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Abstract: Although topological spin textures are not commonly found in 

centrosymmetric magnetic systems, non-coplanar monodomain magnetic states like flower 

and curling states do emerge due to the contribution of surfaces and edges in nanoparticles. In 

this work, we studied the topological nature of these intriguing non-coplanar spin textures and 

their manifestation in electric transport phenomena due to the Berry phase accumulation. 

Specifically, we calculated the topological charges Q associated with these spin textures and 

the corresponding topological Hall effect. We assessed these spin textures across various 

particle sizes and along magnetic hysteresis loops and mapped the spin structures in confined 

geometries using magnetic force microscopy. We show that Q, as a fractional number, 

increases with particle size and saturates as the system transits from the flower state to the 

curling state. Along magnetic hysteresis loops, smaller particles that show flower states in 

zero field, exhibit a peak in Q near the coercive field, a signature of the topological Hall effect 

demonstrated in other systems. In contrast, larger particles that show curling states during the 

magnetization reversal, exhibit transitions between the homogeneous state, flower state, and 

curling state, which generates jumps in Q and the topological Hall effects. These results reveal 

the rich topological nature of centrosymmetric magnetic nanoparticles, offer control using 

magnetic field and probe using electric transport, suggesting promising potential applications. 
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I. Introduction 

The behavior of topological spin textures in continuous parameter space has fascinated 

researchers due to their intriguing properties and potential applications [1,2,3]. These distinctive 

spin configurations are most notably observed as Skyrmions [4, 5, 6] in noncentrosymmetric bulk 

materials [7, 8, 9], thin films [10], multilayer films [2, 11], and even as meron [13, 14, 15] among 

others. Nanostructured thin films, including nanogranular (polycrystalline) materials and 

ensembles of nanoparticles, also exhibit magnetic and transport properties very different from 

homogeneous thin films, representing the presence of topological spin textures [16, 17, 18, 19].  

The presence of topological spin textures in magnetic nanoparticles recently attracted 

significant attention due to their unique size-dependent properties and potential applications in 

data storage, biomedicine, and spintronics [20, 21]. It has been reported that isolated nanoparticles 

of B20 material structures can exhibit geometrically stabilized Skyrmionic spin textures [22, 23], 

due to the Dzyashinski Moriya interaction (DMI) which is enabled by the broken inversion 

symmetry and favors perpendicular neighboring spin alignments [24, 25, 26].  

On the other hand, topological spin textures are not expected in non-interacting 

centrosymmetric magnetic nanoparticles due to the lack of DMI. That said, non-coplanar single-

domain states like flower and curling states have been identified in these systems 

[20,27,28,29,30,31,32,33,34,35,36,37]. These complex spin textures result from the competition 

between the exchange interaction, anisotropy, and demagnetization which are sensitive to the 

shape and size of the nanoparticles. Despite the intriguing physics and significant technological 

potentials, the topological nature of these spin textures, and their manifestation in electronic 

transport, has not been systematically studied. 

Topological spin textures can manifest in electric transport because the exchange interaction 

between the local and itinerant spins causes rapid rotations of the latter and modifies the electronic 

trajectory [38]. Quantum mechanically, under the adiabatic conditions, [39, 40] itinerant electrons 

remain in the local eigenstates defined by the local spins. For non-coplanar spin texture, the wave 

function of itinerant electrons accumulates a phase factor , known as the Berry phase [41], which 

can be found through integration over Berry curvature 𝐵⃗ 𝑐 [42] that the itinerant electrons sense. 

Berry curvature 𝐵⃗ 𝑐  is proportional to solid angle Ω created by noncoplaner spins as showin in Fig. 

1(a) and in continuum space is determined by the spin textures as 

 

𝐵⃗ 𝑐 = −𝜖𝑖𝑗𝑘
1

2
𝑺 ⋅ (𝜕𝑖𝑺 × 𝜕𝑗𝑺),      (1) 

where 𝑺(𝒓) is the unit vector describing the spin direction at position 𝒓, 𝜖𝑖𝑗𝑘 is the antisymmetric 

tensor. The surface integral ∫ 𝐵⃗ 𝑐 ⋅ 𝑑𝐴 , or the Berry phase accumulated by an itinerant electron 

going around the spin texture, is nonzero for topological spin textures. Correspondingly, one can 

define topological charge Q =  
1

2𝜋
∫ 𝐵⃗ 𝑐 ⋅ 𝑑𝐴 . Q equals ±1 for Skyrmions, hence it is also known as 

the Skyrmion number. Q is fractional for the flower and the curling states (see Fig. 1). 

The way the itinerant spin follows the local spin can be described using an emergent magnetic 

field 𝐵⃗ 𝑒 =
ℏ

𝑒
𝐵⃗ 𝑐 [4] which deflects the electrons and leads to an additional Hall effect known as the 

topological Hall effect (THE) [7, 43]. The resistivity due to THE can be expressed as 

ρTHE =PR0 <Be>  = PR0

hQ

eA
,     (2) 
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where P is the spin polarization, R0 is the Hall coefficient, A is the area of the spin texture. This 

signature in electrical transport provides a means to probe the topological spin texture, in addition 

to direct observation using magnetic imaging. The latter can be challenging for nanoparticles due 

to the need for high resolution. Hence Investigating topological charges and THE due non-coplanar 

states in nanoparticles with finite Q is an interesting avenue for exploration, considering their 

application potentials in spintronics at high temperatures. 

In this work, through micromagnetic modeling and simulations, and magnetic force 

microscopy (MFM), we studied the non-interacting centrosymmetric nanoparticles in terms of 

their spin texture and topological charge Q, which is proportional to the Berry curvature and 

emergent magnetic field that leads to THE. The focus is on the particle size near the coherence 

radius Rcoh (in the range of 10 nm to 30 nm) where the transition from flower state to curling state 

occurs [27,28,29,34]. We show that in zero-field, the topological charge increases with particle 

size when the radius is less than Rcoh and saturates in the curling state. Along the magnetic 

hysteresis loop, a maximum Q occurs near the coercive field, as observed in other systems [7,8,9 

10,16,17,18,19]. More intriguingly, for particles that are stable in the curling states in zero fields, 

magnetic hysteresis contains the transitions between homogeneous, flower, and curling states, 

causing jumps in the topological Hall signal.  

II. Methods 

Throughout the paper, we express the local magnetization as M(r) = Ms S(r), where S(r) is a 

unit vector. We employ an analytical approach, utilizing an approximate Hamiltonian to describe 

the flower state. For the curling mode, we used exact solutions expressed in terms of Bessel 

functions. The local configuration M(r) = Ms S(r) is determined using the energy function given 

by [34, 44]: 

ℰ = 



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
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




M

Ms

2
– K1 

(n.M)2

Ms
2  – µo M.H – 

µo

2
 M.Hd(M)  dV.  (3) 

The exchange stiffness Ae parameterizes the interatomic exchange energy ℰA = Ae(∇S)2, K1 is 

the uniaxial anisotropy assumed to be along the c-axis in the z-direction, which includes both 

magnetocrystalline (K1) and shape-anisotropy contributions. There are three magnetostatic terms 

in Eq. (3), namely the Zeeman interactions with the external magnetic field H, and the 

magnetostatic selfinteraction energy described by the demagnetizing field Hd(M). Physically M(r) 

corresponds to local and global minima of the integrated energy in Eq. (3). To explore the 

topological spin textures and THE numerically, the topological charge (Q) was extracted from the 

spin structure. 

Micromagnetic simulations were performed using ubermag supported by OOMMF [45,46]. 

Different nanoparticle sizes were considered in our simulations to study the flower state and 

curling mode and the effect of the magnetic field on these spin textures. The computational cell 

size was set to be less than 1.9 nm, significantly smaller than the exchange length lex [34]. For 

reference, the values of the micromagnetic parameters and other constants are provided in Table 

1. For evaluating the THE in the nanoparticles, we employed Eq. (2), which allowed us to 

determine THE as a function of Q(H) and the nanoparticle's area. To probe topological spin 

textures using MFM the Co ferromagnetic dots were fabricated through electron-beam lithography 

and evaporation in an ultrahigh vacuum using an electron-beam gun. The circular nanodot patterns 

were defined on thermally oxidized Si substrates with positive photoresists.  
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The bilayer-positive photoresists PMMA950/MMA EL6 were exposed to an electron beam 

and the liftoff method was used to create the circular pattern.  The fabricated circular arrays were 

arranged in a trilayer structure of Ti/Co/SiO2, with respective thicknesses of ~20 nm for Ti, ~40 

nm for Co, and ~20 nm for the SiO2 layer to prevent oxidation. The layer thicknesses were 

monitored during growth using a quartz balance. The circular layered structure was grown by e-

beam evaporation in a UHV system. The base pressure was in the range of 1×10−8 torr. The 

evaporation pressure was less than 5×10−7 torr. By a lift-off process, the photoresist was removed 

and dots with designed sizes remained on top of the Si surface. 

To examine the topography and magnetic images of the samples, we used a Bruker Dimension 

Icon® Atomic Force Microscope (AFM) at room temperature, performing MFM in constant height 

mode (single pass).  In the MFM experiment, we employed the AC mode of the instrument to 

detect the magnetic forces between the cantilever tip and the surface of circular dots under ambient 

conditions. To mitigate the impact of stray fields, we utilized a low-moment CoCr tip. The tip-to-

surface distance was maintained within the range of 20-30 nm. 

 

TABLE I: The micromagnetic parameters, carrier density, spin polarization, and ordinary 

Hall coefficient used to calculate the topological charge and Topological Hall effect [34, 36, 47]. 

Substance Ae µ0Ms  K1 Tc Rcoh P n R0 = 1/ne 

 (pJ/m) (T) (MJ/m3) (K) (nm) - (1/cm3) (m3/C) 

Toy Model 11 2.3 0.2 - 12 - - - 

Co 10.3 1.76 0.53 1388 10 0.45 9  1022 5  1022 

Fe 21 2.15 0.048 1043 11.7 0.4 8.45  1022 7.38  10-11 

Ni 7.69 0.61 − 0.0048 631 24.7 0.4 9.1  1022 −6.8  1022 

III. Calculations and Results 

The topological spin textures can develop in nanoparticles of various shapes, as depicted in 

Figure 2. All structures in Fig. 2 exhibit axial symmetry, that is, the magnetic easy axis is the c-

axis along the z-direction, and C3, C4, or C∞ rotations reproduce the original spin structure 

respectively. Equation (1) means that the Berry curvature and topological charge are unique 

functions of the spin structure S(r), which is determined by the magnetic interactions and sample 

geometry. We represent the S(r) with the following expression [28] 

 

S(r) = sin(r) cos(r) ex + sin(r)cos(r) ey + cos(r)ez.   (4) 

 

Here, ex, ey, and ez are unit vectors along the x, y, and z directions, respectively, and r = (x2 + 

y2)1/2. The angles (r) and Φ(r) represent the polar and azimuthal angles, respectively. The flower 

state and the curling state both exhibit slight deviations from the homogeneous magnetization 

along the easy axis (z-axis). The xy component of S can be written as 

 

Sxy(r) = sin(r)cos(r) ex + sin(r)cos(r) ey,    (5) 

 

corresponds to the radial direction for the flower state and the azimuthal direction for the curling 

state. Utilizing cylindrical coordinates (r = (ρ, φ, z)), we can express the flower state and the curling 

state using (r)= φ and (r)= φ ± π/2 respectively. To better visualize these states, we present the 
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vector 3D plot for the flower state without any helicity ( = 0) (r)= φ and for the curling state 

with finite helicity ( = ±π/2) (r) = φ ± π/2 in Figs. 1(e-f) and Fig. S1. In cylindrical coordinates, 

we can write S = Sxy(r) eR + Sz ez = sin(r)eρ + Sz ez, where eR = cos(r) ex + sin(r)ey and Sxy(r) 

= sin(r). The energy functional for magnetic nanoparticles, considering a small deviation from 

the easy axis, can be expressed as (for further details, refer to the supplemental Material [48]): 

 

ℰ  =  


 








Ae (Sxy(r))2 + K (Sxy(r))2 + 
1

2
 µo (H – Hd) Ms Sxy(r)2 − 

1

2
 µo Ms HF sin  dV. (6) 

In Eq. (6), the demagnetization field Hd(M) = – DMz  along the z-axis results in a flux closure 

state resembling a curling. On the other hand, the demagnetization field HF at the edges or corners 

leads to a slight tilt of the spin representing nonuniform magnetization inside the nanoparticles. 

Notably, in nanoparticles with a flower state, the curling state does not exist (Hd ≈ 0), and in the 

presence of a curling state, there won't be any flower state (HF = 0) [29].  

The physics of spin texture in nanoparticles involves competition between different energy 

terms in Eq. 3. In very small nanoparticles (R < < Rcoh), the exchange energy Ae(∇S)2 ~ Ae/R
2 

dominates and (r) approaches zero as shown in Figs. 2(b, c), where R is the radius of the particle. 

The gradient term effectively suppresses magnetization inhomogeneities, scaling as 1/R2. 

However, as the particle size increases, nonuniform spin configurations emerge, exemplified by 

the top views in Figs. 2(e-f). This non-uniform state is referred to as the "flower state," in which 

the spins S(r) near the particle's edges form an angle Θ(r) with the symmetry axis [27, 29, 34].  As 

the radius further increases to a coherent radius Rcoh flower-state [29,31] competes against other 

spin states, such as curling states due to magnetostatic flux closure and decrease in energy density 

Ae (∇S)2 which tends to keep spin parallel[27,29,30,31,33,34,49]. For R > Rcoh the nucleation is 

dominated by flux closure and realized by magnetization curling; in general flux closure is 

favorable as it decreases the energy of the system but competes against the exchange interaction.  

Rcoh depends on magnetic material parameters and for sphere and cylinder it is defined as (Rcoh)sphere 

= (5.09)*lex and (Rcoh)cylinder = (3.36)*lex respectively, where lex = (Ae/µoMs
2)1/2  is the exchange 

length[37,50].   It is unrelated to the single-domain size RSD, which can be much larger than Rcoh 

[34]. As shown in Figs. 1(e, f), the flower state and curling state can be viewed as the small part 

of Neel and Bloch Skyrimions near the center, respectively, so their topological charge Q is less 

than ½. In the subsequent sections, we will investigate Q and the topological Hall effect associated 

with the flower state and curling state, respectively. 

A. Flower State 

 The flower state is predominantly observed in non-spherical particles, ideally cubes because 

the magnetization on these edges rotates away from the parallel orientation [31, 37]. In our study, 

we investigated the function Θ(r) as a function of particle size and external magnetic field. The 

spin structure S(r) was determined by minimizing the micromagnetic (free) energy represented by 

the equation (6): 

ℰ = ∫dV.      (7) 

Here, the energy density η includes contributions from the exchange, anisotropy, Zeeman, 

and, for the flower-state contribution as described in Eq. (6). In general, the solution of the 

nonlinear differential equation can be done only numerically. The numerically calculated Θ(r) 

within the nanoparticle in Fig. S2(a) shows that the spins exhibit a 'radial' symmetry, tilting away 
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from the z-axis. The tilt angle increases with the distance from the center, illustrated by the spins 

at the particle edges or corners. 

To gain insight into the physical aspects in a semi-quantitative manner, we performed 

analytical calculations based on a set of simplifications to find the tilt angle (R) at the edge in a 

magnetic nanoparticle of radius R. Firstly, we employed an approximate volume-averaging 

technique to simplify the energy integral as ∫ η dV = <η> V, where <η> represents the average 

energy density. Next, we minimized <η> with respect to Θ(R), which denotes the polar angle of 

the magnetization at the particle edges or corners; the length of the blue arrows in Fig. 2(d) is given 

by sinΘ(R). Determining the precise value of the average <η> is highly challenging as it requires 

knowledge of S(r). However, S(r) is subject to certain constraints (normalization and symmetry) 

and is approximately known for several cases. By assuming small Θ(R), we find (see 

supplementary material Eq. S11-13 [48]) 

 

<> = 






Ae

R2 + 








K + 
µo

2
 Ms H (sin2(R)) – 

µo

2  Ms HF sin(R).   (8) 

 

 The interatomic exchange, ℰA = Ae(∇S)2 scale as Ae/R
2(Sxy(r) 2) = Ae/R

2(sin2(R)), the 2nd 

and 3rd terms are anisotropy and Zeeman interaction contributions. The last term is the flower-state 

energy correction (HF) due to nonuniform magnetization in Fig. 2(a). The flower state causes an 

xy component of the magnetostatic selfinteraction. Essentially, the xy component of the stray field 

(green lines in Fig. 2(a)) contributes a Zeeman-type demagnetization energy, µoHFMs|Sxy| ∝ µo Ms 

HF sin(R). The parameter HF depends on the shape of the particles, especially on the cross-

section, but is generally comparable to, though somewhat smaller than, the saturation 

magnetization Ms. While this field is zero for homogeneously magnetized ellipsoids, it is nonzero 

for magnetized particles of arbitrary shape (see Fig. 2). Overall, the flower state reduces the 

selfinteraction energy compared with the homogeneous state. The selfinteraction is Ed = 

−µoM(r)·Hd(M(r))/2. For homogeneous state Ed = µoDM2/2 whereas for flower state, Ed < 

µoDM2/2 due to tilted magnetization. 

 To identify the stable state, we minimize <η> using Eq. (8) with respect to Θ(R) for specific 

nanoparticles of radius R. As Eq. (8) is quadratic in sinΘ(R), the minimization process becomes 

straightforward. Explicitly, one has 

sin(R)= 
µo Ms HF 

 
4 Ae

R2  + 4 K + 2µo Ms H

.    (9) 

In Eq. (9), HF is positive, meaning that the magnetization has a component pointing away 

from the symmetry axis. Eq. (9) also shows that for small particles Θ(R) 0 as R  0 and Θ(R) 

saturates when R  . Essentially, a larger (R) requires smaller exchange energy, anisotropy 

energy, and Zeeman energy, but larger selfinteraction energy. It is also clear that when the external 

field H is large enough, sin(R) diverges. Θ(R) for nanoparticles of different radius is plotted in 

Fig. S2(b).  

The Berry curvature can be determined through the application of Eq. (1) with respect to the 

S(r). Upon integrating the Berry curvature across the magnetic particle, the topological charge for 

the flower state can be found as 
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Q = 
1

 
Θ(R)= 

1

 
sin−1(

µo Ms HF 

 
4 Ae

R2  + 4 K + 2 µo Ms H

).   (10) 

We conducted a comprehensive study on the topological charge, investigating its variation 

with particle radius at zero magnetic fields and with magnetic fields. Our findings are plotted in 

Figure 3(a) and Figure 3(b) for Q. Figure 3(a) exhibits a significant observation: for particles with 

radii much smaller than the characteristic coherence radius (R << Rcoh), the topological charge 

remains nearly zero due to dominant exchange term (Ae/R
2). However, as the particle size reaches 

a certain threshold, the topological charge undergoes a rapid increase and then gradually saturates 

near R = Rcoh. At this point, the flower state ceases to exist, and instead, curling due to self-

interaction becomes prominent. Although the specific transition size is influenced by 

micromagnetic parameters, we can qualitatively comprehend the overall trend using Eq. (9) and 

(10). 

In Figure 3(b), we present the topological charge as a function of the magnetic field. Even in 

the high-field state, the system exhibits flower states akin to those depicted in Figs. 2(d-f), but with 

a small Θ they closely resemble uniform magnetization as shown in Figs. 2(b-c). Notably, just 

before the magnetization reversal, the topological charge Q reaches its maximum value due to an 

increase in Θ(R). Furthermore, we calculated the emergent magnetic field due to the flower state 

in cylindrical nanoparticles at different positions in the xy plane, as shown in Fig. 4(a). 

B. Magnetization Curling 

Magnetostatic interactions tend to favor a flux closure state (·M = 0) over magnetic poles 

(·M ≠ 0) [33, 35]. During magnetization reversal, the "curling mode" emerges at the nucleation 

field when the particle radius exceeds Rcoh. The curling state has finite helicity, and it represents 

the three-dimensional topological object [51]. Due to the flux closure property, the curling state 

does not require a correction to the self-interaction energy, as seen in the flower state (i.e., HF = 

0). Instead, the demagnetization field Hd(M(r)) provides the magnetostatic self-interaction 

necessary for flux closure. As the size of nanoparticles increases, |Sxy(r)| increases, eventually 

leading to the transition into the curling state. Sxy(r) of the curling state can be obtained by 

minimizing the total energy Eq. (6) with respect to Sxy(r) [29] (see supplement Eq. S(14-17) [48]):  

 

(2Ae∇2 − 2 K1 − µo Ms H + µo D Ms
2) Sxy(r) = 0 .   (11) 

 

In Eq. (11), Hd =  – DM , where D represents the demagnetization factor contributing to flux 

closure. In the curling state, one has Φ(r) = φ ± π/2. Consequently, Eq. (4) can be rewritten as 

M(r)=Ms( −Sxy(ρ)sin(φ) ex + Sxy(ρ)cos(φ) ey + Szez) ,   (12) 

where Sxy(ρ) = sin(ρ) and Sz = cos(ρ). Substituting the curling mode from Eq. (12) into Eq. (11) 

results in 









ρ2
∂2

∂ρ2 + ρ
∂
∂ρ

 + (( )kρ 2 –1) Sxy(ρ) = 0 .    (13) 

where k is defined as 

k2 =  – 






2K1 + μ0 MsH – μ0 Ms

2D

2Ae
 .    (14) 
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Eq. (13) is a Bessel equation, and as a result, the curling mode in a cylinder can be expressed 

as Sxy(ρ) = J1(kρ)  or approximately sin ≈ Θ(ρ) = J1(kρ) . Fig. 1(e) and S1 illustrate the curling 

mode vector in a three-dimensional plot within a cylinder, using sin ≈ Θ(ρ) = J1(kρ) , Φ(r) = φ 

± π/2. Notice that we applied the boundary condition 
∂J1(kρ)

∂ρ
|ρ=R = 0 , which leads to kR = 1.841  

[29]. Moreover, when considering spherical particles with D = 1/3, the curling mode can be 

described using a spherical Bessel function Sxy(ρ) = j1(kρ) , where the smallest root is kR = 2.0816. 

The Berry curvature resulting from the curling in both the cylinder and sphere was calculated 

using Eq. (1) as follows 

(Bc(ρ))cylinder = 
J1(kρ)

ρ
∂J1(kρ)

 ∂ρ  ,                                                    (15) 

(Bc(r))sphere = 
j1(kr)

 r
∂j1(kr)

 ∂r  .                                                    (16)   

In Fig. 4(b), we present the emergent magnetic field Eq. (15) at the different points of the 

xy plane resulting from the curling mode of a cylinder. The Berry phase is obtained by integrating 

the Berry curvature: 

γcylinder = 2J1(kR)                                                          (17) 

γsphere = 2 j1(kR) .                                                         (18) 

Similarly, we can calculate the topological charge for curling mode at the nucleation field by 

employing  = 2πQ, as following 

Qcylinder = 
1

 
 J1(kR),     (19) 

Qsphere = 
1

 
  j1(kR).     (20) 

At a field greater than the nucleation field, the particle with edges (like a cylinder) will 

exhibit a flower state with a small Θ, corresponding to a low topological charge. As the magnetic 

field decreases to the nucleation field, H = Hn, the transitions from the flower state to the curling 

state represent the field-dependent topological phase transition [51]. The helicity, topological 

charge, and consequently THE at the nucleation field undergo a significant increase. However, for 

particles with R < Rcoh, where only the flower state exists, there is no curling state at the nucleation 

field and as a result, no abrupt change in the topological charge occurs. These observations are 

also confirmed in micromagnetic simulations, as discussed in the next section. The nucleation field 

at which the curling appears is given by [44] 

 

Hn = 
2K1

 μ0Ms
 – DMs + 

2Aeqi
2

 μ0MsR
2,     (21) 

 

with qi being the smallest root of Bessel functions. For cylinder qi = 1.841 and sphere qi = 2.0816. 

By applying boundary conditions for cylinders and spheres and utilizing Bessel functions, we can 

calculate the topological charge Q for both shapes at the nucleation field. The resulting values are 

presented in Table 2. 

TABLE II: Calculated topological charge Q at the nucleation field 

 D Smallest Root (kR) Bessel Function Q(Hn) 

Cylinder 0 1.841 J1(1.841) = 0.58 0.19 

Sphere 1/3 2.0816 j1(2.081) = 0.44 0.14 
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The topological charge listed above represents the exact value at the nucleation field for 

particles with R = Rcoh. To determine the corresponding topological Hall effect (THE) at the 

nucleation field and for various particles at their respective nucleation fields, we can use Eq. (2). 

As a result, in nanoparticles at the nucleation field Hn, THE is expected to exhibit a sudden increase 

to ρTHE(Hn) giving information related to nucleation field in nanoparticles. 

For the R > Rcoh where curling appears, Q has a constant value. It's because the curling mode 

is subject to the eigenvalue condition kR = 1.84 so Q = 0.5J1(1.84)2 = 0.19. This also applies to the 

following two considerations. The J1(kr) oscillations describe radial spin waves. The curling mode 

is a 1s state in the analogy of an electron in a cylinder, where the lowest-lying excited radial spin-

wave mode is a 2s state and has kR = 5.33 and Q = 0.06 showing the Berry curvature of electron 

scattering from excited states is tricky from the viewpoint of dynamics [44].  

As the R increases, Sxy(r) also increases, eventually leading to a transition from the curling 

mode to the vortex mode. With the growth in size, the long-range magnetostatic interaction 

between M(r) and M(r') results in in-plane spin configurations. Consequently, the magnetostatic 

self-interaction becomes more important compared with the short-range exchange interactions. 

 

C. Micromagnetic Simulations and Topological Hall Effect 

To investigate the topological spin textures in nanoparticles, we perform micromagnetic 

simulation, with a specific emphasis on regions close to Rcoh. The simulations involve various 

shapes, including cubes, cylinders, and spheres. To explore the effect of size on the system, the 

radii of the cylinders and spheres were altered, and the topological charge and THE for different 

radii were simulated. During the process of magnetization reversal, we conducted calculations to 

determine the normalized magnetization and topological charge Q(H). By applying Eq. (2) and the 

parameters in Table I, we utilized the obtained Q(H) data to compute the Hall resistivity ρTHE in 

cobalt (Co), iron (Fe), and nickel (Ni) spherical nanoparticles. 

For the flower state, the topological charge was calculated for R < Rcoh. The results 

demonstrated that the flower state only existed in either the cylinder or the ferromagnetic cube. In 

contrast, the sphere did not exhibit the flower state due to a small edge effect, where HF = 0. Fig. 

5 depicts the hysteresis of the topological charge and normalized magnetization as a function of 

the decreasing/reverse field magnetic field B(T) = μ0H in a cube with a length less than the coherent 

radius. At higher magnetic fields, the spins aligned in the direction of the magnetic field, resulting 

in a lower value of the Q and hence Θ. Near the coercivity field, Q reached its maximum value 

just before the reversal, corresponding to the point of minimum magnetization and maximum 

opening of the flower state. The topological charge Q changed sign during the reversal, indicating 

a shift from +Mz to −Mz as the applied field changed from Bmax to −Bmax. Furthermore, the total 

Berry phase () acquired by the electron is given by  = 2πQ. The maximum value of Q at the 

coercive field is found to be 0.1 (toy model), and consequently, the value of  = 0.2π. Therefore, 

we can deduce that the tilt angle at the coercive field in Figure 5 is  = 0.5() = 0.314. From 

micromagnetic simulation, the tilt angle can be calculated as a function field (H) = Q(H). 
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Upon investigating nanoparticles with larger sizes R > Rcoh, we observed a fascinating 

magnetization reversal phenomenon involving the curling mode. Utilizing micromagnetic 

simulations on our toy model of cylinders (Fig. 6) and spheres (Figs. 7-9) with radii greater than 

Rcoh, we discovered the emergence of the curling mode during magnetization reversal at the 

nucleation field. In the case of cylinders with R > Rcoh, we identified a field-dependent topological 

phase transition. Initially, the spin texture exhibited a flower state, where spins aligned with the 

direction of the strong external field, except for the tilted spins at the edges. However, the spin 

texture transitioned to a curling mode at nucleation field Hn with finite helicity, as indicated by the 

jump in magnetization and Q with core polarity aligned to the +z-axis. After magnetization 

reversal, the core polarity further realigned, now pointing in the direction of the −z-axis, 

accompanied by the curling mode of negative helicity. At high magnetic fields, the curling mode 

disappeared, and the system reverted to the flower state. It's worth noting that, unlike the cylinders, 

the spheres showed an absence of Q contributions at high magnetic fields, indicating the lack of a 

flower state in the spheres. 

We have conducted a comprehensive study to investigate the topological Hall resistivity Eq. 

(2) in spherical nanoparticles composed of Co, Fe, and Ni. This investigation was based on 

utilizing various parameters outlined in Table 1 and employing micromagnetic simulations, as 

displayed in Figs. 7-9. 

In the case of the spherical Co nanoparticle, intriguing phenomena were observed. Firstly, a 

curling state symmetric about the easy axis was observed at the nucleation field, as depicted in 

Fig. 7. As we decreased the reverse magnetic field, ρTHE increased indicating an increase in planar 

magnetization. Additionally, we observe the emergence of an intermediate vortex state, wherein 

the magnetization of the core was oriented perpendicular to the easy axis as shown in Fig. 7. 

Following the intermediate state, the normal curling mode appeared with opposite helicity. 

Figure 8 illustrates the ρTHE of Fe, wherein intermediate states are absent. We observe that the 

magnetization curling state at the nucleation field. As the reverse field is decreased, the magnitude 

of Q increases, indicating an increase in the in-plane component Sxy(r). Once the reversal process 

begins, we observe the emergence of the curling mode with an opposite helicity. Finally, at high 

magnetic fields, the magnetic particles eventually reach saturation. 

For spherical Ni nanoparticles, its negative anisotropy adds an intriguing dimension to 

magnetization reversal and the study of ρTHE. Fig. 9 illustrates that at the nucleation field, the 

curling mode emerges with a different helicity compared to that of Co and Fe. Additionally, ρTHE 

exhibits an opposite sign, owing to the negative Hall coefficient. As the reverse field increases, 

ρTHE also increases and causes a reversal in the sign of the topological Hall effect during 

magnetization reversal. Overall, these findings related to ρTHE shed light on the complex behavior 

of nanoparticles with radius R > Rcoh during magnetization reversal, and highlight the importance 

of shape and size in determining their magnetic properties. 
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D. Magnetic Force Microscopy and Topological Hall Effect 

According to our calculations, it is clear that the single domain state leads to a finite emergent 

magnetic field and ρTHE. Moreover, our micromagnetic simulation, as shown in Figure 6, indicates 

that the flower state occurs at higher magnetic fields, while the curling state appears at lower fields, 

provided that the particle's radius is in a single domain. To investigate the topological charge in 

confined geometries more thoroughly, we conducted MFM measurements on circular dots made 

of cobalt. These measurements provided strong evidence supporting the existence of a vortex state, 

which is characterized by a core magnetization perpendicular to the plane. The MFM and AFM 

images are displayed in Figs. 10 and 11. In most of the circular nanodots, the MFM images exhibit 

a clear contrast between the center and the surrounding regions. The spins within the dots are 

aligned parallel to the plane, but at the dark spot, the spin aligns perpendicular to the plane, as 

shown in Fig. 10(b). Our micromagnetic simulation, as depicted in Fig. 10(c), also supports the 

existence of a magnetic vortex state in cobalt nano disks with a thickness of 40 nm and diameters 

up to 480 nm. This unique spin configuration in nanodots emerges when the dot thickness becomes 

smaller than the dot diameter, causing all spins to align in the plane, forming a vortex. It is worth 

noting that while the area of the dark region is relatively small for vortex states in materials like 

permalloy [49, 52], the large anisotropy of cobalt results in a significantly larger dark spot area in 

the middle of the single-domain magnetic state. In Fig. 10(b), the MFM image and micromagnetic 

simulations show the presence of a finite topological charge Q within the nano disk. As a result, 

we conducted calculations to determine the topological Hall resistivity, which yielded a low value 

of ρTHE = 3  10-3 nΩ cm. It is noteworthy that this resistivity value is particularly small, especially 

when considering the relatively large area of the nano disk.  

Since in Fig. 11, the nanoparticles are very close to each other, this gives rise to a small 

exchange interaction between neighboring nano disks and results in a tilted spin out of the plan at 

the edges. We performed a micromagnetic simulation of nano disks close to each other. Our results 

are shown in Fig. S5 and compared with Fig. 11(b).  

In Fig. S3, we observed that particles with a radius in the range of Rcoh < R < RSD, where 

RSD is the radius of a single domain, exhibit two distinct states at different magnetic fields. At a 

high magnetic field, the presence of a finite topological charge is attributed to flower states, 

whereas at a low field, the configuration represents vortex-like spin textures. To further explore 

the effects of an external magnetic field, we applied a 0.9T magnetic field perpendicular to the 

plane using permanent magnets. As shown in Fig. S7, the vortex-like state vanishes, and most of 

the spins align in the direction of the field, except at the edges where the spins are slightly tilted, 

revealing the edge effects characteristic of the flower state correction HF for the spins at the edges. 

IV. Summary 

We conducted a comprehensive investigation into the topological spin structures and the 

manifestation of electric transport in ferromagnetic nanoparticles, employing a combination of 

analytical calculations, micromagnetic simulations, and MFM imaging. Notably, in small 

nanoparticles with robust exchange stiffness, the typical flux closure state is absent and the flower 

state is present in particles with well-defined edges. To account for the flower state in 

nanoparticles, we introduced an energy correction term (HF) into the micromagnetic free energy 

to consider the stray fields at the edges. This energy correction leads to a spin tilt at the edges and 

gives a finite topological charge (Q). We made a distinction between ellipsoidal (spherical) and 



12 

 

nonellipsoidal (cubic and cylindrical) nanoparticles, with the latter exhibiting significant 

contributions to the topological charge from the flower state. We studied finite topological charge 

and THE, due to curling states both analytically and through micromagnetic simulations. The 

results unveiled a sudden jump in the Hall resistivity ρTHE, attributed to the topological Hall effect, 

occurring at the nucleation field. The manifestation of the topological Hall effect in Co, Fe, and 

Ni nanoparticles indicates a field-dependent topological phase transition from a uniform state to a 

curling state. These studies and results are in principle applicable to nanoparticles of all 

ferromagnetic material systems, suggesting application potentials. For instance, embedding 

individual magnetic particles in a nonmagnetic metallic matrix provides a potential experimental 

setup to explore these spin textures further in a wide range of ferromagnetic materials and for 

device applications in terms of their effect on electric transport. 
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Fig. 1.  (a) Three non-coplanar spins S1, S2 and S3 creates a solid angle Ω = S1.(S2S3) leads to 

nonzero Berry phase and topological charge Q. Topological spin textures in a two-

dimensional space which can be mapped onto a spherical surface: (b) and (c) are Bloch and 

Neel Skyrmions respectively, where the topological charge is Q = 1 [6,12,13]. (d) Spin 

vortex where Q = ½  [6, 13, 15]. (e) and (f) are curling and flower states respectively, where 

Q < ½. 
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Fig. 2.  Examples of spin structures in small nanoparticles: (a) stray field distribution in the middle 

and at the edges of a cylindrical nanoparticle, (b-c) uniform magnetization, (d) flower state 

in a cylindrical particle, (e-f) flower states in prismatic nanoparticles, (g-h) vortex states of 

opposite chirality and (j) mixed state. The spins S(r) are shown as blue arrows. 
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Fig. 3. Topological charge Q of magnetic nanoparticle particles with R < Rcoh. (a) Particle-size 

dependence in the absence of an external magnetic field, where Q increases with particle 

size before it saturates at R = Rcoh when flower state is replaced by curling state. (b) field 

dependence along half of the hysteresis loop, in which Q changes sign at the coercive field 

(Hc) with radius R = 10 nm i.e 0.83Rcoh.  
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Fig. 4. Emergent magnetic field sensed by itinerant electrons in a nanoparticle at different 

positions in zero external magnetic field. (a) Particle of R = 0.83Rcoh radius in a flower 

state. (b) Particle of R = 1.6Rcoh radius in a curling state. Note the significant increase in 

field due to curling state as compare to flower state due to topology associated with curling 

state helicity. 
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Fig. 5.  Micromagnetic simulations of magnetization M and topological charge Q for a cubic 

ferromagnetic particle with a radius R = 0.9Rcoh less than Rcoh. On the left is the field 

dependence of M and Q along half of the hysteresis loop, where Q in reaches the 

maximum values near the coercive field Hc, which agrees with our theoretical prediction 

Fig. 3(b) where finite HF responsible for a spin tilt at the edges. The deviation from the 

saturation appears just before the reversal shown in the inset. On the right are spin 

structures near Hc.  
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Fig. 6.  Micromagnetic simulations of magnetization M and topological charge Q in a 

ferromagnetic cylinder with a radius R = 1.2Rcoh greater than Rcoh. On the left is the field 

dependence of M and Q along half of the hysteresis loop, where jump in topological 

charge at nucleation field Hn represents the transition from flower state to curling state. 

On the right are spin structures at different stages in the hysteresis loop. 
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Fig. 7.  Micromagnetic simulations of magnetization M and topological Hall resistivity ρTHE in a 

spherical Co nanoparticle with radius R = 14 nm (R > Rcoh). On the left is the field 

dependence of M and ρTHE along half of the hysteresis loop. On the right is the spin 

structure at different stages in the hysteresis loop.  
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Fig. 8.  Micromagnetic simulations of magnetization M and topological Hall resistivity ρTHE in a 

spherical Fe nanoparticle with radius R = 11 nm (R > Rcoh). On the left is the field 

dependence of M and ρTHE along half of the hysteresis loop. On the right is the spin 

structure at different stages in the hysteresis loop. 
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Fig. 9.  Micromagnetic simulations of magnetization M and topological Hall resistivity ρTHE in a 

spherical Ni nanoparticle with radius R = 25 nm (R > Rcoh). On the left is the field 

dependence of M and ρTHE along half of the hysteresis loop. On the right is the spin 

structure at different stages in the hysteresis loop. 
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Fig. 10.   (a) AFM image for a circular nanodot of Co. (b) MFM image of the nanodot in (a) 

showing magnetic vortex core, (c) Micromagnetic simulation of Co nanodisk of 500 nm 

diameter and 40 nm height showing the presence of vortex state.  
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Fig. 11.  (a) AFM image for an array of circular nanodots of Co. (b) MFM image of the nanodots 

in (a) showing the vortex states. 


