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Abstract

The Dzyaloshinskii-Moriya interaction (DMI) is known to be responsible for multiple phenom-

ena in magnetic materials. In the conventional description as a perturbation of the super-exchange

interaction by the spin-orbit coupling, the strength of the DMI is only weakly sensitive to the ex-

ternal fields, making its control difficult in spintronic applications. In this work, we show that an

electrical modulation of the DMI may actually be possible in magnetic Weyl semimetals (WSMs).

Specifically, it is theoretically illustrated that an antisymmetric indirect spin-spin interaction iden-

tified recently as an alternative mechanism for the DMI can result in the desired sensitivity to

the external electric and magnetic fields via a redistribution of Weyl fermions among the nodes

of opposite chirality. This chiral anomaly enabled approach becomes particularly prominent in

the WSMs with inversion symmetry, where the conventional DMI is not allowed. Numerical esti-

mations suggest that moderate electric and magnetic fields of ∼ 103 − 104 V/cm and ∼1 T can

induce a sufficiently strong change in the DMI. The impact of this externally modulated DMI on

the manipulation of magnetic textures including the skyrmions in the WSMs is also discussed.

∗ kwk@ncsu.edu
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I. INTRODUCTION

Over the past decades, a range of exotic phenomena originated from the spin-orbit inter-

action was found to give a second wind to relativistic physics in the solids. An antisymmetric

super-exchange interaction in the form of Dzyaloshinskii-Moriya interaction (DMI) is one

such example for the non-trivial manifestation of this interaction [1, 2]. It explains the ap-

pearance of a weak magnetization caused by a tilt in the sublattice magnetizations of the

antiferromagnets without the intervention of an external magnetic field. The more prominent

effects of the DMI, on the other hand, relate to the formation of inhomogeneous magnetic

structures such as the helical magnetic textures and spin glass [3, 4]. Of particular interest

among them are the localized structures (e.g., the domain walls, solitons, or skyrmions),

where the strength of the DMI tends to exceed some critical values [5, 6]. Accordingly,

the problem of how to control/manipulate the DMI becomes especially critical for emerging

spintronic device applications. While a strain can be used to induce and control the DMI

[7, 8], it is generally more desirable if this can be achieved through the application of the

fields (particularly, the electric field) without causing the structural changes. However, the

influence of an external electric field is generally much smaller than the intra-atomic coun-

terparts in the conventional description of the DMI as a perturbation of the super-exchange

interaction by the spin-orbit coupling. This general statement remains the case even in the

instances showing a comparatively more robust dependence such as the modulation via the

field-induced structural distortion in a two-dimensional ferromagnet (FM) [9], structural

inversion asymmetry at the interface [10, 11], or defect migration [12], respectively, as well

as that via an electric current [13, 14]. Accordingly, it may be necessary to look for an

alternative mechanism of asymmetrical spin-spin coupling and the material system that can

provide the desired sensitivity to the fields.

One promising possibility is the Weyl semimetals (WSMs), where the indirect spin-spin

interaction via Weyl fermions supports the skew-symmetric spin-spin interaction (thus, a

potential origin of the DMI) along with the conventional Ruderman–Kittel–Kasuya–Yosida

(RKKY) isotropic exchange interaction [15–18]. Normally, the interference of indirect spin-

spin interactions caused by the reciprocal electron scattering between the nodes of opposite

chirality does not survive (i.e., full cancellation). Similarly, the intra-node spin-dependent

fermion relaxation in the WSM cannot induce the net DMI either through the compensation
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by the Weyl nodes of opposite chirality. An interesting point to note is that this symmetry

can be readily broken in the WSMs by the external electric and magnetic fields (i.e., E and

B, respectively) so long as these fields are not normal to each other. In the present study, we

show that the resulting imbalance in the Weyl node population (i.e., a direct manifestation

of the chiral anomaly) can become a mediator of the DMI between the remote spin pairs in

the WSMs. More precisely, the strength of the induced DMI is found to be proportional to a

vector relation dD(E·B), where the WSMmaterial parameters determine the constant vector

dD. Subsequent calculations show that a moderate electric field of around 103 − 104 V/cm

along with a magnetic field of∼1 T can produce the DMI sufficiently strong to modulate local

magnetic textures such as magnetic skyrmions. This remote RKKY-mediated mechanism

is expected to provide the dominant contribution to the DMI in the magnetic WSMs with

centrosymmetry.

II. THEORETICAL MODEL

A. Basic formulation

As a comprehensive analysis of the RKKY interaction in the WSMs is already available

in the literature [18], we can start by applying this approach to a FM WSM with a pair

of Weyl nodes (chirality χ = ±1) separated in the momentum space. In contrast to the

case of conventional massive electronic dispersion, the sum over the virtual Weyl fermions

diverges so long as the massless linear dispersion law persists with a constant Fermi velocity

vF . This ”ultraviolet” divergence is naturally resolved in the actual crystals, where the

electronic structure mimics the WSM only in the vicinity of the momentum space around

the Weyl points. As the contribution to the indirect spin-spin interaction is thought to be

small outside the linear region, a cutoff in energy Ec and correspondingly in momentum Λ

(= Ec/h̄vF ) can be introduced to limit the consideration only to the relevant range near

each Weyl node. This approximation based on the sharp cutoff Λ in momentum/energy is

considered adequate when describing the spin-spin interaction in intrinsic WSM magnets,

where local moments are rather densely populated (thus, on a relatively short-length scale)

[18]. An alternative treatment based on a full tight-binding band as it was done for magnetic

impurities in graphene [19] could make the calculation more accurate but is outside the scope
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of the current work.

The RKKY-type model provides an adequate description of the asymmetrical interaction

for the spin pair Sj and Sj′ located at lattice sites rj and rj′ in the following form

Hj,j′ = Dj,j′ · (Sj × Sj′), (1)

where the vector contribution of each Weyl node χ can be written as [18]

D
(χ)
j,j′ = χ

2(aΛ)6J2

(4π)4Ec
f

(
2µ

Ec
,Λrj,j′

)
r̂j,j′. (2)

Here, a, J , and µ denote the lattice constant, carrier-ion exchange interaction, and chemical

potential, respectively, rj,j′ = |rj − rj′|, and r̂j,j′ is a unit vector directed along rj − rj′.

The full expression for f(x, y) is rather complicated but can be well approximated by an

analytical function for x <
∼ 1:

f(x, y) ≈ x3ϕ(y), (3)

where

ϕ(y) = −π
sin[0.04y + y3/(40 + y2)]

1 + 0.22y3
. (4)

The oscillatory behavior predicted in the indirect DMI [Eq. (4)] differs substantially from

that associated with the RKKY interaction in the conventional crystals. For one, the os-

cillations start with f(x, y) → 0 at y ∼ rj,j′ → 0 and then become aperiodic reaching the

maximum at y ≡ Λrj,j′ ∼ 2.5. By contrast, the maximum of the indirect RKKY interaction

in the conventional magnets corresponds to the shortest inter-ion distance. In addition, the

chemical potential µ in Eq. (2) controls the amplitude of Dj,j′ but not the period of oscilla-

tions, whereas both are affected in the latter. Note that the simple analytical approximation

given above [Eq. (4)] represents the best fit to the actual dependence of ϕ(y) in the range

y <
∼ 15 relevant to the numerical calculation (consistent with the truncation discussed later

in Sec. III.B). For larger y (e.g., rj,j′ → ∞), ϕ(y) reveals a slower decay of y−2 [18], which

may be important in other applications of the remote DMI.

As expected, Eqs. (2) and (3) clearly illustrate the absence of the DMI in a centrosym-

metric WSM with an equal chemical potential for the Weyl cones. Namely, the + and −

signs of chirality χ would cancel exactly the contributions from each node for the given Weyl

pair. However, this is not the case if the external fields support an imbalance in the node

populations. As is well-known, such a possibility can be realized in a WSM of broken time
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reversal symmetry via the application of non-orthogonal electric and magnetic fields. These

fields induce a chiral current of spin-polarized Weyl fermions carrying the charge qe between

the Weyl cones of χ = ±1, and can establish an imbalance in the chemical potential between

the two nodes of opposite chirality (i.e., µ+ vs. µ−). While the inter-node fermion scattering

may diminish the net spin polarization, it is unlikely to cancel out the effect (i.e., the chiral

anomaly) completely. The resulting axial chemical potential µ5 = (µ+ − µ−)/2 becomes

proportional to the strengths of both fields.

In the case of a weak magnetic field (e.g., h̄vF qeB ≪ µ2
5) and a non-negligible temperature

T0 (in units of energy), the effect of a thermal population in the Landau levels needs to be

accounted for as [20, 21]

µ5 =
3h̄v3F q

2
eτ

2(πT0)2 + 6µ2
0

E ·B

c
, (5)

where µ0 = (µ+ + µ−)/2, c is the speed of light, and τ is the characteristic relaxation time

of the inter-node scattering. Then, the net non-zero contribution of both nodes to the DMI,

provided µ5 ≪ µ0, becomes

Dj,j′ = r̂j,j′
2(aΛ)6J2

(4π)4Ec

6µ2
0µ5

E3
c

ϕ
(
Λrj,j′

)
. (6)

Combining this expression with Eq. (5) defines the vector

Dj,j′ = r̂j,j′ ϕ
(
Λrj,j′

)
∆DM, (7)

where

∆DM =
18(aΛ)6J2µ2

0

(4π)4E4
c

h̄v3F q
2
eτ

(πT0)2 + 3µ2
0

E ·B

c
. (8)

As can be seen, an increase in the chemical potential can enhance the DMI while µ0 < T0,

beyond which point the dependence weakens and saturates as µ0 ≫ T0. More importantly,

the sign of ∆DM shows an explicit dependence on the polarity of the applied field. This

property selects the favorable twisting direction of the DMI effect (i.e., clockwise or counter-

clockwise), which is described in greater detail later in the discussion. The notation adopted

above supposes the Gaussian system of units; the SI system would impose c = 1 instead.

B. Application to micromagnetic simulations

The effect of the long-range RKKY-mediated DMI on the formation of inhomogeneous

magnetic texture can be efficiently studied via micromagnetic simulations. Since the prop-

erties in each discretized cell (located at n) are assumed to be homogeneous in the numerical
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modeling while the actual DMI is between two discrete atoms (i.e., located at lattice sites

rj and rj′), an approach that effectively averages these interactions is necessary. For this

end, let us consider a spin Sj in a cell n (i.e., j ∈ n). With the contributions from all other

Sj′ (for which 〈Sj′〉 denotes the mean value), the DMI-mediated energy of this spin Sj can

be expressed as

Ej = gµBBj · 〈Sj〉 =


∑

j′

[〈Sj′〉 ×Dj,j′]


 · 〈Sj〉. (9)

If the size of the magnetic texture sufficiently exceeds the cell dimension d (with volume Vs),

a slowly varying magnetization M(r) can be described approximately as a sum of magnetiza-

tionsM
n
homogeneous in each cell n. With the volume of Vs, the latter contains a finite num-

ber Ns of localized spins Sj contributing to the magnetization M
n
= −V −1

s

∑Ns

j gµB〈Sj〉,

where g and µB denote the g-factor of magnetic ions and Bohr magneton, respectively. In

addition, it can be further assumed that the mean values 〈Sj〉 of localized spins in a given

cell n are approximately the same; i.e., 〈Sj〉 ≈ −M
n
/νgµB ≡ 〈S

n
〉, where ν = Ns/Vs. Then,

the DMI among the spins belonging to the same cell becomes inactive according to Eq. (9).

As such, evaluation of the effective Dzyaloshinskii-Moriya (DM) field Bj in the above equa-

tion simply requires the consideration of the contributions from the spin ensemble outside

the given cell. This, in turn, allows the following expression for the DM field in terms of

magnetizations M
n
and M

n
′ :

Bj = −
Ms

ν(gµB)2

∑

n
′


m

n
′ ×

∑

j′∈n′

Dj,j′


 , (10)

where m
n
= M

n
/Ms is the unit vector directed along M

n
. It is implicitly assumed that the

magnitude of the magnetization is fixed at the saturation value Ms (= |M
n
| = |M

n
′ |) and

only its angle/direction varies.

Note that despite the homogeneous magnetization in each cell, the DMI may vary visibly

in the length scale d [see [Eq. (4)]. When this intra-cell variation is negligible, the sum over

j′ ∈ n′ in Eq. (10) can be reduced to an expression NsD(r
n
−r

n
′), where D(r

n
−r

n
′) ≡ D

n,n′

is taken for any spin pair located at r
n
and r

n
′ in the cells n and n′, respectively. In this

picture, the DM field B
n
in the cell n comes from Ns equally contributing spins, each of

which interacts with the surrounding cells n′; i.e.,

B
n
= −

MsVs

(gµB)2

∑

n
′

(
m

n
′ ×D

n,n′

)
, (11)
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where the explicit dependence on the mutual distance of locations n and n′ [see also Eq.

(7)] determines the equation

D
n,n′ =

r
n
− r

n
′

|r
n
− r

n
′ |
ϕ
(
Λ |r

n
− r

n
′|
)
∆DM. (12)

In comparison, the explicit dependence of Dj,j′ = Dj,j′(rj,j′) on the inter-ion distance

needs to be accounted for in Eq. (10) if the period of DMI oscillations [Eq. (4)] is comparable

to d. When a continuum-type distribution is assumed for the magnetic ions, the effect of

the DMI between a pair of spins associated with the n′ and n cells can be approximated by

a mean value D
n,n′ over the cell volumes V

n
= V

n
′ = Vs; i.e.,

D
n,n′ =

1

V 2
s

∫

Vn

dr
n

∫

V
n′

dr
n
′D

n,n′ . (13)

This enables a simple substitution of D
n,n′ with the average for the DM field in Eq. (11).

In the case of small cell volumes Vs = d3 at d ≪ Λ−1, the result reproduces accurately the

inter-ion dependence: Dn,n′ = D
n,n′ in Eq. (12). Short periods of DMI oscillations or larger

dimensions of the cells lead to the deviation of Dn,n′ from D
n,n′ according to Eq. (13). The

approach described above can provide a good accuracy while reducing the computational

complexity simultaneously.

III. RESULTS AND DISCUSSION

While the long-range asymmetrical spin-spin coupling described above differs qualita-

tively from the conventional DMI mechanism based on the perturbation of super-exchange

interaction, its macroscopic effect in the magnetic WSMs can lead to the spin textures sim-

ilar to those observed in the non-topological counterparts. A key feature, as stated, is the

ability for electrical control. In a bilayer structure with a magnet such as that shown in Fig.

1, for instance, the electric field can be provided by a gate whereas the magnetic field can

originate from the stray field of the magnet. Two examples are discussed below.

A. Helical textures

A number of relatively simple DMI effects can be examined without resorting to the

micromagnetic simulations. A well-known example among them, as discussed earlier, is
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the magnetization vector canting from the easy axis or easy plane. If the direction of this

deviation is not fixed by a crystalline anisotropy, the magnetic equilibrium state may form

a spiral texture. Thus, it is evident that the present RKKY-type mechanism can be applied

to modulate the spiral texture in the WSMs with proper magnetic properties. The analysis

requires the consideration of the total free energy of the system and its dependence on

the characteristic DMI parameter. For simplicity, we consider a magnetic WSM sample

subjected to constant electric and magnetic fields applied uniformly along the z axis (i.e.,

no variation on the x-y plane). Assuming a homogeneous distribution of localized spin

moments and a smooth variation of the RKKY-type DMI relative to the atomic scale a

(= Ω
1/3
0 , where Ω0 denotes the volume of a crystalline primitive unit cell), the density of

the WSM magnetic energy associated with the DMI can be approximated with the space

integrals over a sample volume V0 instead of the sums over the spin moments; i.e.,

εDM = V −1
0

∑

j

∑

j′

Dj,j′ ·mj ×mj′ =
1

2
nscs∆DM

∫

V0/Ω0

dρϕ(αρ)
ρ

|ρ|
·m(aρ0)×m(aρ), (14)

where ρ = r/a, α = Λa, ns and cs are the number of spins per primitive cell and its density,

respectively. This expression also takes into account that εDM is invariant to the location

r0 = aρ0 of a specific spin used as the reference.

Since finding the total energy minimum is quite complicated in a general case (with

additional terms such as the exchange and anisotropy energies), we restrict the consideration

to an analysis of the energy change with an intuitive trial function m(r) mimicking the

spiral texture. In the case of axial symmetry around the z-axis (which could be easy or

hard depending on the sign of the uniaxial anisotropy energy), the simplest trial function

depends only on two parameters; i.e., the amplitude β and period L (= 2π/kc) of the spatial

variation

m(r) = (sin θ cos φ, sin θ sin φ, cos θ), (15)

where sin θ = β and φ = 2πz/L (= kcz), while the location z = 0 is fixed at the reference

magnetization. Substituting Eq. (15) into Eq. (14) yields

εDM = β2FDM(κ), (16)

where the function FDM(κ) on κ = kca = 2πa/L is independent of β and given as

FDM(κ) = πnscs∆DM

∞∫

0

ρ⊥dρ⊥

∞∫

−∞

dρz
ϕ(α

√
ρ2⊥ + ρ2z)√

ρ2⊥ + ρ2z
ρz sin κρz. (17)
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To reach an energetically favorable configuration, Eq. (17) must take a negative value.

This is achieved by choosing an appropriate sign for the parameter κ that can be positive

(clockwise) or negative (counter-clockwise configuration) depending on the polarity of ∆DM.

In turn, the latter depends on the directions of the applied electric and magnetic fields.

The exchange interaction, anisotropy, and Zeeman energy in an external magnetic field

are the main factors tending to keep m(r) along the easy direction. Their interplay with

the DMI establishes the actual parameters β and kc of the spiral texture. The density of

the exchange energy with exchange stiffness A is evaluated by

εex =
Aa

V0

∫∫∫

V0

[

(
∂m

∂ρx

)2

+

(
∂m

∂ρy

)2

+

(
∂m

∂ρz

)2

] dρxdρydρz, (18)

which reduces, after a straightforward calculation, to

εex = (βkc)
2 Aa

Ω0

. (19)

The effect of the uniaxial anisotropy energy −1
2
Kzm

2
z depends only on the amplitude of

spiral waves,

εan = −
1

2
Kz(1− β2). (20)

As written, the anisotropy constant Kz > 0 (< 0) corresponds to the case of easy (hard)

z-axis, respectively. Similarly, the Zeeman energy −M ·B associated with a relatively weak

static magnetic field |B| ≪ |Kz|/|M| directed along the z axis provides a contribution to

the total energy,

εzm = −MsB
√

1− β2 ≈ −MsB(1−
1

2
β2). (21)

Interestingly, the total energy minimum in the case of easy z-axis (i.e., Kz > 0) occurs at

β = 0 (i.e., θ = 0). Hence, the magnetization in a FM WSM is expected to line up along the

z direction uniformly (i.e., no spatial variation and thus no helical waves). Note that our

observation does not preclude the formation of any and all textures in the easy-axis WSMs,

even those that cannot be described by the ansatz given in Eq. (15). An example in this

regard is discussed later in Sec. III.B.

By comparison, the hard z-axis with K < 0 leads to the easy x-y plane that is normal to

the direction of the magnetic field B. Thus, a chiral magnetic texture may develop on this

plane under a DMI as it was shown in an easy-plane antiferromagnet [22]. The stable state

of magnetization shows only a small angle deviation δ (≃ MsB/|Kz| ≪ 1) from the plane

9



with θ = π
2
− δ in a relatively weak external magnetic field; thus, m(r) ≃ (cosφ, sinφ, sin δ).

This (i.e., β ≈ 1) simplifies εDM and εex to FDM(κ) and κ2Aa
Ω0

, respectively, while εan and

εzm become no longer dependent on the parameters of the textures. Subsequently, the

minimization of the total energy for a ≪ L (thus, |κ| ≪ 1) results in the following simple

relation,

κ = −
F ′
DM(0)

2AΩ
−2/3
0

, (22)

where F ′
DM(0) =

d
dκ
FDM(κ)|κ=0. Considering that the azimuthal angle φ can be written as

κ
a
z, it is evident that the helicity can be realized in the easy-plane FM WSMs even with the

DMI of small strength. Figure 2 schematically illustrates the resulting magnetic textures

whose period L is typically in the 100’s of nm. For instance, the numerator of Eq. (22) can

be estimated from the relation F ′
DM(0) = 29 πnscs∆DM simplified with a choice of α = 0.8

(more precisely, a = 0.8 nm, Ec = 200 meV, vF = 3×107 cm/s). Then, ∆DM evaluated with

J = 1 eV, µ0 = 100 meV, and τ = 5 ps gives 5 µeV at |E ·B| = 12.5 kVT/cm and T0 = 300

K. Finally, the use of typical values for ns (= 2), cs (= 4× 1021 cm−3), and A (= 1.2× 10−6

erg/cm) yields the characteristic texture period L (or wavelength) of ≈ 320 nm as stated.

Note that this value for |E ·B| (i.e., 12.5 kVT/cm) can be achieved with a moderate electric

field in the 10’s of kV/cm if the (stray) magnetic field can reach a fraction of 1 T or more.

For instance, a magnetic field of this magnitude can be readily realized with a Neodymium

magnet family [23].

B. Magnetic skyrmions

Another well-known phenomenon for which the DMI plays a crucial role is the magnetic

skyrmions. The analysis of skyrmion stability is far more complex than that for the helical

structures described by an analytical expression given in Eq. (15). The problem can be made

simpler by the application of micromagnetic simulations as described earlier. An easy-axis

(z) FM is considered here since this is a more common condition for the skyrmions. To

evaluate D
n,n′ in Eq. (13), the pre-factor Φ

n,n′ needs to be calculated first as

Φ
n,n′ =

1

V 2
s

∫

Vn

dr
n

∫

V
n
′

dr
n
′

r
n
− r

n
′

|r
n
− r

n
′ |
ϕ
(
Λ |r

n
− r

n
′|
)
. (23)
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Assuming the cell discretization of d3 (= Vs) as defined earlier, Eq. (23) takes the form

Φ
n,n′ =

1/2∫

−1/2

d̺x

1/2∫

−1/2

d̺y

1/2∫

−1/2

d̺z

1/2+lx∫

−1/2+lx

d̺′x

1/2+ly∫

−1/2+ly

d̺′y

1/2+lz∫

−1/2+lz

d̺′z
̺− ̺′

|̺− ̺′|
ϕ(λ

∣∣̺− ̺′
∣∣). (24)

Here, λ = Λd, ̺ = r
n
/d, and ̺′ = r

n
′/d, while l = (lx, ly,lz) with integer values lx,ly,lz

denotes the vector connecting the centers of cells n = (0, 0, 0) and n′ = d(lx, ly, lz) in units

of cell size d. When λ is sufficiently larger than 1, the RKKY-type interaction (i.e., Φ
n,n′)

decays quickly and only a small number of neighboring cells need to be considered in the

subsequent sum [e.g., see Eq. (11)]. This point is clearly illustrated in Table I, where the

cases of λ = 4 and λ = 1.2 are compared.

To proceed further, let us apply the parameters used in the evaluation of spiral textures.

The DM field affecting a particular cell n consists of the additive contribution of all other

cells n′, each of which in turn contains Ns spins. Assuming the cell size d of 5a = 4 nm

for the micromagnetic simulation, the parameter λ becomes 4 (with the cut-off wavevector

Λ = Ec/h̄vF set to 1×107 cm−1 earlier) and Ns [= ns× (d/a)3] amounts to 250 spins (i.e., in

each discretized cell). The choice of d appears to be sufficiently small compare to the typical

dimension of the skyrmions in the 10’s of nm [24]. In addition, the corresponding λ (= 4)

enables us to truncate the numerical sum to |l| ≤ 2 with good accuracy (see Table I); i.e., six

nearest neighbor cells (1, 0, 0), twelve facial diagonal nearest (1, 1, 0), eight spacial diagonal

nearest (1, 1, 1), and six along the axes with twice the distance of the nearest neighbor

(2, 0, 0). The FM WSM layer is chosen sufficiently large (e.g., 200 nm×200 nm×16 nm)

compared to the anticipated size of the skyrmions. In the initial calculation, this layer is

assumed to be covered completely by the gate such that the entire WSM is subject to the

applied electric field (see Fig. 1). The saturation magnetization Ms = 580 emu/cm3 and the

easy out-of-plane magnetic anisotropy Kz = 2.4× 106 erg/cm3 are also used for the WSM.

As stated, the magnetization dynamics is analyzed by numerically solving the Landau-

Lifshitz-Gilbert equation in each cell n based on Object Oriented MicroMagnetic Framework

(OOMMF) [25]; i.e.,
∂m

n

∂t
= −γm

n
×Heff

n
+ αgmn

×
∂m

n

∂t
, (25)

where γ is the gyro-magnetic ratio and αg (= 0.01) denotes the Gilbert damping constant.

The macroscopic effective field Heff
n

can be obtained from the free energy density F of the

system as Heff
n

= −(∂F/∂m
n
) that accounts for the exchange interaction, RKKY-type DMI,

11



anisotropy energy, and Zeeman energy terms:

F =
Aa

2V0

∑

n,n′ 6=n

m
n
·m

n
′ +

1

2

∑

n,n′ 6=n

D
n,n′ · (m

n
×m

n
′)−

1

2
Kz

∑

n

m2
n,z −Ms

∑

n

m
n
·B. (26)

Here, the summation for the exchange interaction is limited to the nearest neighbors, while

the range of non-zero D
n,n′ considered is as discussed above (i.e., |l| ≤ 2). The DMI does

not exist outside the gated region since E = 0. The Zeeman energy term may be dropped

from consideration since its effect is expected to be minor as discussed in Sec. III.A.

The simulation results clearly illustrate that the system can support the formation of

stable skyrmions when the conditions are properly adjusted. Figure 3(a) shows a snapshot

of magnetic textures, where a single skyrmion of approximately 30 nm in diameter is dis-

tinctively visible. Due to the unique property of the RKKY-like DMI, the spins rotate in the

tangential planes resulting in a Bloch-type formation, which is in contrast to the Néel-type

textures more commonly found in the conventional magnetic thin films. For convenience of

the discussion, we introduce a parameter D = |D
n,n′|d with n = (0, 0, 0) and n′ = (1, 0, 0)

as a quantity that effectively signifies the DMI strength. From Eqs. (9), (12), and (13), it

is apparent that this parameter D has an explicit dependence on the external fields E and

B. The stable skyrmion formation observed in Fig. 3(a) is with the choice of |E ·B| = 12.5

kVT/cm, which corresponds to D ∼ 2.06 erg/cm2.

For a systematic understanding of the conditions necessary for a stable skyrmion state,

the dependence on three crucial parameters, i.e., the effective DMI strength D, exchange

stiffness A and magnetic anisotropy Kz, are examined. As discussed, D can be controlled

electrically (e.g., via the gate bias; see Fig. 1). In comparison, both A and Kz tend to be

more material specific even though the latter may also be modulated externally (e.g., via

strain). A parametric analysis is conducted in the A-D and Kz-D spaces as plotted in Figs.

3(b) and 3(c), respectively. Region 1 represents the conditions where the ground state is

the FM phase, while the formation of magnetic textures is energetically stable in region

2. The ”boundary” between these two regions can be found as a function of A and Kz,

much like that obtained in the non-topological FMs with the conventional DMI mechanism

[26]. The system in region 2 is driven away from the global FM equilibrium by rotating

the magnetization locally toward a lower-energy configuration in either a skyrmion or a

multidomain pattern. While the energy minimum actually depends on more than these

three parameters, it appears that the values near the boundary tend to give a compact
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single skyrmion which degenerates into an extended skyrmion or a multidomain state as the

conditions move farther away from it. The possibility of individual metastable skyrmions

(instead of stable ones) also exists near the critical threshold in region 1. The skyrmion

formation shown in Fig. 3(a) corresponds to a location in region 2 close to this demarcation

line as expected. These results strongly indicate that the magnetic textures in the FM WSM

can be manipulated actively; for instance, by changing the electric field applied by the gate.

One can readily dissolve the skymion observed in Fig 3(a) by simply turning off the gate

bias (thus setting D = 0). The converse scenario (i.e., creation of skyrmions via electrical

control) may also be possible with properly designed excitation conditions overcoming the

magnetic anisotropy barrier. The analysis of such dynamical processes is outside the scope

of the current study.

Note that the range of modulation in the DMI strength considered here [e.g., from zero

to around 2 erg/cm2 with a moderate electric field of ∼12 kV/cm at B = 1 T; see the E-D

correspondence in Figs. 3(b) and 3(c)] is far more challenging to attain in the conventional

FMs. For instance, an electric field as high as 6 MV/cm produced only up to a 10 %

change in the multi-layer systems such as Pt/Co/Pd and MgO/Fe/Pt as detailed in the

literature [10, 11]. The field needed in the two-dimensional FM (i.e., CrI3 monolayer) for

a comparable DMI (e.g., 2 erg/cm2 or ∼0.8 meV/atom) was even higher in the 20 MV/cm

range [9]. Likewise, the current induced DMI in the non-topological structures was found to

be rather modest, for which a maximum modulation of about 0.05 erg/cm2 and 0.2 erg/cm2

was reported in the recent studies [13, 14] with the lateral driving current densities of 4×107

A/cm2 and ∼ 7 × 107 A/cm2, respectively. Evidently, the RKKY-type mechanism enabled

by the chiral anomaly can offer a more efficient alternative in magnetic WSMs.

The issue of single skyrmion vs. multidomain and its dependence on D (i.e., the effec-

tive DMI strength) is further investigated along with the impact of finite sizes in the gate

electrode (i.e., the region in which the electric field is applied). The interaction between

the non-zero and zero DMI regions of the WSM (i.e., inside and outside the gated area)

introduces a boundary condition that can affect the stability of the textures particularly

when the two dimensions are comparable to each other. Figure 4 shows the snapshots of

the spin-textures obtained for different gate sizes and the DMI strengths. Note that Kz of

1.8×106 erg/cm3 is used in this calculation [vs. 2.4×106 erg/cm3 in Figs. 3(a,b)], while the

rest of the material properties remain unchanged. The choice of a smaller Kz leads to the
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generally larger magnetic textures enabling us to better illustrate the significance of these

two parameters under consideration.

Our simulation results confirm that for a given gate size, a stronger DMI (i.e., D) leads

to larger skyrmions and eventually to a multi-domain state (denoted as region 3; a subset

of region 2 in Fig. 3), which is consistent with the phase diagram shown earlier. This trend

continues as the gated region shrinks albeit with the transition occurring at a progressively

larger D. Incidentally, a smaller gate also results in a more compact skyrmion despite the

identical material properties. In fact, stable single skyrmions can be observed even when

the size of the gate is smaller than that of a ”free” skyrmion unconstrained by the gate

boundary (e.g., see the cases of 50×50 nm2 and 100×100 nm2 vs. 200×200 nm2). Apparently,

the true impact of D is determined not only by its strength but also by its spatial extent.

As such, a smaller gate would require a stronger D for the onset of skyrmion formation

and keep it compact over an extended range before its degeneration into multi-domain

textures. Compared to the counterparts in non-topological materials [24], this influence of

the gate size clearly reveals another means to control the skyrmions in magnetic WSMs

along with the common dependence on such parameters as the DMI strength, magnetic

stiffness, and magnetic anisotropy (see also Fig. 3). The chiral anomaly enabled long-range

DMI mechanism provides a unique opportunity for electrical control of spin textures in the

magnetic WSMs.

IV. SUMMARY

Among their numerous fascinating traits, the WSMs possesses an unusual DM-like remote

spin-spin interaction mediated by Weyl fermions. As the symmetry dictates, this interaction

disappears in the crystal with centrosymmetry. However, the invariance to the inversion can

be lifted under the presence of external electric and magnetic fields. While these fields have

only a minor effect on the crystalline structure itself, the node polarization stemming from

the chiral anomaly can break the symmetry and dramatically enhance this RKKY-type

DMI in the magnetic WSMs. Our quantitative analysis clearly shows that even a moderate

strength of the external fields can induce a DMI sufficiently strong to curl the local magnetic

moments into incommensurate magnetic textures such as helical waves and skyrmions. The

explicit dependence of this DMI mechanism on the external fields clearly illustrates the
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possibility of active modulation in the resulting magnetic textures for efficient WSM-based

spintronic applications. The influence of other key parameters such as the magnetic stiffness

and magnetic anisotropy on the stable texture formation is examined comprehensively as

well.
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TABLE I. Numerically evaluated x- , y- and z-components of the factor Φ
n,n′ [Eq. (24)] reflecting

the DMI variation for the cells separated by (lx,ly,lz) at different values of λ.

(lx,ly,lz) (1,0,0) (1,1,0) (1,1,1) (2,0,0) (2,1,0) (2,1,1) (2,2,0) (2,2,1) (3,0,0)

Φx 0.164 0.0498 0.099 -0.045 -0.039 0.007 0.009 0.004 0.0011

λ = 4 Φy 0 0.0498 0.099 0 -0.019 0.004 0.009 0.004 0

Φz 0 0 0.099 0 0 0.004 0 0.002 0

Φx 0.193 0.180 0.162 0.289 0.255 0.226 0.176 0.155 0.233

λ = 1.2 Φy 0 0.180 0.162 0 0.128 0.113 0.176 0.155 0

Φz 0 0 0.162 0 0 0.113 0 0 0
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FIG. 1. Schematic illustration of a FM WSM subject to external electric and magnetic fields. The

electric field necessary for the chiral anomaly can come from a bias applied to the gate electrode

(separated from the WSM by a thin dielectric; not shown), while the stray field B from a nearby

permanent magnet may be used to supply the magnetic field stronger than the intrinsic WSM field.
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FIG. 2. Magnetic textures generated in the form of a helical wave propagating along the hard

z-axis.
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FIG. 3. (a) Snapshot of the simulated magnetic textures in a FM WSM film with Ms = 580

emu/cm3, A = 1.2×10−6 erg/cm, Kz = 2.4×106 erg/cm3, and D = 2.06 erg/cm2. The entire film

(200 nm×200 nm×16 nm) is subject to the gate electric field (thus, non-zero DMI). The color code

indicates the z-component of the magnetization. The inset provides a view of the magnetization

directions near the center region. The formation of a stable Bloch skyrmion is observed. (b,c)

Phase diagrams in the A-D and Kz-D parameter spaces, respectively. Parameter range supported

different magnetic textures. In (b), the easy z-axis anisotropy is fixed at Kz = 2.4× 106 erg/cm3,

whereas in (c) a constant value is used for the exchange stiffness A = 1.2× 10−6 erg/cm. Region 1

represents the conditions where the system ground state is the FM phase, while the formation of

magnetic textures is energetically favorable in region 2 (i.e., the skyrmion or multi-domain phase).

The value of the electric field given on the upper horizontal axis is obtained with an assumption

of a 1 T magnetic field in the parallel direction.

22



65432
D (erg/cm2)

Gate Size

(nm×nm)

50× 50

100× 100

150× 150

200× 200

3

+Z

-Z

in-

plane

FIG. 4. Phase diagram of gate size vs. D in a 200 nm×200 nm×16 nm FM WSM film with

Kz = 1.8× 106 erg/cm3 while the rest of the parameters remain the same as in Fig. 3. In the first

column, the grey shaded area indicates the gated region subject to the applied electric field (thus

non-zero D). Region 3 denotes the conditions where a multi-domain state is the energy minimum.

Snapshots are taken once the magnetization reaches a stable state.
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