations

eiαφ(z)eiβφ(w) = eiπαβeiβφ(w)eiαφ(z) = (z − w)αβeiαφ(z)+iβφ(w)

∼ (z − w)αβei(α+β)φ(w) (B21)

With this, the (holomorphic) wave function for a N electrons and n quasiholes can be expressed as a CFT correlator

ΨL(η1 . . . ηn; zi) = ⟨H 1
q
(η1)H 1

q
(η2) . . . H 1

q
(ηn)V (z1)V (z2) . . . V (zN−1)V (zN )⟩. (B22)

A natural guess for a quasielectron operator is to just change the sign in the exponent in the quasihole operator

i.e. to use e
− i√

qφ(η). However, as discussed in the text, such an anti-vortex introduces unacceptable singular terms
∼
∏
i(zi − η)−1 in the electronic wave function. Inspired by the CF wave functions, we instead define a quasielectron

operator, P 1
q
(z), that will replace one of the original electron operators V (z). Thus, P (z) is a modified electron

operator, with a different amount of vorticity. The excess electric charge associated with such a modification is the
difference between the charges of the operators V and P 1

q
i.e. ∆Qel = e((1− 1/q)− 1) = −e/q, as appropriate for a

quasielectron at ν = 1/q. The modified electron operator is taken to be

P1/q(z) = ∂e
i(
√
q− 1√

q )φ(z), (B23)

where the derivative is put in by hand in order for the correlators of P1/q(z) with a number of V (zi) not to vanish
under antisymmetrization. Clearly one would like to eliminate this ad hoc assumption.

Let us now specialize to q = 3, and fuse P1/3(z) with an electron operator using (B21),

P1/q(z)V (zi) ∼ ∂z(z − zi)
2 e

i 5√
3
φ(zi) . (B24)

The interpretation of this formula is again obtained by comparing it with the ground state, where there are two
electrons at z and zi and 6 associated vortices. The fused operator has again two electrons, but only 5 vortices so
there is effectively -1 vortex. In addition, there is the factor (z − zi)

2 which in the field theory is interpreted as
q′ = 2 and one derivative, which in our calculation amounts to the electron at z being in a p-wave. Thus our fused
quasielectron operator has the same nv, nψ and LZ as the favored −1, 2, 1 solution in the text.
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Appendix C: Details on the QH-Metal interface problem

We start our analysis by adopting the dual representation of ϕ theory. To do so, we decompose ϕ =
√
ρϕe

−iφ, and

introduce a Hubbard-Stratanovich field j⃗ to rewrite:

Lϕ[ϕ⋆, ϕ; a] → Lϕ[ρϕ, φ; a] = ρϕ [−∂0φ+ a0 +A0]−
ρϕ
2m

(
−∇φ+ a⃗+ A⃗

)2
− (∇ρϕ)2

8mρϕ

→ Lϕ[ρϕ, j⃗, φ; a] = ρϕ [−∂0φ+ a0 +A0]− j⃗ ·
(
−∇φ+ a⃗+ A⃗

)
+
mj⃗2

2ρϕ
− (∇ρϕ)2

8mρϕ
(C1)

We thus see that (⃗j)i is nothing but the CB current J iϕ =
ρϕ
m

(
−∇φ+ a⃗+ A⃗

)
i
. Integrating out φ yields the continuity

equation ∂µJ
µ
ϕ = 0, and allows us to further parametrize Jµϕ = ϵµνσ∂νhσ/(2π) with a hydrodynamic field h:

Lϕ[h, a] =
1

2π
(a+A)dh− mE⃗2

h

4πBh
+

(∇Bh)2

16πmBh
(C2)

where we use Bh ≡ −(∂1h2−∂2h1) = −2πρϕ and (E⃗h)i ≡ −(∂ih0−∂0hi) = 2πϵijJ
j
ϕ to represent the effective magnetic

and electric fields if viewing h as a gauge field. We note that by rewriting the theory into this form, we have assumed
that the CBs remain condensed and vortices are expelled, which is justifiable so long as the effective magnetic field
seen by CBs is small compared to the superfluid density.

Then, with this dual representation, we put everything together, integrate out a and shift b→ b+ q′′h. Finally, we
get:

L[ψ†, ψ;h, b] =LCF[ψ
†, ψ; q′′h+ b]− 1

4πq′
bdb

− V1B
2
h

4π2
+ V2

Bh
2π

|ψ|2 +A0

(
|ψ|2 − Bh

2π

)
− mE⃗2

h

4πBh
+

(∇Bh)2

16πmBh
+

q

4π
hdh+

1

2π
Adh (C3)

We see that b still attaches q′ flux to each CF. Below we will seek steady-state solutions for spatially non-uniform
magnetic fields B(r⃗) with no electric field, such that all the time dependence in the Lagrangian can be dropped.

We note that the treatment of the CFs is very difficult so the best we could do is to treat LCF effectively. Specifically,
we will make the following key assumptions to simplify the theory:

• The CFs form a dissipative fermi liquid that cannot host any persisting current,

J iψ = 0, (C4)

when considering phenomena at length scales above the mean free path of the CFs, ℓmf.

• The long-range Coulomb interaction is effectively keeping the overall electron density remains fixed to be

ρϕ + ρψ = ρ̄, (C5)

when considering phenomena at length scales above a characteristic one, ℓρ.

• The kinetic energy density of the CFs is equal to that of a Fermi liquid with the same density, i.e.

Ekin = ρ2ψ/2κ (C6)

where κ is the compressibility of the CFs. As an estimate, for non-interacting fermion gas, κ = m
2π . We note

that this term takes the form of a potential, and effectively provides a “Fermi degenerate pressure”.

The constant density constraint, Eqs. C5, can be imposed by a lagrangian multiplier η. Then, with those assump-
tions, we write down an effective Lagrangian justifiable at a large length scale:

Leff[Jψ;h, b; η] =Jψ · (q′′h+ b+A) + η(ρϕ + ρψ − ρ̄)− 1

4πq′
bdb−

ρ2ψ
2κ

− V1ρ
2
ϕ/2− V2ρϕρψ +

m(∇h0)2

2(2π)2ρϕ
− (∇ρϕ)2

8mρϕ
+

q

4π
hdh+

1

2π
Adh (C7)
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where ρϕ = −Bh
2π ≡ 1

2π (∂1h2 − ∂2h1) should be understood. We further note that in the absence of a background
electric field, A0 is a constant and can be absorbed into η.
Starting from this effective Lagrangian, we analyze the saddle point equations of h, Jψ under the “no ϕ current”

and “constant density” conditions in Eqs. C4&C5:

δL
δh0

= 0 =⇒ q′′ρψ + qρϕ −
B

2π
− m

(2π)2
∇(

1

ρϕ
∇h0) = 0 (C8)

δL
δhi

= 0 =⇒ ϵij∂j

{
qh0 + η − V1ρϕ − V2ρψ − m2(∇h0)2

2(2π)2ρ2ϕ
+

1

8m

[
2∇(

1

ρϕ
∇ρϕ) +

(∇ρϕ)2

ρ2ϕ

]}
= 0 (C9)

δL
δρψ

= 0 =⇒ q′′h0 + b0 + η − ρψ/κ− V2ρϕ = 0 (C10)

δL
δJ iψ

= 0 =⇒ q′′hi + bi +Ai = 0 (C11)

δL
δb0

= 0 =⇒ ρψ − 1

2πq′
ϵij∂ibj = 0 (C12)

δL
δbi

= 0 =⇒ − 1

2πq′
ϵij∂jb0 = 0 (C13)

From Eq. C10 and C9, one can see that η0 has the form of an electric potential seen by both ϕ and ψ; in fact, at
saddle-point level, it can be viewed as the potential provided by the long-range interaction

η0(r⃗) = −δVlong range[ρ]

δρ(r⃗)
(C14)

which is presumably too complicated to be treated in an ab initio way such that we could only impose its consequences
effectively. With this understanding, we see that the CFs see a constant overall potential, implying that no force is
applied to the ψ and verifying that there is no ψ current due to the drifting motions.

Combining Eqs. C8, C9, C10&C13, one can obtain the below differential equations for the two independent un-

knowns ρϕ(r⃗) (which derives ρψ = ρ̄− ρϕ) and h0(r⃗) (which derives J iϕ(r⃗) = ϵij
∂jh0

2π ), for any B(r⃗) configuration:

m

(2π)2
∇
(

1

ρϕ
∇h0

)
= q′′ρ̄+ (q − q′′)ρϕ −

B

2π
(C15)

1

4
√
ρϕ

∇
(

1
√
ρϕ

∇ρϕ
)

= mṼ (ρ̄− ρϕ) + (q′′ − q)mh0 +
m2(∇h0)2

2(2πρϕ)2
(C16)

where we have defined Ṽ ≡ 2V2 − V1 − 1/κ and fixed an undetermined constant to make the equations reasonable in
a pure CB region with constant B = 2πqρ̄ and h0 = 0.
Alternatively, the problem can be solved by the minimization of energy functional (with all the constraints under-

stood):

E [ρϕ, h0] =
(∇ρϕ)2

8mρϕ
− m (∇h0)2

2(2π)2ρϕ
+ h0

[
B

2π
− q′′ρ̄− (q − q′′)ρϕ

]
− Ṽ

2
(ρ̄− ρϕ)

2
(C17)

The above results apply to general B(r⃗). Next we consider an interface problem where B(x, y) is assumed to only
depend on x coordinate. We assume B → 2πqρ̄ at x → −∞ and B → 2πq′ρ̄ at x → +∞, such that deep in the
x→ ∓∞ regimes, the system can be purely described by a CB condensate and a CF liquid, respectively.
To find general solutions for ρϕ profile in this case, we consider the limit where the interface is wide, i.e. B(x) varies

slowly at a length scale L that is much greater than all the microscopic length scales such as magnetic length ℓB , mean
free path of the CFs ℓmf, and the density fluctuation length ℓρ. For later convenience, we make the decomposition

ρϕ(x) = ρB(x) + δρ(x) (C18)

ρB ≡
(
B

2π
− q′′ρ̄

)
/(q − q′′) (C19)

The physical meaning of ρB is that if ρϕ strictly follows ρB , the effective flux seen by the ϕ particles vanishes.
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Integrating Eq. C15, we can obtain the formal solution of h0(x) as a functional of ρϕ(x):

h0(x) =(q − q′′)(2π)2/m

∫ x

−∞
dx′ρϕ(x

′)

∫ x′′

−∞
dx′′δρ(x′′) (C20)

=(q − q′′)(2π)2/m

{∫ x

−∞
dx′ρB(x

′)

∫ x′′

−∞
dx′′δρ(x′′) +

1

2

[∫ x

−∞
dx′δρ(x′)

]2}
(C21)

Substituting this formal solution into Eq. C16, we obtain an integro-differential equation for ρϕ:

1

4

[
ρ̈ϕ
ρϕ

− (ρ̇ϕ)
2

2ρ2ϕ

]
= mṼ (ρ̄− ρϕ)− (q − q′′)2(2π)2

∫ x

−∞
dx′ρB(x

′)

∫ x′′

−∞
dx′′δρ(x′′) (C22)

This equation is in general hard to solve, but now we use the following two approximations to simplify it.

• Noting that L≫ ℓB ∼ 1/
√
ρ, we drop the terms on the left hand side, since they are suppressed by ℓ2B/L

2.

• We recall that we have made the assumption that there is no vortex in CB condensate, which validates the
formalism in Eq. C1. This requires that the magnitude of the effective flux density seen by CB, which is equal
to |(q − q′′)δρ| ∼ |δρ|, is much smaller than ρϕ, so that we can approximate ρϕ with ρB . We note that to give
the correct assumptotic behavior ρϕ → 0 as B → 2πq′ρ̄ at x→ ∞, we necessarily need to take q′′ = q′.

Those approximations, We which we will justify later, reduce the equation to

mṼ (ρ̄− ρB) = (q − q′′)2(2π)2
∫ x

−∞
dx′ρB(x

′)

∫ x′′

−∞
dx′′δρ(x′′) (C23)

which is exactly solved by

δρ = − mṼ

(q − q′′)2(2π)2
d2 (ln ρB)

(dx)2
(C24)

which also leads to

h0 ≈ − Ṽ

(q − q′′)
(ρB − ρ̄) (C25)

=⇒ Jyϕ = − 1

(2π)
∂xh0 =

Ṽ ρ̇B
2π(q − q′′)

(C26)

=⇒ Iy =

∫ ∞

−∞
dxJyϕ(x) = − Ṽ ρ̄

2π(q − q′′)
(C27)

We now more rigorously justify the assumptions in obtaining this solution. In order to safely neglect the left hand
side of Eq. C22, it is necessary that mṼ (ρ̄ − ρϕ) ≫ 1/L2. In order to safely approximate ρϕ with ρB , we need

|δρ| ≪ ρϕ, which implies |mṼ |/L2 ≪ ρϕ. Combining these two conditions, we are able to justify the approximate
solution as long as

1

L2(ρ̄− ρϕ)
≪ |mṼ | ≪ L2ρϕ (C28)

Given L≫ ℓB , this is always satisfied as long as ρϕ, ρψ are not too small compared to ρ̄.
To verify the qualitative correctness of the solution in Eq. 29, we numerically analyze Eq. 28 with q = 3, q′′ = q′ = 0.

Indeed, for a specific magnetic field configuration with a finite interface width, as illustrated in Fig. 5, we do find that
ρϕ(x) roughly follow ρB(x) when Eq. C28 is satisfied.

Appendix D: Non-interacting interface

As a guide to intuition, we have analyzed the structure of the QH to metal interface in the non-interacting limit
where the single-particle states can be computed exactly. In Fig. 6 we show the numerically computed density profile
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FIG. 5: The density profile ρϕ(x) solved from Eqs. C15 and C16 with q = 3, q′ = q′′ = 0 for magnetic field profile B(x) =

B0

(
1− tanh x

5l0

)
/2, where l0 = 1/

√
B0 and ρ̄ = B0/(2πq) are respectively the magnetic length and the electron density deep

in the FQH regime x→ −∞. ρB(x)/ρ̄ = B(x)/B0 is plotted in black as a reference (see Eq. C18 for definition of ρB).

(a) (b)

FIG. 6: Interface between a ν = 1 integer QH and a free metal corresponding to the magnetic field profile B(x) =

B0

[
1− tanh( x

5l0
)
]
/2 and chemical potential µ = ω0, where l0 = 1/

√
B0 and ω0 = B0/m are respectively the magnetic

length and cyclotron energy deep in the QH regime at x→ −∞. This choice of chemical potential sets the electron density to
be ρ→ ρ̄ = 1/(2πl20) for both x→ ±∞ limits. The plots show (a) the density profile ρ(x)/ρ̄ at fixed µ with B(x)/B0 in black
dashed line shown for comparison; (b) the local density of states (LDOS), measured in units of 1/(ω0l

2
0), for energies below µ,

with the local cyclotron energy ωc(x)/ω0 ≡ B(x)/B0 again shown in black for comparison.

as well as the local density of states (LDOS) of a non-interacting system with a spatially varying magnetic field, which
is assumed to have only x dependence in a way that x→ −∞ region is an integer QH with ν = 1 and x→ ∞ region is
a free metal. As can be seen in Fig. 6(a), the density at fixed chemical potential (chosen so that the density approaches
identical limits as x → ±∞) is not strongly modulated across the interface even before adding any interactions. In
Fig. 6(b), we see the lowest LL remains identifiable as a peak in the LDOS far into the region in which there are many
higher occupied LLs, which intuitively justifies our picture of a CB condensate extending into a metallic region.
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