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Extraordinary transmission in wave physics, such as in optics or acoustics, is related to the theory of metama-

terials in which resonances enhance wave transmission through apertures. Near-perfect acoustic transmission

can, however, exist for subwavelength apertures in a thin wall without resonance, strongly contrasting to the

situation in optics. We demonstrate this by experiments on airborne acoustic transmission through metal plates

perforated with a variable number of circular holes at constant filling fraction α∼0.12 in a waveguide. Dis-

sipative theory including interactions between holes shows that, at near-unity transmittance, the holes act as a

low-inertance metasurface, which is verified by simulations. We also present a simple equation for the lossless,

thin-wall case. Calculated enhancements in power transmission and acoustic energy density, which agree with

the maximum measured values ∼7 and 27 for constant α , are close to the lossless values 1/α and 1/(2α2),
respectively, and are also close to simulations, obtained at 1 kHz for one hundred 3.5-mm diameter holes in a

1-mm thick wall. Conditions for the maximum transmission enhancement in the general case are also obtained,

demonstrating the counterintuitive result that the enhancement is optimal at ∼50% power transmission.

I. INTRODUCTION

The transmission of waves through small subwavelength

holes in an opaque screen is a classic problem in optics and

acoustics.[1–5] The effect can be quantified by the transmis-

sion efficiency η , i.e., the ratio of the total transmitted power

to the incident power on the open hole area.[2–6] Extraordi-

nary transmission, i.e., for which η>1, has attracted signifi-

cant attention in the context of recent metamaterials research,

allowing the super-concentration of energy in regions much

smaller than the wavelength λ with subwavelength optical[6–

8] or acoustic[9–23] resonators, sometimes involving bare

holes. In particular, in acoustics, extraordinary transmission

has been demonstrated for sound in fluids [9–14, 16–21] and

solids [15, 22, 23]. In both optics and acoustics, all these

methods rely on resonances, which underpin the response of

metamaterials. In acoustics, these can be Fabry–Pérot reso-

nances in apertures, surface-wave resonances in grooves near

apertures, membrane resonances, or cavity resonances, for ex-

ample.

Although resonances are essential in optics to overcome

poor transmission through bare holes,[6–8] this is not so in

fluid acoustics:[3, 24–30] at low frequencies, a plate perfo-

rated with bare holes can transmit nearly all the sound nor-

mally incident on it, which has practical applications in sound

transparent screens.[31, 32] Equivalently, it suffices for a

given aperture filling fraction α to overcome poor transmis-

sion by simply reducing the hole radius r≪λ , provided that

the apertures are contained in a wall of thickness w≪λ . Low-

frequency perfect transmission in a multi-hole array is a well-

known phenomenon in acoustics. However, it has not been

systematically interpreted in terms of extraordinary transmis-

sion. With such a viewpoint, one can ascertain that extraor-

dinary transmission with η>1 was clearly observed in previ-

ous works.[27, 29, 31, 32] Phong et al., for example, demon-

strated extraordinary transmission with η≈5 and α down to

∼0.2,[29] whereas Mulholland and Parbrook achieved a sim-

ilar η with α∼0.003.[27] Although such non-resonant en-

hancements in transmission efficiency could potentially be an

excellent strategy for wideband efficient energy harvesting, a

detailed analysis of the acoustic extraordinary transmission, in

particular its optimization, has been lacking. Moreover, such

phenomena have not been analyzed in the context of meta-

material physics, which gives a more intuitive insight into the

mechanisms involved.

Here we reexamine the resonance-free enhancement in

acoustic transmission through bare holes, together with the

accompanying energy concentration, in terms of extraordi-

nary transmission of a metasurface, and elucidate the factors

that limit the maximum transmission efficiency. Furthermore,

we suggest more precise expressions for the metamaterial-

based model of the transmission than those introduced in

previous work,[18] including the effect of interactions be-

tween holes which is vital for accurate predictions, and ver-

ify our calculations using a theory based on far-field waves

and the use of boundary conditions that replace the effect of

viscous losses and interactions in the acoustic near field, as

well as by numerical simulation. We conduct experiments in

an air-filled tube containing plates with different numbers of

holes at constant filling fraction—a rarely used experimental

approach,[31]—recording transmission efficiencies up to ∼7

and an acoustic energy densification ∼30.
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II. METASURFACE THEORY OF ACOUSTIC

TRANSMISSION THROUGH HOLES

To analyse the transmission through a hole array, consider

a rigid wall of thickness w perforated with N identical circular

holes of radius r placed in a circular waveguide of diameter

D, under the assumptions w, r, D ≪ λ , where λ is the acous-

tic wavelength and α=Nπr2/S=4r2N/D2≪1 is the hole fill-

ing fraction, where S=πD2/4. The case N=1 is included in

this analysis. We consider the air plug in a hole to be ac-

celerated by the acoustic pressure difference across it owing

to plane-wavefront incidence. This lumped element approach

for metasurfaces was taken previously,[18] but we extend it to

include the near-field acoustic interaction between holes.[48]

The response to sinusoidal variations at angular frequency ω ,

∝exp(−iωt), is dictated by an equation depending on the ef-

fective mass Meff and damping coefficient b of each hole in

the form[18]

(p1 − p2)πr2 = Meffξ̈ + bξ̇ = (−iωMeff + b) ξ̇ , (1)

where p1 and p2 are the complex acoustic pressures just be-

fore and after the wall, and ξ̇ is the axial air-plug velocity.

Analytical expressions can be derived as follows, as shown

in detail in the Supplemental Material:

Meff = πr2w′ρ0

(

1+
w′′

w′
δ

r

)

, (2)

b = πrw′′ρ0ωδ , (3)

where skin depth δ=
√

2µ/ωρ0 (assumed ≪
√

2r),[33] and

ρ0 and µ are the density and dynamic viscosity of air.

The effective lengths w′=w+2∆w, where ∆w=8ψ(
√

α)r/3π ,

and w′′=w+2r, approximate forms introduced respectively in

Refs. 28 and 26, are related to the acoustic inertance (i.e.,

an inductive-like acoustic response) and the acoustic resis-

tance, respectively, the former being dependent on the Fok

function[28, 34–36] ψ(y) [49]—which accounts for the near-

field interactions between the deeply subwavelength separated

holes or with the waveguide walls—and the latter on the fluid

flow distortion in the vicinity of each hole. This treatment also

applies for N=1 owing to the interaction with the waveguide

wall.[29]. The Fok-function dependent normalized end cor-

rection ∆w/r for example takes the values 0.73, 0.48 and 0.11

for filling fraction α=0.01, 0.1 and 0.5, respectively.

The acoustic pressure fields, related to the amplitude reflec-

tion and transmission coefficients R and T , are p1=p+1 (1+
R) and p2=p+1 T , where p+1 , p+1 R and p+1 T are the com-

plex incident, reflected and transmitted waves. The normal

particle velocities just before and after the perforated wall

are u1=p+1 (1−R)/ρ0c0, where c0 is the sound velocity, and

u2=p+1 T/ρ0c0. Mass flux continuity[37] for a lumped air

plug implies ξ̇=u2/α and u1=u2, so Eq. (1) leads to

1− 1+R

T
=

iωMeff − b

πr2αρ0c0

, (4)

T =
1

1+ b−iωMeff

2πr2αρ0c0

, (5)

where 1−R=T , in agreement with the equations of Park et

al.[18] Substituting for Meff and b from Eqs. (2) and (3) and

assuming δ/r≪1, the power transmission and reflection co-

efficients, τ = |T |2 and Γ = |R|2, can be expressed in the form

τ =
1

1+ χ2

[

1− 2
δ

r

w′′

w′
(1+ χ)χ

1+ χ2

]

, (6)

Γ =
χ2

1+ χ2

[

1+ 2
δ

r

w′′

w′
1− χ

1+ χ2

]

, (7)

similar to the equations in Refs. 38 and 39 (see Supplemen-

tal Material), where χ=kw′/2α and k = ω/c0 is the wave

number. The absorption coefficient is A=1−(τ+Γ). This

metamaterial-based model is a leading-order approximation

for α≪1 and kw≪1 of a more precise model (see Supplemen-

tal Material) based on far-field waves and the use of boundary

conditions that replace the effect of viscous losses and inter-

actions in the acoustic near field.

It is instructive to consider the lossless case, b = 0, in

the limit of N sparsely arranged holes (α → 0), so that

Fok-function related near-field interactions can be neglected.

Equation (6) then reduces to

τ =
1

1+ 1
4

(

ωMeff

πr2αρ0c0

)2
=

1

1+ 1
4

(

kw
α

)2(
1+ 2∆w

w

)2
, (8)

where ∆w=(8/3π)r≈0.85r is the conventional Rayleigh end

correction.[3, 37] For a variable number of holes N, consider

decreasing their radius from an initial value r≫w while keep-

ing the filling fraction α and thickness w constant. While

r≫w, Eq. (8) reduces to

τ =
1

1+
(

8
3π

)2
( kr

α )2
. (9)

In this thin-wall, lossless regime one obtains a higher τ by

increasing N (i.e., decreasing r). Also, in this regime, τ=1 if

r→0, which is quite a startling result.

This counterintuitive behaviour—transmission increasing

with decreasing hole size at constant filling fraction α and

thickness w—is regulated by the corresponding decrease in

the end correction ∆w(r) in Eq. (8). To understand this, con-

sider the wall of holes as a metasurface characterized by the

acoustic inertance Ieff [37]—the equivalent of inertia for sound

waves—which is a measure of the pressure difference ∆p re-

quired to cause a unit change in the rate of change of volumet-

ric flowrate Q with time: Ieff≡∆p/Q̇=i(p1−p2)/(ωSu2).
To see how Ieff affects τ , consider the lossless case.

Substituting ξ̇=u2/α into Eq. (1) with damping coeffi-

cient b=0 yields Ieff=Meff/N(πr2)2. Ieff can be quantified

by the dimensionless variable ωIeff/Zg, where Zg=ρ0c0/S

is the waveguide acoustic impedance. Equation (8) for
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this lossless case predicts near-unity transmission when

ωMeff/(πr2αρ0c0)=ωIeff/Zg=(kw/α)(1+2∆w/w)≪1. In

other words, when τ≈1 the collection of holes approaches

the behaviour of a low-inertance metasurface. By means

of Eq. (2) and the relation u2=p2/ρ0c0, this translates as

ωIeff/Zg=i(p1−p2)/p2≪1, i.e., p1≈p2 in Eq. (1), as ex-

pected since the wall effectively becomes invisible in this

limit. In contrast, for a hole with a resonant membrane, near-

unity transmission is attained for zero Meff.[18]

The bare-hole lossless result τ=1 for α → 0 is not accu-

rate, for example, when δ/r is not negligible (δ=69 µm at

1 kHz, so this means when r<∼0.5 mm—see Supplemental

Material), in which case losses dominate, or when α is too

large (α>0.1),[29, 40] in which case near-field hole interac-

tion effects arise; Eq. (6) should then be used, but the general

trends are similar. The interaction effect increases the trans-

mittance except under conditions near kr→0, where the inter-

action does not affect the transmittance expressed in Eq. (6).

Therefore, for a constant filling fraction α , the hole interaction

effect mitigates the tendency for a decrease in transmittance

when kr is increased.

The case of a single hole deserves discussion: for a hole

in a deeply subwavelength diameter waveguide, the result is

the same as for an array of holes in an infinite plate with a

hole spacing d∼D equal to the waveguide diameter (see Sup-

plemental Material). In contrast, for a single hole in an infi-

nite, thin plate the transmission efficiency is η=8/π2≈0.81

in the limit r≪λ without losses.[4, 5, 27] In a deeply sub-

wavelength diameter waveguide, efficient transmission with

η≡τ/α≈1/α when τ≈1 cannot therefore be explained by

the linear superposition of the individual transmissions of

each hole. Instead the phenomenon owes its existence to far-

field constructive interference arising from the holes acting as

subwavelength-spaced sources in a plane.

III. EXPERIMENTAL RESULTS AND COMPARISON TO

THEORY AND SIMULATIONS

A. Experimental method

For experimental investigation, we use an acrylic waveg-

uide of inner diameter D=100 mm, thickness 5 mm and length

2.3 m, shown in Fig. 1(a), and 15 perforated aluminium plates

of thickness 1 mm, shown in Fig. 1(b), all with the same filling

fraction α=0.123. N, shown in order, corresponds to holes of

diameter 35.0, 24.8, 20.2, 17.5, 15.7, 14.3, 13.2, 12.4, 11.7,

11.1, 10.55, 9.05, 7.8, 5.0 and 3.5 mm (±0.1 mm). The plates

are clamped between two sections of tube with modeling clay,

as explained in the Supplemental Material.

Single-tone 1.0 kHz sound (λ=0.343 m, D=0.29λ , r≪λ )

is sent from a loudspeaker at one end of the tube at normal

acoustic incidence, using anechoic termination with micro-

perforated paper at the other end, showing a power reflec-

tion coefficient of ∼1%. τ and Γ are measured by obtain-

ing the SWR (Standing Wave Ratio) with the use of probe

(b)

N=1 2 3 4 5

6 7 8 9 10

11 15 20 49 100

120 mm

(a)

cross-section

p1 p2

2r

ξ

w

incident plane wavefronts

D

FIG. 1: (a) Schematic of the experimental geometry. Inset: cross-

sectional view of the perforated wall. The loudspeaker and anechoic

termination are not shown. (b) Image of the set of aluminium plates

used for mounting in the D=100 mm inner-diameter acrylic circular

waveguide. The number of holes N in each plate is indicated.

microphones.[37] Since D≪λ , only waves with plane wave-

fronts travel down the tube. We ignore the effect of lateral

or longitudinal resonances associated with the hole arrays and

the hole length w, respectively, owing to λ≫w and λ≫d.[12]

B. Experimental results for transmission and comparison to

theory and simulation

The experimental τ and Γ are plotted vs kr as dots in

Fig. 2(a) and (b), respectively. As expected, τ increases and

Γ decreases on decreasing kr. Strikingly, τ reaches a value of

0.88 for the smallest value of r=1.75 mm (kr=0.032), which

corresponds to N=100, even though only ∼12% of the tube is

open. We also plot in Fig. 2 with a blue solid line the predic-

tions of Eqs. (6) and (7), using literature values of the rele-

vant physical parameters of air at 20 ◦C and 1 atm: ρ0=1.20

kg/m3, c0=343 m/s, and µ=1.81× 10−5 kg/m · s.[41] Al-

though Eqs. (6) and (7) are within their range of validity

for all the perforated plates at 1 kHz, there is some devia-

tion between the predictions and experiment, particularly at

high kr. Structural vibration of the plates is probably re-

sponsible for this (see Supplemental Material). We predict

τ=0.94 for r=1.75 mm, close to the experimental value. The
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FIG. 2: (a) and (b) Transmittance τ and reflectance Γ vs

wavenumber-radius product kr of perforated walls for kw=0.018 at

1.0 kHz and constant filling fraction α=0.123: experimental data

(green dots), theory including losses and interactions between holes

(blue solid line), FEM (purple triangles), and lossless theory (black

dotted line). Inset: absorption coefficient A from theory includ-

ing losses and interactions, compared with FEM. (c) 3D and cross-

sectional views of the acoustic pressure field for N=1 and 100. The

cross-sectional views apply to planes bisecting the holes. The pres-

sure map for N =100 includes a zoom-in to show the uniform pres-

sure distribution. See animations.

predicted τ shows the maximum at τ=0.95 near kr=0.014

(r=0.77 mm∼w), owing to the increase in viscous damp-

ing on decreasing r. As previously discussed, for low in-

ertance Ieff, which implies near-unity transmission—for ex-

ample τ>0.95—we require (kw/α)(1+2∆w/w)<0.5 (from

Eq. (6) for no losses). At 1 kHz, where kw/α=0.15, this

condition is satisfied for N=49 and 100. Neglecting losses

but including hole interactions (dotted lines) gives poorer

agreement, as expected. Plots that also neglect near-field

hole interactions, i.e., according to Eq. (8), are given in

the Supplemental Material. The detailed arrangement of the

holes in the plates is not expected to significantly affect the

transmission,[29] but non-uniformity in the spatial distribu-

tion of the holes may cause residual deviations from the theory

(see the Supplemental Material).

To verify the theoretical approach for τ and Γ, we carried

out finite-element simulations (FEM) using COMSOL Multi-

physics, including losses and assuming rigid solids. (Thermal

losses are negligible compared to viscous losses. See Supple-

mental Material.) τ and Γ from FEM are shown by the purple

triangles in Fig. 2(a), (b), respectively. The agreement with

the theory including losses is very good. The absorption coef-

ficient A from FEM is shown in the inset of Fig. 2(b), which

is in accord with the theory based on A = 1− (τ +Γ). Experi-

mental results for A give larger values ∼0.1, owing we believe

to structural damping by the clay, which can also contribute to

a decrease in the observed τ .

Figure 2(c) shows the simulated acoustic pressure fields on

two planes parallel and perpendicular to the waveguide axis

(at the central position) for N=1 and 100. The front-view maps

indicate that there is a uniform acoustic pressure field distri-

bution inside the holes, as assumed in the analytical model.

C. Comparison of results for transmission efficiency with

theory and simulations

The transmission efficiency η=τ/α can be calculated from

Eq. (6) as follows:

η =
1

α (1+ χ2)

(

1− 2
δ

r

w′′

w′
(1+ χ)χ

1+ χ2

)

. (10)

Interestingly, all the plates used fall in the extraordinary-

transmission category, as shown by the plot of η vs kr in

Fig. 3(a) for the same four cases as in Fig. 2(a) and (b). The

experimental η increases with decreasing kr, reaching η= 7.2

at r=1.75 mm and N=100, compared to η=7.6 from the the-

ory including losses and hole interactions. To emphasize the

broadband nature of the transmission, we plot in Fig. 4(a) the

FEM- and analytically calculated η as a function of f for the

case of r=1.75 mm and N=100, both showing a broadband

response with a FWHM (full width at half maximum) trans-

mission bandwidth ∼5 kHz. This broadband behavior is in

stark contrast to the case of a resonant metasurface.[18] The

difference between analytical predictions and those of FEM

increases as the frequency increases because of the assump-

tion kr≪1 for the former.

Clearly there is nothing particularly ‘extraordinary’ about

this non-resonant η>1. Consider Eq. (10) for the lossless

case, which gives reasonable predictions. The inequality η>1

can then be recast as a condition on the acoustic wavelength:

λ > λc ≡
πw

√

α(1−α)

(

1+
16

3π
ψ(

√
α)

r

w

)

, (11)

where λc, which decreases as r decreases, is the onset

wavelength for extraordinary transmission. This emphasizes
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that longer wavelengths are conducive to larger η . For

r=17.5 mm, λc=0.158 m from Eq. (11). Therefore, η>1

for all the chosen values of r with λ=0.343 m, as in exper-

iment. The blue solid curve in Fig. 3(a) shows that for small

kr, owing to losses, η decreases below a maximum of 7.7 at

kr=0.014, which is itself below the τ=1 value η=1/α=8.16

(the horizontal dashed line in the figure). In contrast, in optics

for the case of an array of apertures in a thin perfect elec-

tric conductor, η∼αr2/λ 2→0 in the limit of deeply subwave-

length hole separations.[42] Acoustic waves, unlike their elec-

tromagnetic counterparts, are not strongly evanescent inside

subwavelength holes.
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FIG. 3: (a), (b) Transmission efficiency η and acoustic energy den-

sity enhancement factor ζ vs wavenumber-radius product kr for

kw=0.018 at 1.0 kHz and constant filling fraction α=0.123, with the

coloring scheme of Fig. 2(a), (b). The dashed lines in (a), (b) are the

τ=1 values η=1/α=8.16 and 1/2α2=33.3. (c) Normalized energy

density maps for different plates, plotted over the central bisecting

plane of the plates. Insets: maps over individual holes, including a

zoom-in on central and peripheral holes when N=49 and 100. See

animations.

D. Comparison of results for energy concentration with theory

and simulations

Extraordinary transmission through small holes implies

sound concentration, with possibilities in high-performance

acoustic energy harvesting [43, 44]. By the conservation of

energy, the average acoustic flux density is enhanced by a fac-

tor η in the holes. For applications, it important to also calcu-

late the acoustic energy density enhancement factor, ζ=εh/ε1,

where εh and ε1 are the spatiotemporally averaged energy den-

sities inside the holes and before the perforated wall, respec-

tively. Using a more precise theory for α , kr, δ/r≪1 (see

Supplemental Material):

ζ =
τ

2α2 (1+Γ)
≈ 1

2α2
, (12)

where the approximation is for the case τ≈1 (in which case

Γ≈0). In our geometry, 1/(2α2)=33.3.

ζ vs kr is shown in Fig. 3(b) for the same four cases, with

predictions from Eqs. (6), (7) and (12). The maximum ζ for

the theory including losses is 30.9 at kr=0.0117, whereas

from experiment using Eq. (12) and from theory including

losses we obtain 27.0 and 30.0, respectively, for N = 100

(kr = 0.032). This energy densification is significant in that

no resonances are involved.

Maps of the FEM energy density, normalized to the an-

alytically calculated value of εh, for N=1, 10, 45 and

100 are shown in Fig. 3(c). The energy density ε
(=Re[p]2/2ρ0c2

0+Re[u]2ρ0/2) inside the holes tends to in-

crease with the radial coordinate, reaching a maximum near

the hole edges, and with proximity to the waveguide wall;

spatial variations in the particle velocity u are responsible,

irrespective of the essentially uniform acoustic pressure dis-

tribution. In general, the acoustic particle velocity reaches

a maximum near the edge of a hole before dropping to zero

at the boundary, an effect previously predicted and noted in

holes with various geometries [45–47], and the average parti-

cle velocity for the outermost holes in the waveguide is higher

than that for the central holes (see Supplemental Material for

the details of acoustic-field distributions). That is, more air

is funneled to the circumferential regions of a single hole,

and, likewise, more air is funneled from the space outside

the hole pattern regions to the outer holes. From the above-

mentioned expression for ε and considering the quasi-uniform

pressure distributions, the spatial distributions of the acoustic

energy density across the hole cross sections follow a similar

trend to those of the corresponding particle-velocity distribu-

tions. These effects explain the residual differences between

the analytical predictions and the FEM results (see Supple-

mental Material and animations). As in the case of η , the

frequency-domain response, shown in Fig. 4(b) for the case

of r=1.75 mm and N=100, shows a broadband response with

a FWHM transmission bandwidth ∼3 kHz.
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FIG. 4: (a), (b) Predicted and simulated transmission efficiency η
and acoustic energy density enhancement factor ζ vs frequency f

for r=1.75 mm, N=100 and constant filling fraction α=0.123, with

the coloring scheme of Fig. 2(a), (b).

IV. CONDITIONS FOR OPTIMAL TRANSMISSION

EFFICIENCY

The maximum η for a given w and k can be analytically

calculated from Eq. (10) under the condition α→0 (ψ=1), us-

ing the approximation w′′/w′≈1 (see Supplemental Material

for all the details). In the lossless case, the transmission ef-

ficiency has an extremum for χ=1, giving optimal α=kw′/2

when τ= 0.5, which implies optimal η=1/(2α) in the limit

of small r. At 1 kHz and w=1 mm as in our experiment,

one obtains the optimal value η=55 when α=0.0092 and

r/w→0; losses reduce the optimal η to a value of 23 for

α=0.021, r/w=0.45 and τ=0.47. The transmission efficiency

η from Eq. (10) without approximation and the transmittance

τ from Eq. (6) are plotted as a function of kr and α as three-

dimensional graphs in Fig. 5(a) and (b), respectively, for the

case of f =1 kHz. In contrast to the condition of low-inertance

leading to maximum τ≈1, to optain optimal η=τ/α one re-

quires τ≈0.5 owing to the competing terms τ and α .

V. CONCLUSIONS

In conclusion, we have investigated optimal acoustic trans-

mission τ through perforated plates. We measure τ for dif-

fering hole number N at constant filling fraction and plate

thickness, for deeply subwavelength hole radius, spacing

and thickness. A metamaterial-based model including losses

and hole interactions—a leading-order approximation of an

acoustic theory based on far-field waves and boundary condi-

(a)

η

kw=0.018 (δ=69.3 μm)

α
kr

(b)

τ

kr

FIG. 5: (a), (b) Three-dimensional plots of the analytically calcu-

lated transmission efficiency η and transmittance τ vs filling frac-

tion α and wavenumber-radius product kr for kw=0.018 and viscous

skin depth δ=69.3 µm, appropriate for air at room temperature with

f =1 kHz, including hole interactions.

tions that account for viscous losses and interactions between

holes—has been developed, and is backed up by numerical

simulations.

For large N we show that a hole array can act as a low-

inertance metamaterial without resonance, thus explaining the

near-unity transmittance and a transmission efficiency η≈7

observed at 1 kHz for 100 holes of diameter 3.5 mm with

filling fraction α≈0.12, and demonstrate that η is close to

the optimum value as limited by viscosity and the chosen

α . We also derive an acoustic energy density enhancement

ζ≈27, and find the value of and conditions for the maximum

enhancement in transmission for a given wall thickness and

frequency. This leads to the remarkable result that, without

contraint on the filling fraction α , the condition for maximum

transmission efficiency η corresponds to the case of ∼50%

acoustic power transmission.

This work does not diminish the efforts of researchers seek-

ing to create acoustic extraordinary transmission by the use

of local resonances, but instead serves to underline that it

is not a narrow-band phenomenon restricted to resonant sys-

tems. We have also emphasized the differences to the opti-

cal case, for which non-resonant extraordinary transmission

through holes is not encountered. It would be interesting to re-
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produce the geometries of this Letter for resonant membrane-

covered holes in order to elucidate the trends there. And work

remains to further optimize η and ζ by judicious choice of the

hole geometry and shape, and to investigate applications to

sound transparent screens, for example for use at bank service

counters. Finally, and importantly, high energy acoustic den-

sification opens the way to the use of bare holes in wideband

energy harvesting, for example by the installation of induction

coils and actuators in the holes.[43]
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