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Recently a relationship between the Debye temperature ΘD and the superconducting transition
temperature Tc of conventional superconductors has been proposed [npj Quantum Materials 3, 59
(2018)]. The relationship indicates that Tc ≤ AΘD for phonon-mediated BCS superconductors,
with A being a pre-factor of order ∼ 0.1. In order to verify this bound, we train machine learning
(ML) models with 10,330 samples in the Materials Project database to predict ΘD. By applying
our ML models to 9,860 known superconductors in the NIMS SuperCon database, we find that the
conventional superconductors in the database indeed follow the proposed bound. We also perform
first-principles phonon calculations for H3S and LaH10 at 200 GPa. The calculation results indicate
that these high-pressure hydrides essentially saturate the bound of Tc versus ΘD.

I. INTRODUCTION

The Eliashberg theory1–3 describes frequency-
dependent phonon-mediated attractive interaction
between electron Cooper pairs, by taking into account
phonon dynamics and retardation effects. A key quantity
in the theory is the Eliashberg spectral function α2F (ω),
which is related to the electronic density of states
(DOS) near the Fermi level, the phonon spectra, and
the electron-phonon (el-ph) coupling matrix elements.
The Eliashberg function enables the determination of
the total (isotropic) el-ph coupling parameter λ, which
together with the effective Coulomb pseudopotential µ∗

(typically chosen to be between ∼ 0.1− 0.15) can be uti-
lized to estimate the Tc of conventional superconductors,
via analytical expressions such as the McMillan4, Allen-
Dynes5, or other related formula6, obtained by fittings
to numerical solutions of the Eliashberg equations.

The Bardeen-Cooper-Schrieffer (BCS) theory7,8 dic-

tates that Tc = 1.13ωce
− 1

λ , with ωc a characteristic
phonon frequency. In the weak coupling limit of small
λ, the Eliashberg theory Tc essentially reduces to the
BCS Tc (up to a modified pre-factor9,10). In the strong

coupling limit of large λ, it was shown that Tc ∝
√
λ

in the Eliashberg theory5. On the other hand, when λ
becomes very large, the characteristic phonon frequency
can be substantially re-normalized (softened)11–15, lead-
ing to a decrease in Tc. Moreover, in the presence of a
significantly large λ, superconductivity can be suppressed
by other instabilities such as charge density wave or by
the formation of heavy polarons (localized charge carrier
dressed by phonons)16–20, in which cases the Tc predicted
by the Eliashberg theory is not applicable. More recently,
determinant quantum Monte Carlo (DQMC) studies of
two-dimensional Holstein models21–24 have shown that
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the Eliashberg theory might already fail when λ ap-
proaches a critical value λcr ∼ O(1), without the forma-
tion of any instability. In these regards, Tc would remain
bounded even if λ can assume an arbitrarily large value.

Based on the DQMC results and the relationship be-
tween Tc and the Debye temperature ΘD for a few tens
of selected compounds, Esterlis et al. have proposed
that Tc ≤ AΘD for phonon-mediated superconductors25.
Here, A ∼ 0.1 is a material-independent upper limit,
while the actual material-specific ratio Tc/ΘD is deter-
mined by details of the band structure, el-ph coupling
strength, Coulomb interaction, etc. If the above rela-
tionship is generically applicable to all BCS supercon-
ductors, it has several important implications: (i) For
a material whose Tc is much smaller than the bound,
engineering el-ph or other properties might further en-
hance Tc; (ii) Near-room-temperature BCS superconduc-
tors (with Tc ≳ 250 K) may be achieved in materials with
ΘD ≳ 2, 500 K, which can typically occur in light-element
compounds under high pressure26–28. Therefore, it is an
important task to examine the proposed relationship be-
tween Tc and ΘD for more known BCS superconductors.

In this study, we employ data-driven approaches to
achieve the above task. Specifically, we develop machine
learning (ML) models to predict ΘD, and then compare
the resulting ΘD to the experimental Tc in the SuperCon
database29. Manual selection criteria and machine learn-
ing classification techniques are further utilized to sep-
arate conventional superconductors from others in the
database. We show that for nearly 2,000 conventional
superconductors, they all satisfy the bound of Esterlis et
al.25 Moreover, we perform first-principles phonon calcu-
lations to investigate H3S and LaH10 under 200 GPa, and
find that Tc ∼ 0.1 to 0.11 ΘD. This result indicates that
these high-pressure hydrides have essentially saturated
the proposed bound. Our study thereby suggests that
while it might be possible to slightly fine tune the pre-
factor A by engineering material properties via external
perturbations, it appears unlikely that Tc can increase to
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a value much larger than 0.1ΘD in BCS superconductors.

II. COMPUTATIONAL METHODS

A. Machine Learning Models

Data Acquisition. The open Materials Project (MP)
database30 contains calculated properties of over 145,000
materials. At the time of sourcing, 12,370 crystals were
present with documented elastic tensors in MP. We use
the Pymatgen package31,32 to interface with MP and
downselect 10,330 compounds to ensure that the train-
ing dataset includes only samples with adequate mechan-
ical properties. In particular, we first remove compounds
with elastic tensors which have negative eigenvalues (in-
dicative of mechanical instability), or with elastic con-
stants C12 and C13 greater than C11 (which results in
non-physical calculations for the bulk and shear mod-
uli). We also remove structures that potentially exist
only under high pressure, which is achieved by exclud-
ing compounds that have a unit-cell volume per atom
less than that of cubic diamond (which has the known
smallest unit-cell volume per atom at ambient pressure).
Finally, we remove 340 compounds that also exist in the
superconductor dataset discussed below. This set of 340
materials are used later for an unbiased evaluation of the
machine learning (ML) models (see the Results section).

The superconductor dataset under study is sourced
from the Japanese National Institute of Material Science
(NIMS) SuperCon database29. This database features
over 30,000 superconducting compound entries with el-
emental composition, experimental Tc, and journal ref-
erences. Many of these compounds have additional in-
formation such as their structural likeness (ABO3, Y123,
NaCl ...), lattice constants, and multiple measurements
with unique journal references. We first downselect from
the entire SuperCon database to samples with known
structural-likeness (from which we derive the crystal sys-
tem information as an ML model input feature). More-
over, compounds with multiple measurements of Tc (from
different journal references) that deviate by <10% are
consolidated into one sample with a simple-averaged
Tc, while those with >10% deviation are removed en-
tirely. The above downselection procedure results in a
dataset containing 9,860 unique superconducting com-
pounds with Tc and crystal symmetry group informa-
tion. This dataset with our ML predicted density and
Debye temperature information is stored in a JSON
file downloadable at github.com/condmatr/Debye-ML/
tree/main/superconductor_dataset.
Feature Generation. The ML training features are gen-

erated by using the MatMiner package33. We first gen-
erate features derivable from the composition, includ-
ing elemental fraction (for atoms H to Lr), elemental
statistics (mean and range for atomic mass, periodic ta-
ble column, periodic table row, atomic number, atomic
radii, and electronegativity), statistics for valence elec-

trons (mean valence electrons, and fraction of total va-
lence electrons in s, p, d, and f orbitals), according to
Meredig et al.34 Additionally, we include the transition
metal fraction (also derived from the composition), and
one-hot encoded crystal system (derived from the crystal
structure), as these are all congruent features existing in
the SuperCon dataset. One hot encoding converts cat-
egorical information into a numerical format for train-
ing machine learning models. For example, each cate-
gory value is converted into a new feature vector with
element values being 1 or 0, respectively for the pres-
ence or absence of a specific crystal system. In total, we
use 128 features to predict the density, and 129 features
(including additionally the predicted density) to predict
the Debye temperature. These features and the target
data for training the ML models are saved in a JSON
file downloadable at github.com/condmatr/Debye-ML/
tree/main/model_training_dataset.

Model Training, Validation, and Application. Our re-
gression models for the density and Debye temperature
are based on gradient-boosted trees, which is an ensemble
algorithm that builds decision trees sequentially and aims
at reducing the error of the previous tree at each itera-
tion. In particular, we utilize the XGBoost package35,
which has one of the best implementations of gradient
boosted trees algorithm due to its great performance for
regression and classification problems. We also test other
ensemble tree methods such as the random forests im-
plemented in Scikit-learn36,37, and find that the models
based on XGBoost show superior performance (at the
cost of not being parallelizable, since the tree is gradient
boosted one round at time), which is a result of additive
tree-building and post-tree pruning.

To train the ML models, we use grid search (with
over 4000 permutations) to tune the hyperparameters, in-
cluding the maximum tree depth, minimum samples per
node, ridge and lasso regularization coefficients, and loss-
based post-tree pruning. The tuning process is conducted
with a 10-fold cross-validation on a 85% training set ran-
domly split from the total dataset (with the remaining
15% being the test set). To prevent overfitting, we also
limit the minimum amount of samples per tree node to 30
and the maximum tree depth to 6, which leads to mod-
els that generalize better to new data. The Python code
needed to create the model features and implement our
models is available at github.com/condmatr/Debye-ML.

As discussed in the Results section, we impose manual
selection criteria based on the elemental composition to
separate BCS superconductors from the unconventional
ones. To check that our criteria are sufficient to separate
different classes of superconductors, we further develop
a classification model based on Scikit-learn’s implemen-
tation of linear discriminant analysis (LDA)36,37. LDA
is a supervised ML classification model, and it accom-
plishes the training by calculating intra-class and inter-
class scatter matrices for the set of samples with pre-
assigned class labels, and uses features of those sam-
ples to make new (LD) axes created by linear combina-



3

tions of the features to separate the classes in the latent
space. We apply LDA to samples in the superconductor
dataset belonging to different class labels, including the
“Cu and O” (cuprates), “iron-based” superconductors,
“lanthanide and actinide” superconductors, and “Oth-
ers”. We then score the classification by computing a
class-weighted F1 score (see the Results section).

B. First-Principles Calculations

First-principles calculations are based on density func-
tional theory (DFT) using the Vienna Ab initio Simu-
lation Package (VASP)38,39. The Monkhorst–Pack sam-
pling scheme40 is used with a Γ-centered k-point mesh,
having a sampling-point resolution of 0.02 × 2π per Å.
The convergence criteria of self-consistent and structural
relaxation calculations are set to 10−6 eV per unit cell
and 10−3 eV per Å, respectively. We adopt a planewave
cutoff energy of 363 eV, which is sufficient to converge the
DFT total energy difference within 10−4 eV per atom for
both H3S and LaH10. All calculations use the projector
augmented wave (PAW)41,42 pseudopotentials and the
Perdew–Burke–Ernzerhof generalized gradient approxi-
mation (GGA-PBE) functional43. Phonon spectra are
computed using the PHONOPY package44 with the fi-
nite displacement method on 4 × 4 × 4 supercells. Ade-
quate convergences of the force constants and the phonon
dispersion for both systems are carefully checked.

III. RESULTS & DISCUSSION

A. Machine Learning of Debye Temperature

There are various ways to determine the Debye tem-
perature ΘD, which is in general related to a material’s
phonon and mechanical properties. For the purpose of
training machine learning (ML) models with sufficient
target samples, we choose to compute ΘD from the mean
sound velocity vm using the method by Anderson et al.45:

ΘD =
ℏ
kB

[
6π2q

V0

] 1
3

vm, (1)

where q is the number of atoms in the unit cell, and V0

is the unit-cell volume. vm can be further expressed in
terms of the longitudinal and transverse sound velocities,
vl and vt, respectively:

vm =

(
1

3

(
2

v3t
+

1

v3l

))− 1
3

. (2)

vl and vt in turn are related to the mechanical properties:

vt =

√
G

ρ
, vl =

√
B + 4

3G

ρ
. (3)

Compound ΘD,v ΘD,p ΘD,e

MgB2 1025K 46 1044K 47 920K 48

C (cubic diamond) 2245K 49 2240K 50 2240K 51

TABLE I. Debye temperatures of MgB2 and C (cubic dia-
mond) determined from the sound velocity (ΘD,v), phonon
density of states (ΘD,p), and experiment (ΘD,e), respectively.

Here, G and B are respectively the shear and bulk mod-
uli; ρ is the density of the crystal. We note that ΘD

computed by the above method is consistent with those
determined from phonon calculations and experiments
(see TABLE I for a comparison).
Compared to lattice dynamics information such as

phonon spectra, static mechanical properties are more
commonly available in open materials database, which
thereby facilitates training ML models. In particular, we
consider 10,330 training samples downselected from the
Materials Project (MP)30 for ambient pressure condition
(see the Methods section), obtain their density informa-
tion ρ, and extract the G and K values based on the
elastic modulus tensors in MP. The final target data of
ΘD for each training sample is then determined by Eq. 3.
Figures 1(a) and 1(b) show respectively the resulting his-
togram distributions of ρ and ΘD for our 10,330 training
samples, randomly split into a 85% training set (blue
color) and a 15% test set (orange color).
With the target data, we train two separate ML mod-

els using gradient-boosted trees to predict respectively ρ
and ΘD. For the density, we generate 128 features based
on elemental fraction, compositional statistics, electronic
statistics, and one-hot encoded crystal system, as dis-
cussed in the Methods section. For the Debye tempera-
ture, we adopt the density as an additional feature (re-
sulting in a total of 129 features) to improve further the
model performance for predicting ΘD. To tune the hy-
perparameters of the gradient boosted trees, we use a
combined grid searches and cross validations on the train-
ing data set (see the Methods section for further details).
Figures 1(c) and 1(d) show the resulting model perfor-

mances for predicting ρ and ΘD, respectively. For model
evaluation, we use the associated coefficient of determina-
tion R2 score, which ranges between 0 (meaning no linear
relationship between the predicted and actual values) to
1 (meaning 100% accuracy in the prediction). The final
models achieve high scores of R2 = 0.981 and R2 = 0.939
on the test sets for predicting ρ and ΘD, respectively.
Among the 129 features used in the Debye temperature
model, the most important (non-elemental) features are
mean atomic weight and mean atomic number, which are
both negatively correlated with ΘD; that is, compounds
with low mean atomic mass and low mean atomic number
tend to exhibit a high Debye temperature, as anticipated.

To further test our ML models, we apply them to 340
materials that exist in both the Materials Project and the
SuperCon databases. We note that these 340 supercon-
ducting compounds were first removed on purpose from
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FIG. 1. Training data distribution and model validation for
gradient-boosted trees on 10,330 compounds from the Mate-
rials Project database. (a), (b) Histograms of the training
sets (blue color) and test sets (orange color) respectively for
the targets of density ρ and Debye temperature ΘD. (c), (d)
Scatter plots between the machine learning predictions (on
the y-axes) and the actual values (on the x-axes) respectively
for ρ and ΘD. The coefficient of determination R2 score is
used as the evaluation metric. Both models achieve high R2

scores in the training and test sets.

our target datasets prior to training the regression mod-
els for an unbiased evaluation. As shown in Fig. 2, our
regression models achieve R2 scores of 0.995 and 0.953
respectively for predicting ρ and ΘD. These results indi-
cate that the ML predictions are highly accurate even on
samples never seen by our models before.

FIG. 2. Evaluation of the density ρ and Debye temperature
ΘD machine learning models on 340 materials existing in both
the Materials Project and the SuperCon databases. These
materials were never seen by our models during the training.
The models achieve highly accurate predictions, with respec-
tive R2 scores (between the predicted and actual values) of
0.995 for ρ and 0.953 for ΘD.

B. Classification of Superconductors

The superconductors under study are sourced from
the SuperCon database29, from which we downselect
9,860 unique superconducting compounds with Tc and
symmetry-group information (see the Methods section).
The selected compounds in general consist of different su-
perconductor families, and we proceed by separating the
compounds into different classes, such as the cuprates,
iron pnictides and chalcogenides, heavy-fermion super-
conductors, and conventional phonon-mediated super-
conductors. We first use a manual selection based on the
elemental composition for classification. In particular,
we iteratively sort out compounds containing elements
Cu and O (the cuprates), then compounds containing
Fe but not Cu (iron-based superconductors), and finally
compounds containing lanthanide or actinide elements
(heavy-fermion superconductors); the remaining are la-
beled as “Others”, which in principle contain mostly con-
ventional BCS superconductors. This manual classifica-
tion is admittedly not 100% accurate. For example, some
unconventional superconductors like SrTiO3 may be clas-
sified into the “Others” category. Additionally, there are
cases where lanthanide and actinide compounds are more
likely BCS superconductors, such as LaH10 (present in
our data), which are typically only stable under high
pressure. We note that our ML model trained mainly
on ambient-pressure data does not take pressure as an
input feature. Therefore, the ML predicted ΘD for the
hydrides would be erroneously low. We will address the
high-pressure hydrides directly via first-principles calcu-
lations discussed later in this section.

To further test our manual classification scheme, we
employ the linear discriminant analysis (LDA) tech-
nique52. LDA is generally capable of constructing an R3

latent space with new axes made from linear combina-
tions of the training features, with the intent to separate
the preassigned classes as much as possible. Our LDA
model uses again the 129 features considered in the De-
bye temperature ML model, and is trained on 85% of the
samples from our superconductor dataset. After training,
the model is then tested on the remaining 15%. Figure
3(a) and 3(b) left columns show the resulting data dis-
tributions on the first and second LD axes, respectively
for the 85% training and the 15% test sets. The four
manually selected classes of superconductors are found
to be fairly well-separated in the latent space. To test
the classification quality, we resort to the confusion ma-
trix, where the diagonal elements represent the numbers
of correct class predictions, while the off-diagonal ele-
ments are those mislabeled by the classifier. As shown in
Fig. 3(a) and 3(b) right columns, the confusion matrices
(with the y-axis the actual class and the x-axis the pre-
dicted class) have large diagonal and small off-diagonal
values, indicating a majority of correct predictions.

For a quantitative measure, we also use the class-
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FIG. 3. Linear discriminant analysis (LDA) classification of
superconductors for the (a) training set (85%) and (b) test
set (15%). The LDA model achieves high class-weighted F1

scores of 0.973 and 0.980 respectively for the training and test
sets. The left columns show that different superconductor
families are well separated in the latent space spanned by the
first and second LD axes. The right columns show that the
confusion matrices (with the x-axis the predicted label and
the y-axis the true label) have predominant diagonal elements,
indicating a majority of correction classification predictions.

weighted F1-score:

F1 =

n∑
i=1

mi

M

tp

tp + 1
2 (fp + fn)

(4)

Here, mi is the number of samples in the i-th class, and
M(=

∑n
i=1 mi) is the total number of samples. tp (true

positive), fp (false positive), and fn (false negative) are
evaluated using the subset of samples in each class i.
The F1-score ranges between 0 (meaning no correction
classification) to 1 (meaning a perfect classifier). Our
LDA ML model achieves high class-weighted F1 scores
of 0.973 for the training set [Fig. 3(a)] and 0.980 for the
test set [Fig. 3(b)]. The results indicate that our classifi-
cation scheme captures the essential differences between
different families of superconductors based on the man-
ual selection criteria and the features utilized to train the
Debye temperature model.

C. Predicting Debye Temperature of
Superconductors

We next apply the ML models to predict the density
and Debye temperature for our selected superconductors.

FIG. 4. Scatter plots of experimental Tc versus ML predicted
Debye temperature ΘD for (a) 9,860 selected superconductors
(color-coded based on their class labels), and (b) compounds
classified as “Others” in our manual selection criteria, with
a majority of this class being BCS superconductors. The
dashed line indicates the relationship Tc = 0.1ΘD. In (b),
the MgB2 and the BaxK1−xBiO3 (BKBO) families of BCS
superconductors are further highlighted by blue and red edge
colors for discussion in the main text.

Figure 4(a) shows the resulting scatter plot of the pre-
dicted ΘD versus the experimental superconducting Tc

for all the 9,860 superconductors, which are further color-
coded according to their class labels. A linear dashed line
with Tc = 0.1ΘD is also plotted in Fig. 4 and serves as a
guide to the eye. It is seen that the compounds classified
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as the cuprates (Cu & O) and iron-based superconductors
have many entries that violate the bound Tc ≤ 0.1ΘD.
While the majority of the lanthanide and actinide super-
conductors fall below this bound, they also have some
exceptions with Tc ≫ 0.1ΘD. Overall, there is no clear
trend between Tc and ΘD in the three superconductor
families discussed above. In Fig. 4(b), we plot the rela-
tionship of Tc versus ΘD solely for compounds classified
as “Others” in our manual selection. This class contains
1,900 unique compounds with a majority being BCS su-
perconductors. The figure shows that all superconductors
in this class fall in the proposed bound by Esterlis et al.25

In the low Debye temperature regime (ΘD ≲ 400
K) of Fig. 4(b), some compounds reside in proximity
to the plotted bound, but still their Tc never exceeds
0.1ΘD. Notably, the BaxK1−xBiO3 (BKBO) supercon-
ductors [highlighted by red edge color in Fig. 4(b)] have
a predicted ΘD near 350 K, and their Tc is very close
to the proposed bound. The relatively high BCS Tc of
BKBO has been attributed to enhanced electron-phonon
couplings due to long-range Coulomb interaction (non-
local screening) or electron correlation53,54. Therefore,
exploring correlated BCS superconductors may help un-
cover new higher-Tc compounds. On the other hand, in
the higher Debye temperature regime (ΘD ≳ 400 K), the
experimental Tc is far away from the bound. For exam-
ple, MgB2 [highlighted by blue edge color in Fig. 4(b)] is
a BCS superconductor with the highest known Tc ∼ 39K-
42K55,56 at ambient pressure. Its ΘD ∼ 1000K results
in a Tc/ΘD ratio of only ∼ 0.04. Therefore, there is a
possibility of engineering electron-phonon or other prop-
erties to further enhance Tc for relatively high-ΘD BCS
superconductors, via for example strain, doping, and/or
external pressure.

D. First-Principles Phonon Calculations of
High-Pressure Hydrides

Finally, we discuss the relationship between Tc and ΘD

in the recently discovered high-pressure hydride (BCS)
superconductors. In particular, we focus on H3S and
LaH10 under an external pressure of 200 GPa, which have
experimentally reported Tc ∼ 203 K57 and Tc ∼ 250−260
K58,59, respectively. Since our machine learning mod-
els are not applicable for high pressure studies, here
we resort to first-principles calculations. We note that
Eq. 1 based on the mean sound velocity and mechanical
properties can substantially underestimate ΘD for sys-
tems near a structural phase transition. For example,
the superconducting sulfur hydride undergoes a struc-
tural transition from R3m to Im-3m symmetry near 150
GPa60. In lanthanum hydride, the most stable structure
near 200 GPa is of Fm-3m symmetry, but there also
exist several different phases of similar enthalpies61. In
these cases, the elastic constants computed in the pres-
sure range ∼ 150 − 200 GPa may exhibit a significant
softening behavior. Therefore, instead of using Eq. 1, we

perform direct first-principles phonon calculations to es-
timate the Debye temperature from the phonon density
of states (DOS) and the associated specific heat44,62,63.
Figures 5(a) and 5(b) left columns show respectively

the phonon dispersion spectra for H3S (Im-3m) and
LaH10 (Fm-3m) under 200 GPa. The spectra exhibit no
negative phonon modes, indicating dynamical stability
of the underlying crystal structure. The phonon band-
widths are ∼ 1750 cm−1 for H3S and ∼ 2250 cm−1 for
LaH10, which may serve as a (very rough) estimation
of ΘD. A more accurate ΘD can be determined from
the phonon DOS shown in Fig. 5 middle panels. In both
H3S and LaH10, the hydrogen projected DOS (PDOS) lie
at higher energy and are well separated from the lower-
energy PDOS of sulfur or lanthanum. Because of this
clear separation, a typical ω2 fit (with ω the phonon fre-
quency) using just the low-frequency phonon modes and
the area underneath the phonon DOS would underesti-
mate ΘD. As indicated by the red dashed lines in Fig.
5 middle panels, the ω2 fit leads to significantly smaller
values of ΘD = 1575 K (or Debye frequency ωD = 1054
cm−1) for H3S and ΘD = 1070 K (ωD = 743 cm−1)
for LaH10. These values are clearly smaller than the ex-
pected first-moment average of the phonon energies ⟨ω⟩,
which in our calculations are 1187 cm−1 and 1294 cm−1
respectively for H3S and LaH10. Therefore, a more sen-
sible and accurate alternative method to evaluate ΘD

based on the phonon spectra should be considered.
In systems where the phonon DOS show an apparent

frequency gap or exhibit multiple branches, one can de-
termine ΘD by fitting the computed cv (specific heat at
constant volume) from the phonon DOS directly to that
in the Debye model:

cv = 9NkB

(
T

ΘD

)3 ∫ ΘD/T

0

x4ex

(ex − 1)
2 dx. (5)

Here, N is the number of atoms in the unit cell multiplied
by the Avogadro’s number, and kB is the Boltzmann con-
stant. Figure 5 right panels show the computed cv from
the phonon DOS and its fit to the Debye model. The
fitting procedures lead to ΘD = 2, 061 K for H3S and
ΘD = 2, 269 K for LaH10, which are more consistent and
expected from a weighted average of the phonon energies.
The results indicate that Tc/ΘD ∼ 0.10 for H3S and 0.11
for LaH10. Therefore, these high-pressure hydrides es-
sentially saturate the proposed bound by Esterlis et al.25

It would be an interesting and important future study
to verify if other high-pressure hydrides such as CaH6

64

and LaBeH8
65 also have a Tc/ΘD ratio that either falls

within or resides close to the proposed bound.

IV. CONCLUSION

We have developed machine learning models to pre-
dict the Debye temperature ΘD for 9,860 superconduc-
tors and compared the values to their experimental su-
perconducting transition temperature Tc. In our dataset,
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FIG. 5. First-principles phonon calculations and Debye temperature analysis for (a) H3S (Im-3m) and (b) LaH10 (Fm-3m),
under 200 GPa. The left panel is the phonon dispersion; the middle panel is the phonon density of states (DOS) projected onto
each atom; the right panel is the specific heat from the phonon calculations and its fit to the Debye model. As discussed in
the main text, the Debye frequency ωD determined by a quadratic fit to the low-energy phonon modes and the phonon DOS is
shown as the red dashed line in the middle panel; ωD determined by a fit to the Debye model is indicated by the blue dashed
line. The Debye temperature is then calculated as ΘD = ℏωD/kB .

all the conventional phonon-mediated superconductors
(nearly 2,000 compounds) were found to satisfy the re-
lationship Tc ≤ AΘD, with A ∼ 0.125. We also have
performed first-principles phonon calculations to inves-
tigate H3S and LaH10 under 200 GPa, and found that
Tc ∼ 0.1 to 0.11 ΘD in these high-pressure hydrides.
Therefore, these results imply that while Tc might be fur-
ther engineered by external perturbations, it is unlikely
that Tc/ΘD can be made much larger than 0.1 in BCS
superconductors.

Currently, our machine learning model takes only com-
positional features and crystal system symmetry as in-
put. The model has not been trained using other struc-
tural information such as lattice parameters or atomic
positions, which will change with pressure. A more so-
phisticated model architecture like the Crystal Graph
Convolutional Neural Network (CGCNN)66 can take an
arbitrary crystal structure and learn from the connec-
tion of atoms to predict material properties. Therefore, it
could be an interesting future direction to train CGCNN-
like models that take pressure and/or structural informa-
tion as input for predicting BCS superconductors under
pressure. One limitation, however, is that high-pressure
data remain scarce in existing materials databases, so it
is also important to construct sufficient training data of
compressed crystal structures across a desired pressure

range in the future.

Our study also suggests a few possibilities to enhance
Tc of phonon-mediated superconductors. For example,
one may push Tc towards the bound by an enhanced elec-
tron density of states or electron-phonon couplings, due
to interaction or non-local screening effects in correlated
(BCS) superconductors, such as BaxK1−xBiO3. For ex-
isting materials with a high ΘD, their Tc is in general far
away from the bound, so there should be opportunity for
enhancing Tc by engineering the electron-phonon or other
properties, via doping, alloying, strain, or pressure. Fi-
nally, achieving room-temperature BCS superconductors
requires a corresponding high Debye temperature, which
can occur under high pressure, or in materials with a high
lattice thermal conductivity (high phonon frequency) or
superior mechanical properties (large elastic constants).
Machine learning discovery of these materials such as su-
perhard metals67 for new BCS superconductors might be
interesting areas of future studies.
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