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ABSTRACT: This work reports the experimental demonstration of single-slit diffraction 

exhibited by electrons propagating in encapsulated graphene with an effective de Broglie 

wavelength corresponding to their attributes as massless Dirac fermions. Nanometer-scale device 

designs were implemented to fabricate a single-slit followed by five detector paths. Predictive 
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calculations were also utilized to readily understand the observations reported. These 

calculations required the modeling of wave propagation in ideal case scenarios of the reported 

device designs to more accurately describe the observed single-slit phenomenon. This 

experiment was performed at room temperature and 190 K, where data from the latter 

highlighted the exaggerated asymmetry between electrons and holes, recently ascribed to slightly 

different Fermi velocities near the K point. This observation and device concept may be used for 

building diffraction switches with versatile applicability. 
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I. INTRODUCTION 

Graphene continues to serve as a unique material for many novel applications due to its 

desirable electrical properties [1-4]. More specifically, its high carrier mobility, linear dispersion 

relation, and lack of a bandgap make it possible to create devices essential for electron optics [5-

12], including elements like graphene p-n junctions that allow for dissipationless edge current 

flow or reflective surfaces for bulk currents [11-15]. Fully understanding coherent electron 

propagation in nanoscale devices is crucial for electron optics, and one phenomenon relevant to 

this understanding is electron coherence, which is known to be observable at micrometer and 

sub-micrometer distances [16-20]. At these length scales, electronic transport becomes partially 

governed by ballistic as opposed to diffusive transport, though it should be noted that under 

certain conditions, hydrodynamic regimes must also be considered [21-25].  

Since electrons exhibit effectively massless behavior in graphene at energies close enough to 

the Dirac point, the general question remains of whether or not one can measure some form of 

wavelike behavior, which, in the case of Dirac fermions, would ideally be done with a continuum 

of detectors [10]. Such devices, especially with improved fabrication techniques, may also form 

a foundation of a switch mechanism based on diffraction (see Supplemental Material [26]). 

This work reports the observation of single-slit diffraction exhibited by Dirac fermions 

propagating in graphene fully encapsulated with h-BN atop a SiO2 substrate with back gating 

compatibility. These massless Dirac fermions appear to have an effective de Broglie wavelength 

corresponding to their Fermi energy and applied gate voltage (Vg). Device designs on the sub-

micrometer scale were implemented to fabricate a nearly one-dimensional single-slit 

configuration followed by five detector paths formed with edge contacting [27]. Calculations 
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were performed and required the separate modeling of light-like wave propagation in ideal 

environments. These separate models incorporated the device designs to more accurately 

describe the observations at room temperature and 190 K. A colder temperature reveals an 

exaggerated asymmetry of the electrical properties of electrons and holes [2, 28-30], with one 

potential contributing factor being the recently determined observation of differing velocities 

near the K point [28]. 

II. EXPERIMENTAL AND NUMERICAL METHODS 

A. Sample Preparation 

Devices were fabricated by encapsulating monolayers of graphene between flakes of 

hexagonal boron nitride (h-BN) using standard dry-transfer techniques. A polycarbonate 

(PC)/polydimethyl siloxane (PDMS) stamp was used to assemble the h-BN/graphene/h-BN 

stacks and placed onto Si/SiO2 wafers between prefabricated gold electrodes. Electron beam 

lithography was used to define the device area in a bubble-free region of the stack via reactive 

ion etching, and further nanofabrication was performed to establish edge contacts to the graphene 

layer [27]. The lateral device dimensions are selected to ensure high likelihood of phase 

coherence and limited detrimental contributions from electron-electron interactions. 

A visual representation of an example device is shown in Fig. 1, including illustrations at 

various magnifications to show the details of the detection contacts. In Fig. 1 (c), a detailed 

layout of the effective single-slit region shows five distinct paths where signals may be collected, 

with the source of electrons at the top, a 350 nm slit along the device, and a set of detection paths 

beyond the dotted blue line. The dotted line is crucial in determining various geometric 

constraints required for simulating expected results. 
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FIG. 1. (Color online) Graphene single-slit device and basic electrical characterization. (a) An 

example optical image is shown. The three contacts at the top of the image are to source current 

into the device and are redundant. (b) A circuit diagram shows how the direct current is 

permitted to flow through the device. An ammeter is used to collect data for each detection 

contact. (c) A detailed layout of the effective single-slit device shows the input from the top, a 

350 nm slit along the device, and a set of detection paths beyond the dotted blue path. (d) The 

Dirac point of the device is found by sweeping Vg and measuring the two-terminal voltage (top 
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panel) and standard transfer curves (bottom), yielding about -0.2 V with a standard deviation 

from the minimum shaded in cyan. 

B. Measurement Techniques 

To detect the various contributions from each of the detection paths, as drawn in Fig. 1 (b), a 

Keithley 617 electrometer was used (in direct current configuration) to measure the current in 

each path. The current was supplied by a 1 mV voltage source across a 1 MΩ resistor. The 

applied current was collected and measured for each detector path. Device testing took place at 

room temperature to verify electrical contact functionality. Cold temperature measurements took 

place at 190 K in a cryogen-free cryostat. Device cooling procedures were performed without 

closed electrical connections to ensure isolation from possible electrostatic discharge.  

To determine the Dirac point voltage, VD, two-terminal device voltage data was collected to 

find the resistive maximum typical of graphene near the Dirac point. Second, a basic transfer 

curve was obtained while sweeping the gate. Both of these results are shown in the top and 

bottom panels of Fig. 1 (d), where VD was measured to be about -0.2 V. The bottom panel also 

shows the standard deviation from the measured -0.2 V minimum as a cyan shaded area. 

C. Initial Mathematical Considerations 

Electrons in graphene exhibit massless Dirac behavior, giving them photon-like properties 

while propagating in a solid medium [2]. It is thus important that predictive calculations 

correctly incorporate this physical attribute. A major consideration in carrier propagation at these 

nm length scales is their wavelike manifestations, namely in the form of a de Broglie 

wavelength, defined as 𝜆𝑒 =
ℎ

𝑝
, where the momentum of the electron may be construed in a 

manner consistent with its properties while in graphene – that is, as a massless Dirac fermion.  
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To calculate a predicted behavior for this kind of device, one must establish a way in which Vg 

can be transformed into 𝜆𝑒. A basic capacitance model is adopted to find the electron density 

(𝑛𝑒), as well as the Fermi energy (𝐸𝐹 = ħ𝜈𝐹√𝜋|𝑛𝑒|sign(𝑛𝑒)) [31-33]: 

𝑉𝑔 − 𝑉𝐷 =
𝑒

𝐶𝑜𝑥
𝑛𝑒 +

ħ𝜈𝐹√𝜋|𝑛𝑒|sign(𝑛𝑒)

𝑒
 

(1) 

In Eq. (1), VD is the voltage corresponding to the Dirac point, 𝐶𝑜𝑥 =
𝜖𝑜𝑥𝜖0

𝑑𝑜𝑥
 is the gate 

capacitance, 𝑑𝑜𝑥 is the combined thickness of the h-BN and SiO2 (110 nm) separating the gate 

and graphene, 𝜈𝐹 is the Fermi velocity (about 1.8 × 106 m/s initially and will vary as per later 

discussions), and e is the elementary charge. The used dielectric constant is 𝜖𝑜𝑥 = 3.9, where 𝜖0 

is the vacuum permittivity (the constant is nearly identical for both materials) [31-33]. The final 

step would be to assume that the majority of charge carriers that are traveling do so at about 

𝐸𝐹 =
ℎ𝑐

𝜆𝑒
, where h is the Planck constant and c is the speed of light. 

The conditions upon which these calculations are based are those in the Fraunhofer regime 

since the scale of the Fresnel number 𝐹 =
𝑎2

𝐿𝜆𝑒
, with a and L being the slit width (350 nm) and 

distance to the detector contact (micrometer scales or greater), respectively, is less than the order 

of unity. With the diffraction condition sufficiently met, one can recall the normalized intensity 

formula for the single-slit experiment:  

𝐾(𝜃)

𝐾𝑚
=
sin2 (

𝜋𝑎
𝜆𝑒

sin 𝜃)

[
𝜋𝑎
𝜆𝑒

sin 𝜃]
2 = sinc2 (

𝜋𝑎

𝜆𝑒
sin 𝜃) 
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(2) 

To avoid confusion with electrical current, intensity has been designated as K (with Km as the 

maximum intensity for the wave that has emerged from the slit). The angular bounds relevant for 

this work are ±
𝜋

2
, as defined in Fig. 2 (a).  

 

III. ROOM TEMPERATURE DIFFRACTION 

To calculate expected device behavior, one must discretize the incoming signal based on the 

finite number of detector contacts. This discretization is based on the geometrical divisions 

illustrated in Fig. 2 (a), where an example single-slit diffraction pattern is shown in the inset with 

dashed lines indicating bounds of discretization, which are different due to varying angular 

ranges. In the ideal case scenario where there exists an infinite number of detectors along a 

semicircular arc (dotted black line in Fig. 2 (a)), one can generate a color map of intensity as a 

function of Vg and 𝜃, shown in Fig. 2 (b). Based on the de Broglie wavelengths of the massless 

Dirac fermions (on the order of 1000 nm), along with the conditions of small device size to 

facilitate electronic phase coherence, it is less likely that intensity minima would be observed.  

The intensity profile (K/Km) in Fig. 2 (b) may be integrated to yield a normalized spectral 

density (S/Sm) as a function of detector contact (C#) that will be a proportional representation of 

the measured electrical current: 

𝑆(𝐶#)

𝑆𝑚
= ∫

sin2 (
𝜋𝑎
𝜆𝑒

sin 𝜃)

[
𝜋𝑎
𝜆𝑒

sin 𝜃]
2

𝜃1

𝜃2

𝑑𝜃 
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(3) 

This integral must be computed numerically with the appropriate angular bounds (which are: 

±
𝜋

2
, ±

𝜋

4
, and about ±0.3367 rad). The normalizing term Sm takes into account Km and 𝜋, the 

total area of the normalized sinc2(𝑥) function. This final numerical result is shown in Fig. 3 (a) 

and serves as a basis of comparison for the room temperature data to be described.  

The device’s detected currents at room temperature are shown in Fig. 2 (c). If a charge 

concentrating phenomenon, like diffraction, were not to have occurred, then the fractions of the 

total measured current present in each detector would have been flat and much closer to the same 

value (aside from insignificant corrections due to variations in graphene resistance from slightly 

longer electron paths in the case of some detector contacts). The inherent asymmetries of these 

data about the Dirac point suggests electron-hole differences that will be addressed later. 
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FIG. 2. (Color online) Measurement configuration and initial prediction. (a) A visual guide is 

provided to help elucidate the prediction calculations. Contact numbers are assigned to establish 

clarity in reading most color maps. The blue, purple, orange, and magenta dashed lines (of 

varying dash length) indicate the angular bounds used per contact and are projected onto the 

color map in (b). An example single-slit diffraction pattern is shown in the inset as well as 

projected angularly for visual clarity. (b) The intensity profile (K/Km) is calculated as a function 

of angle and gate voltage (Vg), with similar dashed lines showing angular bounds to each 

detection contact. (c) The fraction of total detected current measured in each contact of the 

device at room temperature. 

One should note that all predictive color maps are not adjusted for VD but may be easily 

compared with data after an axis translation. Additionally, values between contacts are 

interpolated to better visualize rate of change of S/Sm or electrical current, thus giving a clearer 

picture of whether a predictive model is quantifiably sufficient for describing device behavior. At 

each value of Vg, the corresponding current through each detector contact is measured with an 

ammeter dedicated to one detector contact at a time, ultimately yielding Fig. 3 (b). By comparing 

this result to Fig. 3 (a), it is clear that the basic model for predictive calculations requires more 

cautious treatment via mathematical corrections. When incorporating wavelength-dependent 

transmission (described in the next section), the prediction (Fig. 3 (c)) shows a quantifiably 

noticeable improvement when it comes to describing the observations at room temperature. 
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FIG. 3. (Color online) Room temperature prediction and experimental data. (a) By applying 

appropriate integration, a predictive color map shows what measurements may yield. Though the 

simulation is plotted in terms of S/Sm, the experimental data will be displayed in nA. (b) The total 

detected current is measured as a function of Vg and contact number. Comparison of this color 

plot to (a) reveals that the predictive calculations require a correction. The gray dotted lines 

represent each subdivision mark on the color scale. (c) Predictive calculation incorporating 

wavelength-dependent transmission at room temperature. Note that for all color maps, values 

between contacts are interpolated to better visualize rate of change of S/Sm or current, thus giving 

a clearer picture of whether a predictive model is appropriate. 

 

IV. CORRECTIONS AND ELECTRON-HOLE ASYMMETRIES 

A. Modeling Wavelength-Dependent Transmission 

It is vital to consider whether or not one is dealing with electrons in the hydrodynamic regime 

[21-25], wherein the Fermi temperature is much smaller than the electron temperature, rendering 

the system a quantum-critical fluid [34-36]. There is a range of 𝑛𝑒 within which this 

hydrodynamic regime does apply, but a basic calculation shows that the regime would not be 

significant until 𝑛𝑒 falls beneath the order of 1011 cm-2 [34]. Since most data involve values of  

𝑛𝑒 greater than this approximate bound, it is not unreasonable to suppose that this regime no 

longer applies [34-36]. 

Another consideration is a careful treatment of wavelength-dependent transmission through the 

single-slit geometry. For this treatment, models of light-like wave propagation with 

corresponding length scales were coded and simulated [37-39]. Similar to Fig. 2 (b), each 

simulation outputs a normalized intensity K/K0, where K0 replaces Km since the latter deals with a 

maximum value within the set of values pertaining to the transmitted electron signal and the 
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former is meant to represent a full source signal (some of which may reflect off the single-slit 

geometry). Two example cases of these simulations are shown in Fig. 4 (a), and these cases 

represent a value near the upper bound to the applied gate voltage (𝜆𝑒 = 1000 nm) and a value 

near the Dirac point (𝜆𝑒 = 5000 nm). 

To approximate the wavelength-dependent transmission numerically over a two-dimensional 

Cartesian space for each wavelength, the normalized spatiospectral density (Jt/J0) is calculated 

by integrating the normalized spectral density of the reflected (Jr) and transmitted (Jt) regions, 

shown by a green and purple bounded box in Fig. 4 (a), respectively. In this approximation, J0 is 

the sum total of these two quantities and excludes the spectral densities of the waves that have 

not yet entered any bounding box. The quantity Jt/J0 should not be confused with the earlier 

normalized spectral density pertaining to a signal already transmitted through the single-slit 

geometry (S/Sm). 

These simulations suggest that there is a significant wavelength-dependent transmission, and 

the relationship may be quantified by the following logistic fit below (where A1, A2, x0, and p are 

constants): 

𝐽𝑡
𝐽0
=

𝐴1 − 𝐴2

1 + (
𝜆𝑒
𝑥0
)
𝑝 + 𝐴2 

(4) 

In Fig. 4 (b), the quantity Jt/J0 is shown as a function of 𝜆𝑒 and fitted with a logistic function, 

allowing one to introduce a transmission correction to the predictive calculation. This correction, 

when incorporated into the original prediction from Fig. 3 (a) yields the result in Fig. 3 (c), 
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which is quantifiably improved when it comes to describing the observations at room 

temperature. Note that the simulation is centered at 0 V. 

 

FIG. 4. (Color online) Approximating wavelength-dependent transmission. (a) Two example 

simulations are shown that replicate the experimental conditions. The goal of using these 

simulations is to approximately determine the wavelength-dependence of the electron wave 

transmission through the single-slit. The square of the intensity of the transmitted wave is 
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spatially integrated and compared with J0. (b) The ratio of these quantities is shown as a function 

of wavelength and fitted with a logistic function, which is later used to introduce a transmission 

correction to the predictive calculation. 

B. Electron-Hole Asymmetry 

One interesting observation in the room temperature data from Fig. 3 (b) is the slight hint of 

asymmetry when comparing the detected current for holes versus electrons. To reduce any 

effects from scattering, and possibly accentuate any observation of asymmetry, a lower 

temperature measurement set was performed at 190 K and shown in Fig. 5 [40]. On the issues of 

scattering mechanisms, the measured high device mobilities (of at least 104 cm2/(V⋅s)) were 

comparable to those in Ref. [40]. In that work, it was shown that such high mobility devices were 

not likely to be subject to scattering mechanisms associated with completely screened charge 

impurities, but rather subject to those associated with impurities described by an unscreened, 

unipolar Coulomb potential [40], giving rise to some level of asymmetry. Furthermore, the 

scattering mechanism weighted on the unscreened Coulomb potential decreases with 

temperature, as observed in the same work [40].  

The repeated measurements of fractions of total current detected and transfer curves at 190 K 

are shown in Fig. 5 (a) and (b), with both showing a more pronounced asymmetry between holes 

and electrons. The standard deviation from the Dirac point minimum (-0.2 V) is shown as a cyan 

shaded region. Given this observation of asymmetry, an additional level of correction was 

required.  

In approaching how to modify the existing model with reasonable factors, five effects were 

examined. The first comes from a possible contribution from p-n junctions that form since the 

electron density tends to change underneath a metallic contact [11, 41-43]. Though these 
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contributions show some measurable influence in the literature, they are also specific to the 

device being measured and thus subject to variation [41]. The second effect may stem from 

thermionic emission and interband tunneling, but when approximated and compared to the 

measured device resistances, it only has an impact on the order of 0.1 % of that resistance [44]. 

The third possibility may be a contribution from inherent asymmetries in the point contact flow 

(conductance) of electrons and holes, which has been shown at cold temperatures to give holes a 

slightly higher resistance at the relevant device length scales [45]. Though this runs counter to 

our observed asymmetry behavior, it also does not contribute a significant enough shift to 

warrant modeling. 
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FIG. 5. (Color online) Final model and the asymmetry between electrons and holes (at 190 K). 

(a) The fraction of total detected current measured in each contact of the device. (b) Transfer 

curves were obtained, with the standard deviation from the -0.2 V Dirac point minimum shown 

as a cyan shaded region. (c) When considering the effects of electron and hole asymmetry, 

predictive calculations were performed to compare with corresponding experimental data shown 

in (d). The gray dotted lines in all color graphs represent each subdivision mark on the 

corresponding scale. 

The fourth and fifth effects were modeled in more detail, as they were found to contribute 

significantly to the observed asymmetry. The fourth effect involves the expected changes to the 

density of states of graphene when the next-nearest neighbor hopping parameter (determined to 

be about 100 meV [30]) becomes nonzero, breaking the symmetry in the density of states near 

the Dirac point [2]. Since the ratio between the next-nearest and nearest neighbor hopping 

parameters is about 1:30 [2, 30], one can recalculate 𝑛𝑒 and adjust accordingly [2]. See the 

Supplemental Material for an updated model that only considers the change in density of states 

symmetry. 

The fifth effect makes the largest contribution to the asymmetry, namely that experimental data 

have shown an asymmetry in the Fermi velocity for electrons and holes [28]. The main reasons 

for the observed differences in velocity included a variable long-range Coulomb coupling 

strength as well as a dependency on 𝑛𝑒 of the dielectric screening environment, though it should 

be noted that the latter does also depend on the former. The reported logarithmic model was 

implemented into these models, yielding the final result in Fig. 5 (c). When compared with the 

experimental data in Fig. 5 (d), one finds improved agreement. Ergo, it is not unreasonable to 

posit that any future endeavors seeking to further explore these nanoscale devices should 

carefully consider the overall effects to the wavelike behaviors of massless Dirac fermions, 
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namely wavelength-dependent transmission, asymmetries in the density of states, and varying 

Fermi velocities from long-range Coulomb coupling.  

This demonstration of electron diffraction through a commensurate slit opens the door for 

further study of alternative fabrication techniques to more precisely control slit edge quality and 

subsequently check effects on the observed diffraction pattern. Novel applications involving 

multiple slits that are gated to control transmission through the slit may be relevant in both 

electronics and photonics, especially with devices based on bilayer graphene, where gating can 

open a bandgap. 

V. CONCLUSIONS 

In this work, observations of single-slit diffraction are reported as being exhibited by massless 

Dirac fermions propagating in fully encapsulated graphene. The charge carriers are suggested, 

based on corresponding models, to have an effective de Broglie wavelength related to their 

Fermi energies and applied gate voltages (Vg). Nanoscale device designs and sophisticated 

fabrication techniques allowed for the construction of a nearly one-dimensional single-slit 

configuration, followed by five detector contacts. Observed nanoscale device behavior prompted 

the consideration of many possible contributing effects, with the most prominent reasonably 

attributed to wavelength-dependent transmission, charge carrier asymmetries in the density of 

states, and varying Fermi velocities from long-range Coulomb coupling. 
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