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Abstract: Although topological spin textures are not commonly found in
centrosymmetric magnetic systems, non-coplanar monodomain magnetic states like flower
and curling states do emerge due to the contribution of surfaces and edges in nanoparticles. In
this work, we studied the topological nature of these intriguing non-coplanar spin textures and
their manifestation in electric transport phenomena due to the Berry phase accumulation.
Specifically, we calculated the topological charges Q associated with these spin textures and
the corresponding topological Hall effect. We assessed these spin textures across various
particle sizes and along magnetic hysteresis loops and mapped the spin structures in confined
geometries using magnetic force microscopy. We show that Q, as a fractional number,
increases with particle size and saturates as the system transits from the flower state to the
curling state. Along magnetic hysteresis loops, smaller particles that show flower states in
zero field, exhibit a peak in Q near the coercive field, a signature of the topological Hall effect
demonstrated in other systems. In contrast, larger particles that show curling states during the
magnetization reversal, exhibit transitions between the homogeneous state, flower state, and
curling state, which generates jumps in Q and the topological Hall effects. These results reveal
the rich topological nature of centrosymmetric magnetic nanoparticles, offer control using
magnetic field and probe using electric transport, suggesting promising potential applications.
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|. Introduction

The behavior of topological spin textures in continuous parameter space has fascinated
researchers due to their intriguing properties and potential applications [1,2,3]. These distinctive
spin configurations are most notably observed as Skyrmions [4, 5, 6] in noncentrosymmetric bulk
materials [7, 8, 9], thin films [10], multilayer films [2, 11], and even as meron [13, 14, 15] among
others. Nanostructured thin films, including nanogranular (polycrystalline) materials and
ensembles of nanoparticles, also exhibit magnetic and transport properties very different from
homogeneous thin films, representing the presence of topological spin textures [16, 17, 18, 19].

The presence of topological spin textures in magnetic nanoparticles recently attracted
significant attention due to their unique size-dependent properties and potential applications in
data storage, biomedicine, and spintronics [20, 21]. It has been reported that isolated nanoparticles
of B20 material structures can exhibit geometrically stabilized Skyrmionic spin textures [22, 23],
due to the Dzyashinski Moriya interaction (DMI) which is enabled by the broken inversion
symmetry and favors perpendicular neighboring spin alignments [24, 25, 26].

On the other hand, topological spin textures are not expected in non-interacting
centrosymmetric magnetic nanoparticles due to the lack of DMI. That said, non-coplanar single-
domain states like flower and curling states have been identified in these systems
[20,27,28,29,30,31,32,33,34,35,36,37]. These complex spin textures result from the competition
between the exchange interaction, anisotropy, and demagnetization which are sensitive to the
shape and size of the nanoparticles. Despite the intriguing physics and significant technological
potentials, the topological nature of these spin textures, and their manifestation in electronic
transport, has not been systematically studied.

Topological spin textures can manifest in electric transport because the exchange interaction
between the local and itinerant spins causes rapid rotations of the latter and modifies the electronic
trajectory [38]. Quantum mechanically, under the adiabatic conditions, [39, 40] itinerant electrons
remain in the local eigenstates defined by the local spins. For non-coplanar spin texture, the wave
function of itinerant electrons accumulates a phase factor y, known as the Berry phase [41], which
can be found through integration over Berry curvature §C [42] that the itinerant electrons sense.

Berry curvature §C is proportional to solid angle Q created by noncoplaner spins as showin in Fig.
1(a) and in continuum space is determined by the spin textures as
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where §(r) is the unit vector describing the spin direction at position r, €; ;. is the antisymmetric

tensor. The surface integral y= [ §C - d4, or the Berry phase accumulated by an itinerant electron
going around the spin texture, is nonzero for topological spin textures. Correspondingly, one can
define topological charge Q = ifﬁc - dA. Q equals +1 for Skyrmions, hence it is also known as
the Skyrmion number. Q is fractional for the flower and the curling states (see Fig. 1).

The way the itinerant spin follows the local spin can be described using an emergent magnetic
field B, = Zﬁc [4] which deflects the electrons and leads to an additional Hall effect known as the

topological Hall effect (THE) [7, 43]. The resistivity due to THE can be expressed as

h
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where P is the spin polarization, Ro is the Hall coefficient, A is the area of the spin texture. This
signature in electrical transport provides a means to probe the topological spin texture, in addition
to direct observation using magnetic imaging. The latter can be challenging for nanoparticles due
to the need for high resolution. Hence Investigating topological charges and THE due non-coplanar
states in nanoparticles with finite Q is an interesting avenue for exploration, considering their
application potentials in spintronics at high temperatures.

In this work, through micromagnetic modeling and simulations, and magnetic force
microscopy (MFM), we studied the non-interacting centrosymmetric nanoparticles in terms of
their spin texture and topological charge Q, which is proportional to the Berry curvature and
emergent magnetic field that leads to THE. The focus is on the particle size near the coherence
radius Rcon (in the range of 10 nm to 30 nm) where the transition from flower state to curling state
occurs [27,28,29,34]. We show that in zero-field, the topological charge increases with particle
size when the radius is less than Rcon and saturates in the curling state. Along the magnetic
hysteresis loop, a maximum Q occurs near the coercive field, as observed in other systems [7,8,9
10,16,17,18,19]. More intriguingly, for particles that are stable in the curling states in zero fields,
magnetic hysteresis contains the transitions between homogeneous, flower, and curling states,
causing jumps in the topological Hall signal.

1. Methods

Throughout the paper, we express the local magnetization as M(r) = Ms S(r), where S(r) is a
unit vector. We employ an analytical approach, utilizing an approximate Hamiltonian to describe
the flower state. For the curling mode, we used exact solutions expressed in terms of Bessel
functions. The local configuration M(r) = Ms S(r) is determined using the energy function given

by [34, 44]:
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The exchange stiffness Ae parameterizes the interatomic exchange energy &a = Ae(VS)?, K1 is
the uniaxial anisotropy assumed to be along the c-axis in the z-direction, which includes both
magnetocrystalline (K1) and shape-anisotropy contributions. There are three magnetostatic terms
in Eg. (3), namely the Zeeman interactions with the external magnetic field H, and the
magnetostatic selfinteraction energy described by the demagnetizing field Hq(M). Physically M(r)
corresponds to local and global minima of the integrated energy in Eq. (3). To explore the
topological spin textures and THE numerically, the topological charge (Q) was extracted from the
spin structure.

Micromagnetic simulations were performed using ubermag supported by OOMMF [45,46].
Different nanoparticle sizes were considered in our simulations to study the flower state and
curling mode and the effect of the magnetic field on these spin textures. The computational cell
size was set to be less than 1.9 nm, significantly smaller than the exchange length lex [34]. For
reference, the values of the micromagnetic parameters and other constants are provided in Table
1. For evaluating the THE in the nanoparticles, we employed Eg. (2), which allowed us to
determine THE as a function of Q(H) and the nanoparticle's area. To probe topological spin
textures using MFM the Co ferromagnetic dots were fabricated through electron-beam lithography
and evaporation in an ultrahigh vacuum using an electron-beam gun. The circular nanodot patterns
were defined on thermally oxidized Si substrates with positive photoresists.



The bilayer-positive photoresists PMMA950/MMA EL6 were exposed to an electron beam
and the liftoff method was used to create the circular pattern. The fabricated circular arrays were
arranged in a trilayer structure of Ti/Co/SiO2, with respective thicknesses of ~20 nm for Ti, ~40
nm for Co, and ~20 nm for the SiO> layer to prevent oxidation. The layer thicknesses were
monitored during growth using a quartz balance. The circular layered structure was grown by e-
beam evaporation in a UHV system. The base pressure was in the range of 1x1078 torr. The
evaporation pressure was less than 5x10~ torr. By a lift-off process, the photoresist was removed
and dots with designed sizes remained on top of the Si surface.

To examine the topography and magnetic images of the samples, we used a Bruker Dimension
Icon® Atomic Force Microscope (AFM) at room temperature, performing MFM in constant height
mode (single pass). In the MFM experiment, we employed the AC mode of the instrument to
detect the magnetic forces between the cantilever tip and the surface of circular dots under ambient
conditions. To mitigate the impact of stray fields, we utilized a low-moment CoCr tip. The tip-to-
surface distance was maintained within the range of 20-30 nm.

TABLE I: The micromagnetic parameters, carrier density, spin polarization, and ordinary

Hall coefficient used to calculate the topological charge and Topological Hall effect [34, 36, 47].
Substance | Ae HoMs | Ky Te Reoh | P n Ro = 1/ne
(pd/m) | (T) (MJm® | (K) | (nm) |- (1/cm?) (m3/C)
Toy Model | 11 2.3 0.2 - 12 - - -
Co 10.3 | 1.76 0.53 1388 | 10 0.45 | 9 x 10? 5 x 10%
Fe 21 2.15 0.048 1043 | 11.7 | 0.4 |8.45x10%2 | 7.38 x 1071
Ni 769 |0.61 | —0.0048 | 631 |247 |04 |91x10% |—6.8x10%

I11. Calculations and Results

The topological spin textures can develop in nanoparticles of various shapes, as depicted in
Figure 2. All structures in Fig. 2 exhibit axial symmetry, that is, the magnetic easy axis is the c-
axis along the z-direction, and Cs, Cs, or C. rotations reproduce the original spin structure
respectively. Equation (1) means that the Berry curvature and topological charge are unique
functions of the spin structure S(r), which is determined by the magnetic interactions and sample
geometry. We represent the S(r) with the following expression [28]

S(r) = sin®(r) cosd(r) ex + sin@(r)cosd(r) ey + cosO(r) e. 4)

Here, ex, ey, and e; are unit vectors along the x, y, and z directions, respectively, and r = (x? +

y2)¥2. The angles @(r) and d(r) represent the polar and azimuthal angles, respectively. The flower

state and the curling state both exhibit slight deviations from the homogeneous magnetization
along the easy axis (z-axis). The xy component of S can be written as

Sxy(r) = sin®(r) cosd(r) ex + Sin®(r) cosd(r) ey, (5)

corresponds to the radial direction for the flower state and the azimuthal direction for the curling

state. Utilizing cylindrical coordinates (r = (p, 9, z)), we can express the flower state and the curling
state using ®@(r)= ¢ and ®(r)= ¢ £ /2 respectively. To better visualize these states, we present the
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vector 3D plot for the flower state without any helicity (A = 0) ®(r)= ¢ and for the curling state
with finite helicity (A = +n/2) ®(r) = ¢ £ w/2 in Figs. 1(e-f) and Fig. S1. In cylindrical coordinates,
we can write S = Sxy(r) er + Sz e, = sin®(r)e, + S; ez, where er = cosd(r) ex + sind(r)ey and Sxy(r)
= sin®(r). The energy functional for magnetic nanoparticles, considering a small deviation from
the easy axis, can be expressed as (for further details, refer to the supplemental Material [48]):

& = J[Ae (VSxy(N)? + K (Sxy(r))? + % Ho (H — Ha) Ms Sxy(r)? — % Ho Ms He sin@} dv. (6)

In Eq. (6), the demagnetization field Hy(M) = — DM, along the z-axis results in a flux closure
state resembling a curling. On the other hand, the demagnetization field Hr at the edges or corners
leads to a slight tilt of the spin representing nonuniform magnetization inside the nanoparticles.
Notably, in nanoparticles with a flower state, the curling state does not exist (Hs =~ 0), and in the
presence of a curling state, there won't be any flower state (Hr = 0) [29].

The physics of spin texture in nanoparticles involves competition between different energy
terms in Eqg. 3. In very small nanoparticles (R < < Rcon), the exchange energy A¢(VS)? ~ A/R?
dominates and ®(r) approaches zero as shown in Figs. 2(b, ), where R is the radius of the particle.
The gradient term effectively suppresses magnetization inhomogeneities, scaling as 1/R2.
However, as the particle size increases, nonuniform spin configurations emerge, exemplified by
the top views in Figs. 2(e-f). This non-uniform state is referred to as the "flower state,” in which
the spins S(r) near the particle's edges form an angle ®(r) with the symmetry axis [27, 29, 34]. As
the radius further increases to a coherent radius Reon flower-state [29,31] competes against other
spin states, such as curling states due to magnetostatic flux closure and decrease in energy density
Ae (VS)? which tends to keep spin parallel[27,29,30,31,33,34,49]. For R > Rcon the nucleation is
dominated by flux closure and realized by magnetization curling; in general flux closure is
favorable as it decreases the energy of the system but competes against the exchange interaction.
Rcoh depends on magnetic material parameters and for sphere and cylinder it is defined as (Rcoh)sphere
= (5.09)*lex and (Reoh)cylinder = (3.36)*lex respectively, where lex = (Ae/HoMs2)Y? is the exchange
length[37,50]. It is unrelated to the single-domain size Rsp, which can be much larger than Reon
[34]. As shown in Figs. 1(e, f), the flower state and curling state can be viewed as the small part
of Neel and Bloch Skyrimions near the center, respectively, so their topological charge Q is less
than %. In the subsequent sections, we will investigate Q and the topological Hall effect associated
with the flower state and curling state, respectively.

A. Flower State

The flower state is predominantly observed in non-spherical particles, ideally cubes because
the magnetization on these edges rotates away from the parallel orientation [31, 37]. In our study,
we investigated the function O(r) as a function of particle size and external magnetic field. The
spin structure S(r) was determined by minimizing the micromagnetic (free) energy represented by
the equation (6):

&E=[nav. 7)

Here, the energy density # includes contributions from the exchange, anisotropy, Zeeman,
and, for the flower-state contribution as described in Eq. (6). In general, the solution of the
nonlinear differential equation can be done only numerically. The numerically calculated ®(r)
within the nanoparticle in Fig. S2(a) shows that the spins exhibit a 'radial’ symmetry, tilting away



from the z-axis. The tilt angle increases with the distance from the center, illustrated by the spins
at the particle edges or corners.

To gain insight into the physical aspects in a semi-quantitative manner, we performed
analytical calculations based on a set of simplifications to find the tilt angle ®(R) at the edge in a
magnetic nanoparticle of radius R. Firstly, we employed an approximate volume-averaging
technique to simplify the energy integral as | # dV = <y> V, where <;> represents the average
energy density. Next, we minimized <z> with respect to ®(R), which denotes the polar angle of
the magnetization at the particle edges or corners; the length of the blue arrows in Fig. 2(d) is given
by sin®(R). Determining the precise value of the average <#> is highly challenging as it requires
knowledge of S(r). However, S(r) is subject to certain constraints (normalization and symmetry)
and is approximately known for several cases. By assuming small ®(R), we find (see
supplementary material Eq. S11-13 [48])

<> = (% + (K + % Ms HD(sinZG)(R)) —% Ms Hr sin®(R). (8)

The interatomic exchange, &a = Ae(VS)? scale as Ae/R2(Sxy(r) 2) = A/R%(sinO(R)), the 2™
and 3" terms are anisotropy and Zeeman interaction contributions. The last term is the flower-state
energy correction (Hr) due to nonuniform magnetization in Fig. 2(a). The flower state causes an
Xy component of the magnetostatic selfinteraction. Essentially, the xy component of the stray field
(green lines in Fig. 2(a)) contributes a Zeeman-type demagnetization energy, foHEMs|Sxy| & o Ms
Hr sin®(R). The parameter Hr depends on the shape of the particles, especially on the cross-
section, but is generally comparable to, though somewhat smaller than, the saturation
magnetization Ms. While this field is zero for homogeneously magnetized ellipsoids, it is nonzero
for magnetized particles of arbitrary shape (see Fig. 2). Overall, the flower state reduces the
selfinteraction energy compared with the homogeneous state. The selfinteraction is Ed =
—HoM(r)-Ha(M(r))/2. For homogeneous state Eqd = H,DM?/2 whereas for flower state, Eq <
HoDM?/2 due to tilted magnetization.

To identify the stable state, we minimize <#> using Eqg. (8) with respect to ®(R) for specific
nanoparticles of radius R. As Eq. (8) is quadratic in sin®(R), the minimization process becomes
straightforward. Explicitly, one has

. M; H
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In Eq. (9), He is positive, meaning that the magnetization has a component pointing away
from the symmetry axis. Eg. (9) also shows that for small particles ®(R)— 0 as R — 0 and O(R)
saturates when R — oo. Essentially, a larger ®(R) requires smaller exchange energy, anisotropy
energy, and Zeeman energy, but larger selfinteraction energy. It is also clear that when the external
field H is large enough, sin®(R) diverges. ®(R) for nanoparticles of different radius is plotted in
Fig. S2(b).

The Berry curvature can be determined through the application of Eq. (1) with respect to the
S(r). Upon integrating the Berry curvature across the magnetic particle, the topological charge for
the flower state can be found as
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We conducted a comprehensive study on the topological charge, investigating its variation
with particle radius at zero magnetic fields and with magnetic fields. Our findings are plotted in
Figure 3(a) and Figure 3(b) for Q. Figure 3(a) exhibits a significant observation: for particles with
radii much smaller than the characteristic coherence radius (R << Rcon), the topological charge
remains nearly zero due to dominant exchange term (A</R?). However, as the particle size reaches
a certain threshold, the topological charge undergoes a rapid increase and then gradually saturates
near R = Reon. At this point, the flower state ceases to exist, and instead, curling due to self-
interaction becomes prominent. Although the specific transition size is influenced by
micromagnetic parameters, we can qualitatively comprehend the overall trend using Eq. (9) and
(10).

In Figure 3(b), we present the topological charge as a function of the magnetic field. Even in
the high-field state, the system exhibits flower states akin to those depicted in Figs. 2(d-f), but with
a small ® they closely resemble uniform magnetization as shown in Figs. 2(b-c). Notably, just
before the magnetization reversal, the topological charge Q reaches its maximum value due to an
increase in ®(R). Furthermore, we calculated the emergent magnetic field due to the flower state
in cylindrical nanoparticles at different positions in the xy plane, as shown in Fig. 4(a).

B. Magnetization Curling

Magnetostatic interactions tend to favor a flux closure state (V-M = 0) over magnetic poles
(V-M #0) [33, 35]. During magnetization reversal, the "curling mode™ emerges at the nucleation
field when the particle radius exceeds Reon. The curling state has finite helicity, and it represents
the three-dimensional topological object [51]. Due to the flux closure property, the curling state
does not require a correction to the self-interaction energy, as seen in the flower state (i.e., Hr =
0). Instead, the demagnetization field H4a(M(r)) provides the magnetostatic self-interaction
necessary for flux closure. As the size of nanoparticles increases, |Sxy(r)| increases, eventually
leading to the transition into the curling state. Sxy(r) of the curling state can be obtained by
minimizing the total energy Eq. (6) with respect to Sxy(r) [29] (see supplement Eq. S(14-17) [48]):

(ZAeVZ -2 Kl — l.lo Ms H+ u.o D Msz) Sxy(r) = O . (11)

In Eqg. (11), Hs = — DM, where D represents the demagnetization factor contributing to flux
closure. In the curling state, one has @(r) = ¢ &= /2. Consequently, Eq. (4) can be rewritten as
M(r)=Ms( —Sxy(p)sin((p) ex + Sxy(p)COS(([)) ey + Szez) , (12)

where Sxy(p) = sin®(p) and S; = cos®(p). Substituting the curling mode from Eq. (12) into Eq. (11)
results in

02 i)
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where k is defined as
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Eq. (13) is a Bessel equation, and as a result, the curling mode in a cylinder can be expressed
as Sxy(p) = Ji(kp) or approximately sin® = ®(p) = Ji(kp) . Fig. 1(e) and S1 illustrate the curling
mode vector in a three-dimensional plot within a cylinder, using sin® = ©(p) = Ji(kp) , ®(r) = @

. . . 0Jdu(k .
+ 7/2. Notice that we applied the boundary condition —é(p&)|p=R =0, which leads to kR = 1.841
[29]. Moreover, when considering spherical particles with D = 1/3, the curling mode can be
described using a spherical Bessel function Sxy(p) = ji(kp) , where the smallest root is kR = 2.0816.
The Berry curvature resulting from the curling in both the cylinder and sphere was calculated

using Eq. (1) as follows
Ji(kp)aJai(k
(Bc(p))cylinder = i(ﬁgula;@ y (15)
ju(kn)oja(k
(Bc(r))sphere = 1(1‘1) 1(51,1) . (16)
In Fig. 4(b), we present the emergent magnetic field Eq. (15) at the different points of the
xy plane resulting from the curling mode of a cylinder. The Berry phase is obtained by integrating
the Berry curvature:

Yeylinder = 2J1(kR) (17)
ysphere = 2 Ja(kR) . (18)
Similarly, we can calculate the topological charge for curling mode at the nucleation field by

employing y= 2nQ, as following

Qcylinder = in Jl(kR), (19)

1 .
Qsphere = P Ji(kR). (20)

At a field greater than the nucleation field, the particle with edges (like a cylinder) will
exhibit a flower state with a small ®, corresponding to a low topological charge. As the magnetic
field decreases to the nucleation field, H = Hy, the transitions from the flower state to the curling
state represent the field-dependent topological phase transition [51]. The helicity, topological
charge, and consequently THE at the nucleation field undergo a significant increase. However, for
particles with R < Reon, where only the flower state exists, there is no curling state at the nucleation
field and as a result, no abrupt change in the topological charge occurs. These observations are
also confirmed in micromagnetic simulations, as discussed in the next section. The nucleation field
at which the curling appears is given by [44]

2Ky 2A02
Hn = ,UOMS - DMS + ,UOMSRZ’ (21)

with gi being the smallest root of Bessel functions. For cylinder i = 1.841 and sphere gi = 2.0816.
By applying boundary conditions for cylinders and spheres and utilizing Bessel functions, we can
calculate the topological charge Q for both shapes at the nucleation field. The resulting values are
presented in Table 2.

TABLE II: Calculated topological charge Q at the nucleation field

D | Smallest Root (kR) | Bessel Function | Q(Hn)
Cylinder |0 | 1.841 J1(1.841) =0.58 | 0.19
Sphere | 1/3 | 2.0816 j1(2.081) =0.44 | 0.14




The topological charge listed above represents the exact value at the nucleation field for
particles with R = Rcon. TO determine the corresponding topological Hall effect (THE) at the
nucleation field and for various particles at their respective nucleation fields, we can use Eq. (2).
As aresult, in nanoparticles at the nucleation field Hn, THE is expected to exhibit a sudden increase
to ptHe(Hn) giving information related to nucleation field in nanoparticles.

For the R > Rcon Where curling appears, Q has a constant value. It's because the curling mode
is subject to the eigenvalue condition kR = 1.84 so Q = 0.5J1(1.84)% = 0.19. This also applies to the
following two considerations. The Ji(kr) oscillations describe radial spin waves. The curling mode
is a 1s state in the analogy of an electron in a cylinder, where the lowest-lying excited radial spin-
wave mode is a 2s state and has kR = 5.33 and Q = 0.06 showing the Berry curvature of electron
scattering from excited states is tricky from the viewpoint of dynamics [44].

As the R increases, Sxy(r) also increases, eventually leading to a transition from the curling
mode to the vortex mode. With the growth in size, the long-range magnetostatic interaction
between M(r) and M(r") results in in-plane spin configurations. Consequently, the magnetostatic
self-interaction becomes more important compared with the short-range exchange interactions.

C. Micromagnetic Simulations and Topological Hall Effect

To investigate the topological spin textures in nanoparticles, we perform micromagnetic
simulation, with a specific emphasis on regions close to Reon. The simulations involve various
shapes, including cubes, cylinders, and spheres. To explore the effect of size on the system, the
radii of the cylinders and spheres were altered, and the topological charge and THE for different
radii were simulated. During the process of magnetization reversal, we conducted calculations to
determine the normalized magnetization and topological charge Q(H). By applying Eq. (2) and the
parameters in Table |, we utilized the obtained Q(H) data to compute the Hall resistivity ptHe in
cobalt (Co), iron (Fe), and nickel (Ni) spherical nanoparticles.

For the flower state, the topological charge was calculated for R < Reon. The results
demonstrated that the flower state only existed in either the cylinder or the ferromagnetic cube. In
contrast, the sphere did not exhibit the flower state due to a small edge effect, where Hr = 0. Fig.
5 depicts the hysteresis of the topological charge and normalized magnetization as a function of
the decreasing/reverse field magnetic field B(T) = xoH in a cube with a length less than the coherent
radius. At higher magnetic fields, the spins aligned in the direction of the magnetic field, resulting
in a lower value of the Q and hence ©. Near the coercivity field, Q reached its maximum value
just before the reversal, corresponding to the point of minimum magnetization and maximum
opening of the flower state. The topological charge Q changed sign during the reversal, indicating
a shift from +M; to —M; as the applied field changed from Bmax to —Bmax. Furthermore, the total
Berry phase () acquired by the electron is given by y = 27Q. The maximum value of Q at the
coercive field is found to be 0.1 (toy model), and consequently, the value of ¥ = 0.2n. Therefore,
we can deduce that the tilt angle at the coercive field in Figure 5 is ® = 0.5(») = 0.314. From
micromagnetic simulation, the tilt angle can be calculated as a function field ®(H) = nQ(H).



Upon investigating nanoparticles with larger sizes R > Rcon, We observed a fascinating
magnetization reversal phenomenon involving the curling mode. Utilizing micromagnetic
simulations on our toy model of cylinders (Fig. 6) and spheres (Figs. 7-9) with radii greater than
Rcon, We discovered the emergence of the curling mode during magnetization reversal at the
nucleation field. In the case of cylinders with R > Rcon, we identified a field-dependent topological
phase transition. Initially, the spin texture exhibited a flower state, where spins aligned with the
direction of the strong external field, except for the tilted spins at the edges. However, the spin
texture transitioned to a curling mode at nucleation field Hy with finite helicity, as indicated by the
jump in magnetization and Q with core polarity aligned to the +z-axis. After magnetization
reversal, the core polarity further realigned, now pointing in the direction of the —z-axis,
accompanied by the curling mode of negative helicity. At high magnetic fields, the curling mode
disappeared, and the system reverted to the flower state. It's worth noting that, unlike the cylinders,
the spheres showed an absence of Q contributions at high magnetic fields, indicating the lack of a
flower state in the spheres.

We have conducted a comprehensive study to investigate the topological Hall resistivity Eq.
(2) in spherical nanoparticles composed of Co, Fe, and Ni. This investigation was based on
utilizing various parameters outlined in Table 1 and employing micromagnetic simulations, as
displayed in Figs. 7-9.

In the case of the spherical Co nanoparticle, intriguing phenomena were observed. Firstly, a
curling state symmetric about the easy axis was observed at the nucleation field, as depicted in
Fig. 7. As we decreased the reverse magnetic field, ptre increased indicating an increase in planar
magnetization. Additionally, we observe the emergence of an intermediate vortex state, wherein
the magnetization of the core was oriented perpendicular to the easy axis as shown in Fig. 7.
Following the intermediate state, the normal curling mode appeared with opposite helicity.

Figure 8 illustrates the ptre of Fe, wherein intermediate states are absent. We observe that the
magnetization curling state at the nucleation field. As the reverse field is decreased, the magnitude
of Q increases, indicating an increase in the in-plane component Sxy(r). Once the reversal process
begins, we observe the emergence of the curling mode with an opposite helicity. Finally, at high
magnetic fields, the magnetic particles eventually reach saturation.

For spherical Ni nanoparticles, its negative anisotropy adds an intriguing dimension to
magnetization reversal and the study of ptHe. Fig. 9 illustrates that at the nucleation field, the
curling mode emerges with a different helicity compared to that of Co and Fe. Additionally, pTHe
exhibits an opposite sign, owing to the negative Hall coefficient. As the reverse field increases,
ptHE also increases and causes a reversal in the sign of the topological Hall effect during
magnetization reversal. Overall, these findings related to ptHe shed light on the complex behavior
of nanoparticles with radius R > Reon during magnetization reversal, and highlight the importance
of shape and size in determining their magnetic properties.
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D. Magnetic Force Microscopy and Topological Hall Effect

According to our calculations, it is clear that the single domain state leads to a finite emergent
magnetic field and ptHe. Moreover, our micromagnetic simulation, as shown in Figure 6, indicates
that the flower state occurs at higher magnetic fields, while the curling state appears at lower fields,
provided that the particle's radius is in a single domain. To investigate the topological charge in
confined geometries more thoroughly, we conducted MFM measurements on circular dots made
of cobalt. These measurements provided strong evidence supporting the existence of a vortex state,
which is characterized by a core magnetization perpendicular to the plane. The MFM and AFM
images are displayed in Figs. 10 and 11. In most of the circular nanodots, the MFM images exhibit
a clear contrast between the center and the surrounding regions. The spins within the dots are
aligned parallel to the plane, but at the dark spot, the spin aligns perpendicular to the plane, as
shown in Fig. 10(b). Our micromagnetic simulation, as depicted in Fig. 10(c), also supports the
existence of a magnetic vortex state in cobalt nano disks with a thickness of 40 nm and diameters
up to 480 nm. This unique spin configuration in nanodots emerges when the dot thickness becomes
smaller than the dot diameter, causing all spins to align in the plane, forming a vortex. It is worth
noting that while the area of the dark region is relatively small for vortex states in materials like
permalloy [49, 52], the large anisotropy of cobalt results in a significantly larger dark spot area in
the middle of the single-domain magnetic state. In Fig. 10(b), the MFM image and micromagnetic
simulations show the presence of a finite topological charge Q within the nano disk. As a result,
we conducted calculations to determine the topological Hall resistivity, which yielded a low value
of prhe =3 x 102 nQ cm. It is noteworthy that this resistivity value is particularly small, especially
when considering the relatively large area of the nano disk.

Since in Fig. 11, the nanoparticles are very close to each other, this gives rise to a small
exchange interaction between neighboring nano disks and results in a tilted spin out of the plan at
the edges. We performed a micromagnetic simulation of nano disks close to each other. Our results
are shown in Fig. S5 and compared with Fig. 11(b).

In Fig. S3, we observed that particles with a radius in the range of Reon < R < Rsp, where
Rsp is the radius of a single domain, exhibit two distinct states at different magnetic fields. At a
high magnetic field, the presence of a finite topological charge is attributed to flower states,
whereas at a low field, the configuration represents vortex-like spin textures. To further explore
the effects of an external magnetic field, we applied a 0.9T magnetic field perpendicular to the
plane using permanent magnets. As shown in Fig. S7, the vortex-like state vanishes, and most of
the spins align in the direction of the field, except at the edges where the spins are slightly tilted,
revealing the edge effects characteristic of the flower state correction Hr for the spins at the edges.

V. Summary

We conducted a comprehensive investigation into the topological spin structures and the
manifestation of electric transport in ferromagnetic nanoparticles, employing a combination of
analytical calculations, micromagnetic simulations, and MFM imaging. Notably, in small
nanoparticles with robust exchange stiffness, the typical flux closure state is absent and the flower
state is present in particles with well-defined edges. To account for the flower state in
nanoparticles, we introduced an energy correction term (Hr) into the micromagnetic free energy
to consider the stray fields at the edges. This energy correction leads to a spin tilt at the edges and
gives a finite topological charge (Q). We made a distinction between ellipsoidal (spherical) and
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nonellipsoidal (cubic and cylindrical) nanoparticles, with the latter exhibiting significant
contributions to the topological charge from the flower state. We studied finite topological charge
and THE, due to curling states both analytically and through micromagnetic simulations. The
results unveiled a sudden jump in the Hall resistivity ptre, attributed to the topological Hall effect,
occurring at the nucleation field. The manifestation of the topological Hall effect in Co, Fe, and
Ni nanoparticles indicates a field-dependent topological phase transition from a uniform state to a
curling state. These studies and results are in principle applicable to nanoparticles of all
ferromagnetic material systems, suggesting application potentials. For instance, embedding
individual magnetic particles in a nonmagnetic metallic matrix provides a potential experimental
setup to explore these spin textures further in a wide range of ferromagnetic materials and for
device applications in terms of their effect on electric transport.
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Fig. 1. (a) Three non-coplanar spins Sz, Sz and Sz creates a solid angle Q = S1.(S2xS3) leads to
nonzero Berry phase and topological charge Q. Topological spin textures in a two-
dimensional space which can be mapped onto a spherical surface: (b) and (c) are Bloch and
Neel Skyrmions respectively, where the topological charge is Q = 1 [6,12,13]. (d) Spin
vortex where Q =% [6, 13, 15]. (e) and (f) are curling and flower states respectively, where
Q< %.
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Fig. 2. Examples of spin structures in small nanoparticles: (a) stray field distribution in the middle
and at the edges of a cylindrical nanoparticle, (b-c) uniform magnetization, (d) flower state
in a cylindrical particle, (e-f) flower states in prismatic nanoparticles, (g-h) vortex states of
opposite chirality and (j) mixed state. The spins S(r) are shown as blue arrows.
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Fig. 3. Topological charge Q of magnetic nanoparticle particles with R < Rcon. (a) Particle-size
dependence in the absence of an external magnetic field, where Q increases with particle
size before it saturates at R = Rcon When flower state is replaced by curling state. (b) field
dependence along half of the hysteresis loop, in which Q changes sign at the coercive field
(Hc) with radius R = 10 nm i.e 0.83Rcon.
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Fig. 4. Emergent magnetic field sensed by itinerant electrons in a nanoparticle at different
positions in zero external magnetic field. (a) Particle of R = 0.83Rcon radius in a flower
state. (b) Particle of R = 1.6Rcon radius in a curling state. Note the significant increase in
field due to curling state as compare to flower state due to topology associated with curling

state helicity.
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Fig. 5. Micromagnetic simulations of magnetization M and topological charge Q for a cubic
ferromagnetic particle with a radius R = 0.9Rcon less than Reon. On the left is the field
dependence of M and Q along half of the hysteresis loop, where Q in reaches the
maximum values near the coercive field Hc, which agrees with our theoretical prediction
Fig. 3(b) where finite Hr responsible for a spin tilt at the edges. The deviation from the
saturation appears just before the reversal shown in the inset. On the right are spin
structures near Hc.
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Fig. 6. Micromagnetic simulations of

(4) Flower state
after the reversal

(3) Curling with opposite
helicity after the reversal

magnetization M and topological charge Q in a

ferromagnetic cylinder with a radius R = 1.2Rcon greater than Reon. On the left is the field
dependence of M and Q along half of the hysteresis loop, where jump in topological
charge at nucleation field Hy represents the transition from flower state to curling state.
On the right are spin structures at different stages in the hysteresis loop.
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Fig. 7. Micromagnetic simulations of magnetization M and topological Hall resistivity ptHe in a
spherical Co nanoparticle with radius R = 14 nm (R > Rcon). On the left is the field
dependence of M and ptre along half of the hysteresis loop. On the right is the spin
structure at different stages in the hysteresis loop.
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Fig. 8. Micromagnetic simulations of magnetization M and topological Hall resistivity ptHe in a
spherical Fe nanoparticle with radius R = 11 nm (R > Rcon). On the left is the field
dependence of M and ptHe along half of the hysteresis loop. On the right is the spin
structure at different stages in the hysteresis loop.
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Fig. 9. Micromagnetic simulations of magnetization M and topological Hall resistivity ptHe in a
spherical Ni nanoparticle with radius R = 25 nm (R > Rcon). On the left is the field
dependence of M and ptre along half of the hysteresis loop. On the right is the spin
structure at different stages in the hysteresis loop.
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Fig. 10. (a) AFM image for a circular nanodot of Co. (b) MFM image of the nanodot in (a)
showing magnetic vortex core, (¢) Micromagnetic simulation of Co nanodisk of 500 nm
diameter and 40 nm height showing the presence of vortex state.
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Fig. 11. (a) AFM image for an array of circular nanodots of Co. (b) MFM image of the nanodots
in (a) showing the vortex states.
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