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Lorentz reciprocity places important constraints on the response of systems to wave 

excitations, and surpassing these constraints is of both fundamental and applied interest. In 

the context of scattering, reciprocity requires that the total extinction of an object is identical 

when excited from opposite directions, regardless of the scatterer’s asymmetry. Here, we 

demonstrate that, by combining multiple scatterers that break time-reversal symmetry, this 

extinction symmetry can be largely violated. We consider spinning cylinders, demonstrating 

that nonreciprocity must be paired with broken parity symmetry to enable large extinction 

contrast. As a dramatic example, we show a system that strongly scatters when excited from 

one side, but it is cloaked for the opposite excitation. Our results pave the way for novel 

approaches to asymmetric audibility and scattering manipulation, and they may readily 

translate to other wave domains. 

 

Wave propagation in time-reversal symmetric systems obeys Lorentz reciprocity, a property first 

formulated in acoustics by Lord Rayleigh [1] and later in electromagnetism by Lorentz [2]. 

Reciprocity guarantees symmetric wave propagation between two points in space: after changing 

the source and observer, the received wave amplitude and phase are identical, independent of the 



complexity of the environment. A consequence of reciprocity of particular interest to the present 

work is that the extinction cross section, which describes the total power intercepted from an 

incident wave by a scatterer, has to be identical for excitations from opposite directions [3], 

independent of how asymmetric the scatterer may be. As a by-product, in the presence of material 

loss, asymmetric objects may have different scattering cross sections when excited from opposite 

sides [4], but that their total extinction (scattering plus absorption) must be identical, i.e., whatever 

difference in total scattered powers for excitation from opposite sides must be compensated by an 

opposite difference in absorption.  

 This extinction symmetry can be understood by considering the optical theorem, which 

dictates that the extinction cross section ext  is proportional to the forward scattering amplitude 

(0)f ,  ext 04 Im (0) /f k  , where 0k  is the wavenumber in the surrounding medium. Due to 

reciprocity, the amplitude and phase of forward transmission between source and observer must 

remain the same under their exchange, hence if we place the object on the axis between source and 

observer the forward scattering amplitude must also be independent of the incidence direction. As 

a byproduct, no passive object can be cloaked asymmetrically: ideally suppressing the scattering 

of an object from one side implies the absence of scattering and absorption, since absorption causes 

finite forward scattering in passive objects. Zero scattering and absorption, i.e., zero extinction, 

from one direction also requires zero extinction for excitations from the opposite side. 

 In this Letter, we aim at breaking this general constraint by considering spinning acoustic 

scatterers that break time-reversal symmetry [3,5]. We demonstrate that, under proper conditions, 

this extinction symmetry can be largely violated, and unidirectional cloaking can be enabled. 

Reciprocity can be broken by incorporating a bias that is odd under time-reversal, such as a 

magnetic field combined with gyromagnetic materials in optics. In acoustics, temporal modulation 



[6], nonlinear materials [7,8] and moving fluids [9-11] have been considered. Nonreciprocity 

combined to acoustic metamaterials has enabled new forms of sound-matter interactions, including 

nonreciprocal Willis coupling [12-15] and topological acoustics [16-21]. In the following, we 

break reciprocity in acoustics to violate extinction symmetry by considering arrays of spinning 

cylinders [22-25]. We derive the scattering coefficients and define a polarizability tensor for small 

cylinders, showing that a spinning cylinder supports a peculiar quasi-static resonance at 

approximately half the angular velocity of the cylinder. We then use the optical theorem to flesh 

out the requirements to induce asymmetric extinction. Finally, we consider an array of three 

spinning cylinders to demonstrate extreme contrast in extinction for opposite excitation directions, 

resulting in strong scattering from one direction but cloaking from the opposite direction. 

In Fig. 1a, we consider a system consisting of a rotating fluid with angular velocity  . 

Assuming that the fluid is inviscid, a fan generates a rotating fluid cylinder of radius sr , while 

0  outside the spinning core. This geometry has been investigated experimentally in [13], 

where the expression for the azimuthal velocity    ˆrv e  was verified (see [26] for possible 

implementations). We can derive the polarizability of a fluid rod rotating at speed  . The density 

and speed of sound are 0( )s   and 0( )sc c  for the cylinder and background medium, respectively. 

All angles in the following are defined between the corresponding vector direction and the x-axis. 

From the linearized Navier-Stokes equations in the adiabatic approximation (implying no 

temperature exchange), for a cylindrical radius  
22

02sr c  , the Mie scattering coefficient for 

a rotating fluid cylinder reads [26] 
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Here 0 0/k c  with   being the angular frequency of the impinging wave, 

    2 2 2 24 /m sM c ,    M m  and the auxiliary function  m m sR r  is given by 
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where  mJ z  is Bessel function of the first kind. It is worth noting that, although the choice of 

boundary conditions alters the expression of Eq. (2), it does not significantly affect the scattering 

features within in the sub-wavelength regime of interest (see Section 2 in [26] for more details). 

Fig. 1b shows the dispersion of the first three Mie coefficients. The zeroth order Mie coefficient 

is approximately two orders of magnitude smaller than the other two within the targeted frequency 

range, indicating that the system is dominated by the dipolar response if the cylinder radius is 

subwavelength. As a result, in the following we consider only the dipolar response, which can be 

conveniently described through the polarizability tensor  , relating the induced dipole moment 

vector D to the velocity field v of the impinging wave [26]: 
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Note that    
T

     (the superscript T represents the transpose of a matrix), indicating that 

the cylinder violates reciprocity [27]. As the cylinder itself is symmetric, the off-diagonal terms 

arise due to the rotation, and indeed it is straightforward to verify that under a time-reversal 

operation the tensor is symmetric:    
T

    . 

In the long-wavelength limit and under the assumption that the cylinder and background 

media are the same, we obtain the interesting result 
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Eq. (4) indicates that a quasi-static resonance can arise without the need for impedance mismatch 

at the cylinder boundary. This rotation-induced resonance has frequency res  obeying 
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derived by requiring that the real part of the denominator of 1
  vanishes. Eq. (5) can be further 

approximated using  
4

0 1sr c , which results in /2res  [26]. Hence, despite being made 

of the same material as the background, a small spinning cylinder strongly scatters at frequencies 

half the angular spinning frequency. In other words, the rotation of a fluid drastically changes the 

material effective properties around half the spinning frequency in the quasi-static regime. The 

result is consistent with the numerical calculations in Fig. 1b, which highlight a strong resonant 

response for 1
  at 100 Hz, due to the rotation. The large contrast between 1

  and 1
  is another 

manifestation of broken symmetry due to spin. As it may be expected, the angular order spinning 

against the fluid rotation is the one being amplified, as it feels a stronger Doppler shift due to the 

faster relative velocity.  



 

Fig. 1: (a) Schematic geometry. The spinning fluid is generated by a rotating fan. (b) Mie scattering coefficients 

for the -1, 0, and 1 angular scattering orders for 2 200   rad/s. For a small spinning rod, the 1m    

components are at least one order of magnitude larger than the others, with a clear resonance for one handedness.  

(c) ext
 and ext

 normalized to the geometrical cross section, calculated using the dipole approximation, Mie 

theory, and numerically with COMSOL Multiphysics. The dipolar approximation (shown in blue) overlaps with 

Mie theory, as expected due to the dominance of the 1  angular channels. Importantly, ext
 and ext

 also overlap 

for all curves, indicating that, for a single spinning cylinder, the response is necessarily symmetric. 

 

Under excitation with an incident plane wave, Fig. 1c shows the left-to-right and right-to-left 

extinction cross section ( ext 
 and ext 

) calculated through the dipole approximation (DA), Mie 

scattering theory, and numerically with COMSOL Multiphysics. Despite breaking time-reversal 

symmetry, there is no sign of nonreciprocity: the curves for ext 
 and ext 

 cannot be distinguished. 

This is because a single spinning object is back to its original state after 2   seconds, which 

only causes a phase difference in the scattered field for opposite excitations, preserving the same 

scattering amplitude. To achieve asymmetric extinction, we need to also break parity symmetry, 

hence at least two spinning cylinders (or an asymmetric geometry) are required. Next, we consider 



N rotating cylinders located at separate positions at a distance jk j kr  r r . Their dressed dipole 

moments can be written as 
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Here, the normalized velocity fields at position j equals 
   cos ,sinj inc

Ti

inc ince
 

  , where the phase 

 
10 cosj j inc rk r     and inc  is the incident angle. The incident pressure amplitude is assumed 

to be unity. The Green’s tensor jkG  yields the velocity field of one dipole at the location of the 

other one, and in the long wavelength approximation ( 0 1jkk r ) is given by [26] 
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where 2 0( )jkH k r  denotes the Hankel function of first kind.  

We now specialize this formulation to the case of two counter-rotating cylinders, as shown 

in the inset of Fig. 2a. The angle jk , with , 1,2j k  , and j k , represents the angle between the 

distance vector jk j k r r r  and the x-axis. Note that the choice of jkr  cannot be too small, in order 

to avoid that higher-order modes, neglected by the dipole approximation, become significant in 

the near-field coupling. In this scenario, multiple scattering theory (MST) [28] may be exploited 

to incorporate higher-order angular modes. 

Once the dipole moments are obtained, the total far-field scattered wave scap   

asymptotically approaches   0ik r

totf e r  as r , with 
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Here    0 cos
jj j rk r      denotes the phase correction from position j to the origin [26]. To 

verify our theory, we compare the results of ext 
 and ext 

 calculated from Eq. (8), MST and 

COMSOL for 5sr   cm and 2 200   rad/s, and an angle 
1
45r    between the cylinders. 

The spinning cylinders and background medium are both considered to be air with density of 1.21 

kg/m3 and sound speed of 343 m/s. Fig. 2a shows the extinction cross sections for all three methods. 

There is a 2 Hz frequency shift between numerical and analytical results, due to the dipolar 

approximation in Eq. (1). However, apart from this shift, the cross sections are in excellent 

agreement. 

In contrast to the result for a single cylinder, we observe strong asymmetry at 95.4 and 102 

Hz (97.2 and 103.6 Hz for the COMSOL results). Hence, these spectra demonstrate violation of 

the extinction symmetry, as a result of breaking both reciprocity and parity symmetry. This effect 

can also be observed in the field patterns of Fig. 2b, with a significant difference in the scattered 

field when excited from –x or +x [26].  



 

Fig. 2: (a) ext
 and ext

 of two spinning cylinders rotating in opposite directions. We find two non-degenerate 

resonant peaks for either direction of incidence. (b) Scattered field profiles at the resonances, as calculated by the 

dipole approximation. A comparison with COMSOL is presented in [26].  

 

 To unveil the underlying physics behind the nonreciprocal extinction phenomenon, we 

analytically derived the difference between ext 
 and ext 

 based on the optical theorem [26,29]: 

           0ext 2 Re Imtot totk f f          , (9) 

where totf  is the contrast of total scattering amplitudes. For a structure made of two cylinders 

spinning in the same direction, totf  vanishes when 0 1k d ; in contrast, for opposite spinning 

directions the difference of +x and -x scattering amplitudes is [26] 
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where  2
2 0 /8Q i H k d . From a symmetry standpoint, a pair of identical spinning cylinders 

obeys C2 symmetry. Thus, incident waves from opposite direction see the same geometry, and 



induce the same scattered fields. However, a pair of counter-rotating cylinders breaks C2 symmetry, 

giving rise to an extinction cross section contrast from opposite directions, but only for appropriate 

geometrical configurations. For example, Eq. (10) indicates that totf vanishes as 
1
0r   and 

/2 , for which ext 
 and ext 

 become identical because of restored symmetry with respect to the 

excitation direction. We show the contrast in extinction in Fig. 3a,b, as a function of orientation 

and spinning velocity. The extinction contrast oscillates as the angle 
1r

 varies from 0 to 360 , 

reaching its maximum values when 
1
37r   , 143 , 217 , and 323 , consistent with Eq. (9). A 

180 rotation results in the same extinction contrast, as expected due to symmetry considerations. 

As it may be intuitively expected, these angles are close to the diagonal orientations with respect 

to the excitation. In fact, within the dipole approximation, the orientation for maximal contrast fall 

on the diagonal in the limit of d=0 – the slight deviation from the diagonal stems from retardation 

effects due to the nonzero separation. 

 

Fig. 3: (a) ext  difference ext ext ext       in terms of frequency and 
1r

 . (b) ext  contrast in terms of excitation 

frequency and spinning frequency  . The two maxima move further apart for increasing  , similar to Zeeman 

splitting. 

 

As shown in Fig. 3b, the dependence of the extinction difference is linearly proportional to the 

rotation velocity   within this frequency range. The difference between the contrast maxima and 



minima, obtained by fitting the linear dispersion is 0.034 /2 0.266f     , inducing a Zeeman-

like splitting in resonances induced by the spin, analogue to gyromagnetic phenomena [22], where 

the rotation velocity replaces the magnetic field strength.  

By increasing the number of cylinders, larger extinction contrast can be achieved. While it 

is cumbersome or even intractable to derive analytic expressions as the number of cylinders 

increases, Eq. (6) can readily be solved analytically to obtain the corresponding far-field response 

via Eq. (8). As shown in the inset of Fig. 4a, we consider two counter-clockwise-rotating rods 

located at  1.6,2 sr  and  1.6,2 sr  and one clockwise-rotating rod located at  6.5,6.5 / 2sr , 

where the radius of rods sr  is now 6 cm. These locations have been determined through a 

geometrical parameter sweep and they may be further optimized through inverse design techniques, 

particularly when more cylinders are considered. The ext 
 and ext 

 spectra for this configuration 

calculated with the dipole approximation are shown in Fig. 4a with dashed lines. At 98.150 Hz a 

strong extinction contrast is observed, with ext 
 over 10 times larger than ext 

. To verify that this 

contrast persists in the presence of higher-order modes, we also show results calculated with MST 

(solid lines). While incorporating higher-order modes induces a small frequency shift and narrower 

linewidths, the large contrast remains unchanged. The slight discrepancy arises because the 

cylinders are in close proximity (see [26] for the spectra calculated with COMSOL). The 

asymmetry in extinction can also clearly be observed in the field patterns around the rotating 

cylinders (Fig. 4b-c). Strong scattering occurs when the cylinders are excited from the left (Fig. 

4b), while the incident plane wave propagates almost unperturbed when excited from the right (Fig. 

4c), realizing a unidirectional cloaking response that largely violates the extinction symmetry 

obeyed by reciprocal scatterers. 



 

Fig. 4: (a) Extinction cross section spectra of the array depicted schematically in the inset, composed of three 

spinning rods. (b,c) The total field profiles are illustrated for the two directions of incidence, demonstrating strong 

extinction for excitation from the left, while nearly ideal cloaking for incidence from the right.  

 

In this Letter, we have investigated large nonreciprocal extinction in arrays of spinning cylinders. 

First, we have unveiled an exotic nonreciprocal quasi-static resonance arising at approximately 

half the spinning angular velocity. However, for a single cylinder ext 
 and ext 

 remain identical. 

This is to be expected, because despite spinning, a single cylinder does not break parity symmetry. 

Instead, two cylinders with opposite rotation directions and broken parity can largely break 

extinction symmetry. The underlying physics is analogous to Zeeman splitting in atomic systems 

in the presence of a magnetic field, with the distance between maximal extinction differences 

increasing linearly with the spin velocity  . Finally, we showed a configuration of three spinning 

cylinders supporting unidirectional transparency. Such asymmetric audibility may have various 

applications, such as in noise control and scattering manipulation. Given the universality of 

reciprocity and time-reversal symmetry in wave systems, we expect that our results can readily 

translate to other fields, including opportunities for asymmetric visibility [30]. 
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