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We present experimental and theoretical studies of the magneto-optical properties of n-type
InAsxP1−x films in ultrahigh magnetic fields at room temperature. We compared Landau level and
band structure calculations with observed cyclotron resonance (CR) measurements and extracted
effective g-factors and CR masses for two different alloy concentrations, x =0.07 and x =0.34. In
addition, we employed time resolved magneto-optical Kerr measurements on these ternary alloys to
explore the spin relaxation time. These alloys have immense prospects for quantum communication
devices and g-factor engineering and our study provides new insights into this underexplored narrow
gap system.

I. INTRODUCTION

Historically, InAsP alloys have been important for de-
vice applications due to the possibility of band gap en-
gineering, which can vary from around 0.36 to 1.35 eV
(∼ 3.4 µm to 900 nm) covering parts of the mid-infrared
to the near-infrared. Examples of device applications in-
clude broadband photodetectors [1], mid-IR lasers [2],
and optical telecommunications. [3] Another important
materials system in this family is InGaAsP which can
be lattice-matched to InP. InGaAsP systems have been
widely used for optoelectronic components, such as laser
diodes, detectors, waveguides, and modulators. [4]

When it comes to photodetectors for quantum infor-
mation and sensing, to preserve the entanglement as sug-
gested by Yablonovitch [5], it is important to fabricate
photodetectors using a material that has a conduction
band effective g-factor much smaller than the valence
band, so that the photodetector can excite equally to the
spin split states. The tunability of the electron effective
g-factor (including g =0) can provide a major advance-
ment for semiconductor-based quantum communication
applications. Here we demonstrate, through an experi-
mental/theoretical study that the InAsP system is indeed
a very good candidate in this regard [5], and a correct
choice of alloying can lead to a system with an almost
zero value for the effective g-factor. Detailed band struc-
ture calculation and analysis of InAsP alloys have been
rarely done. [6–8]

In this paper, we focus on less explored characteris-
tics of n-type ternary alloy of indium-arsenide-phosphide
(InAsxP1−x) grown on InP substrate. These character-
istics include their band structure, cyclotron resonance
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(CR) masses, g-factor tunability, and spin dynamics. We
performed experimental high magnetic field CR exper-
iments as well as time resolved Kerr rotation measure-
ments and compared our results to theoretical calcula-
tions.
Our 1.2-µm thick InAs0.07P0.93 and InAs0.34P0.66 sam-

ples were grown on semi-insulating InP (001) wafers;
these were made n-type with Si-doping with the elec-
tron densities of 9.3×1016 cm−3 and 1.5×1017 cm−3 for
x =0.07 and 0.34, respectively. The alloy compositions
were determined by high-resolution x-ray diffraction and
the carrier concentrations were measured by an electro-
chemical capacitance-voltage (C-V) profiler.
The results presented in this study go beyond InAs

[9–12] and InP [13–15] which are two widely researched
III-V compound semiconductors when it comes to their
band structures, g-factor engineering, and spin dynam-
ics. We should note, when it comes to dynamical aspects
in InAsP, previous studies included only the spin relax-
ation dynamics in undoped InAsP films, employing spin
polarized differential transmission (SPDT) and dynamics
of localized excitonic transitions. [16, 17] In this study,
beyond CR measurements, we employed ultrafast time-
resolved Kerr rotation (TRKR) measurements on n-type
InAsxP1−x ternary alloys to probe spin relaxation dy-
namics which provided an additional window to detect
the effective g-factor.
A novel aspect of our work is that both measurements

were performed at room temperature (RT) where the ex-
tracted information could be important for developing
practical devices. Measuring CR at RT is somewhat dif-
ficult owing to the low mobilities of the carriers. As
a result, the measurements must be performed at very
high magnetic fields, on the order of 100 T. This compli-
cates the calculations since in narrow gap semiconductors
(NGS), the nonparabolicity of the conduction band E vs.
k dispersion relation means that the Landau levels are no
longer linear in the applied magnetic field. As a result,
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FIG. 1. Experimental measurements of CR in InAsxP1−x alloys at T =300 K. (a) Experimental set up. (b) Detected transmis-
sion change for x =0.07 (blue) and x =0.34 (red), sweeping the field up and down, in which the traces overlap demonstrating
reproducible observations. The fits to the CR traces confirm the carrier density on the order of 1.0×1017 cm−3.

the CR masses will differ from the conduction band edge
effective mass and will depend on the magnetic field.

II. EXPERIMENTAL CYCLOTRON
RESONANCE IN ULTRAHIGH MAGNETIC

FIELDS

Our CR measurements were pursued in the infrared
regime by employing pulsed ultrahigh magnetic fields (<
150 Tesla) generated by a single-turn coil technique. [18–
20] The external field was applied along the growth direc-
tion. The source of infrared radiation was a CO2 laser.
The transmission data were obtained by means of a fast
liquid-nitrogen-cooled HgCdTe detector, where a multi-
channel digitizer placed in a shielded room recorded the
signals from the detector as well as the pick-up coil. The
measurements were carried out in the Megagauss lab at
the University of Tokyo. In Fig. 1(a), we show the CR
measurements process for InAsxP1−x at RT with σ+ ex-
citation (electron active) energy of 117 meV (10.6 µm),
and Fig. 1(b) shows the transmission coefficients for x
=0.07 (blue) and x =0.34 (red). The estimated cyclotron
masses MCR using the resonant magnetic field Br are
0.0907m0 and 0.0751m0, respectively, where m0 is the
free electron mass. Also, using the linewidth of the reso-
nances, the mobilities are estimated to be 994 cm2V−1s−1

for x =0.07 and 813 cm2V−1s−1 for x =0.34.

III. CALCULATIONS OF THE CONDUCTION
BAND LANDAU LEVELS, CYCLOTRON

EFFECTIVE MASS, AND THE EFFECTIVE
G-FACTOR

To understand magneto-optical responses in NGS such
as InAs, one typically utilizes a modified or extended
Pidgeon-Brown type model [21] which is based on an 8
band k · P model that includes the 2-fold, spin degen-
erate conduction, heavy hole, light hole, spin-orbit split
bands as well as allowing for coupling to higher order
bands. This model works extremely well for bulk ma-
terials as well as for heterostrucutres such as multiple
quantum wells for binary materials. While in principle
the Pidgeon-Brown model can be applied to alloys and
tertiary materials such as InAsP, the difficulty lies in de-
termining how to interpolate the many parameters that
go into the Pidgeon-Brown model [21] such as the band
gaps Eg, optical matrix element P, Luttinger parameters
γ1, γ2, γ3, F parameter (which takes into account the cou-
pling to higher order bands) between the binary materials
(i.e. InAs and InP for the InAsP alloy system).
Focusing solely on the conduction band CR, one can

use an easier model based on a simplified Kane model.
We have previously applied this model with success to
model effective masses in near-surface InAs quantum
wells. [12] Here we extend this model to include ternary
alloy materials. In the simplest model for a NGS, the dis-
persion for the conduction band in zero magnetic fields
is given by:

ϵ(1 + αϵ) =
ℏ2k2

2m∗
0

. (1)

In this expression, the dispersion relation is quadratic
in k for small energies and becomes linear in k for large



3

FIG. 2. The band gap, effective mass and spin-orbit splitting (∆) for InAsxP1−x as a function of x, using linear interpolations
between room temperature values for InP (x =0) and InAs (x =1). me is the free electron mass.

energies. The non-parabolicity parameter α is given by
the inverse band-gap energy α = 1/Eg, ϵ is the conduc-
tion band energy with respect to the bottom of the con-
duction band, k is the wave-vector, and m∗

0 is the con-
duction band effective mass at the band edge (k = 0).
This model works very well for the conduction band of
NGS such as InAs and InSb and is clearly extended to
medium (and large) gap materials like InP since α is even
smaller.

When a magnetic field B = Bẑ is applied, one can
make the replacement as: [22–24]

k2 = k2x + k2y + k2z → k2z +
2m∗

0

ℏ2
(n+

1

2
)ℏωc0 (2)

where ωc0 = eB
m∗

0
is the band-edge CR frequency, and

n = 0, 1, 2, ... is the Landau-level index. Therefore, after
adding a Zeeman term, we can re-write Eq. (1) as:

ϵ(1 + αϵ) =
ℏ2k2z
2m∗

0

+ (n+
1

2
)ℏωc0 ±

1

2
µBg

∗
0B (3)

where g∗0 is the band-edge effective g-factor, and µB is
the Bohr Magneton. To calculate g∗0 we use equation A5
from Yuan et al. [12]:

g∗0 = 2

[
1 +

(
1− 1

m∗
0

)
∆

3ϵg + 2∆

]
(4)

where ϵg is the band-gap energy and ∆ is the valence-
band spin-orbit splitting. This approximation works well
for NGS, but as we see later, needs to be slightly modified
for medium-gap materials.

TABLE I. Comparison of calculated and measured effective
masses in ultrahigh magnetic fields.

As-concentration (x) MCR (Theory) MCR (Expt.)
0.07 0.0913 0.0907
0.34 0.0766 0.0751

In our simple model for the conduction band of
InAsxP1−x, we follow Zhao et al. [25] and take a linear

interpolation of the band gap ϵg(x) as well as m
∗
0(x) and

∆(x). We should note that we did not take into account
any bowing. We note that the linear interpolation of the
band edge effective mass agrees with the experimental
results at 77 K of Nicholas et al. (We refer to their Fig.
2 in [6]). In Fig. 2(a-c) we present the bandgap, the elec-
tron effective mass, and the spin-orbit splitting at RT as
a function of the alloy concentration (x), (x =1; InAs)
(x =0; InP).
Taking Eq. 3, setting kz = 0, and solving for the

conduction energy band, we get an expression for the
Landau levels (for kz = 0) as a function of level index n
and magnetic field B:

ϵc,n =
−1 +

√
1 + 4α((n+ 1

2 )ℏωc0 ± 1
2µBg∗0B)

2α
. (5)

Here the + sign corresponds to spin-up ↑ and the - sign
to spin-down ↓.
In Fig. 3 we plot the calculated conduction band Lan-

dau level fan diagrams (for kz = 0), using Eq. 5 and the
linear interpolations shown in Fig. 2 as a function of B
for InAsxP1−x for x =0, 0.07, 0.34 and 1.0. We see that
at high magnetic fields, and large Landau level indices,
the Landau levels are no longer linear in B. The curva-
ture of the Landau levels with increasing B increases as
x is varied from 0 to 1. This can be attributed to the de-
creasing band gap with increasing x which results in the
bands becoming more non-parabolic which in turn leads
to deviations from the linear in B dependence to that of√
B. This occurs even for x =0 and x =0.07.
In Fig. 3, we also show with green arrows where the

simple theory predicts a CR transition to occur for our
laser excitation at 0.117 eV (10.6 µm). For x =0.07 and
x =0.34, we expect to see CR at B =92.3 T and B =77.4
T, respectively. This agrees well with the observed reso-
nances at B =91.7 T and B =75.9 T (See Fig. 1 b). In
addition, for x =0.34, we plot a yellow arrow that corre-
sponds to a weaker n =1 to n =2 transition. Our theory
predicts that this transition should occur at B =96.4 T
and give rise to a small shoulder in the CR lineshape.
This agrees very well with the observed small shoulder
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FIG. 3. Calculated Landau levels from our simple model in InAsxP1−x for (a) x =0.0 (b) x =0.07 (c) x =0.34 with and (d) x
=1.0. All energy values are with respect to the bottom of the conduction band. Green arrows show the dominant transition
for excitation by a 10.6 µm laser. The yellow arrow for x =0.34 shows a secondary transition from the n =1 Landau level to
the n =2 Landau level and gives rise to the small shoulder feature seen in Fig. 4 as well as in Fig. 1b.

in the experimental x =0.34 curve (see Fig. 1) as well
as with Fig. 4 where we compare the theoretical calcula-
tions with the experimental data.

We now compare the cyclotron mass between the ex-
periment and our calculations. The cyclotron mass for n
=0 →1 transition can be obtained from the conservation
of energy at the resonance. It is defined in terms of the
bare electronic mass me as: [18]

MCR =
2µBB

ϵc1,↑ − ϵc0,↑
me. (6)

Figure 5 shows the magnetic-field dependence of the
cyclotron mass calculated using Eq. 6. Clearly, with in-
creasing As-concentration x, there is an increase in non-
linearity which is reflective of the increased coupling be-
tween the conduction and valence band. Near B =0 T,
the cyclotron mass MCR is equal to the bare electronic
effective masses. For InP (x =0.0) and InAs (x =1.0),
the cyclotron mass near B =0 T is equal to the conduc-
tion band effective mass m∗

0 used in our k.p calculations.
At B = Br, (where Br is the resonance field), our calcu-
lated CR mass from the simple model shows an excellent
agreement with the experimental observation as shown
in Table I. In addition, the carrier mobility can also be
estimated from the FWHM of the CR. We note, due to

the measurements at a very high magnetic field, the ef-
fective mass is not equal to the bare effective mass and
the mobility is not equal to the DC mobility.
To find the dependence of g∗ on the magnetic field as

well as on the As concentration for the lowest Landau
Level, n =0, we define it as follows:

g∗ =
ϵc0,↑ − ϵc0,↓

µBB
,B ̸= 0 (7)

where ϵc0,↑, ϵc0,↓ refer to the calculated conduction bands
(for n = 0) with up and down spin respectively (see Eq.
5). Figure 6 shows the calculated g-factors using Eq. 4
for the four different As-concentrations: x =0.0 (purple),
0.07 (blue), 0.34 (orange), and 1.00 (green). We observe
that for all B, the effective g-factor decreases from a small
positive number to a large negative number as x increases
from 0 to 1, where g∗ ≈ 0 at x =0.34. This suggests the
existence of a well defined As concentration in InAsP
such that g∗ ≈ 0 at B =0.
The g-factor for InP (x =0.0) starts as a small pos-

itive number, which at B =0 is mostly determined by
its fundamental parameters such as the band gap, spin-
splitting, and Kane Energy Ep [18], which remains almost
unaltered by the magnetic field B. When x is increased
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FIG. 4. Comparison of the experimental CR (solid black
curves) with the calculated CR (green and red curves). The
bright green curves show the two different predicted transi-
tions for x =0.34; The first transition is mostly hidden behind
the red x =0.34 curve which represents the sum of the two
predicted transitions. The red curves show the predicted CR
results for x =0.34 (left) and x =0.07 (right).

to 0.07, the magnitude decreases but still remains pos-
itive throughout. It is when x increases to 0.34, that
one sees a significant change. The g-factor becomes very
close to zero at B ≈ 0 and stays well below 0.5, over all
the magnetic field ranges.

For x =1.0, the semiconductor is pure InAs, and the g-
factor starts as a relatively large negative number due to
its smallest band gap and largest spin-splitting compared
to InP. It changes, rather rapidly, to a smaller negative
number as B is increased. All these facts point toward
the viability of a zero-g-factor InAsP alloy at B =0, with
a well defined As concentration.[26]

FIG. 5. Calculated CR mass for InAsxP1−x for different As
concentration. me is the free electron mass.

FIG. 6. Magnetic field dependence of g∗ as a function of
magnetic field, plotted for InAsxP1−x at different values of x.

IV. ULTRAFAST TIME RESOLVED KERR
ROTATION

Our Kerr rotation measurements at RT were per-
formed on InAs0.34P0.66, using a degenerate time-
resolved pump-probe technique. The pump energy was
1.305 eV (950 nm) with σ− polarization and 120 mW
of power (corresponding to a fluence of ∼ 7 µJ/cm2),
where we used a Ti:Sapphire oscillator with 100 fs pulse
width and 80 MHz repetition rate. The estimated ex-
cited carrier density was ∼3×1017 cm−3. Although the
same excitation energy was used for the probe pulses, the
polarization was linear and the intensity was about 100
times lower than the pump pulses. Figure 7(a) shows
TRKR profile in a short time scale of 300 ps.

A biexponential fit results in two time constants τ1
=7.24±1.15 ps and τ2 =38.2±1.66 ps. Figure 7(b) is a
similar data set at the same pump energy and intensity,
with the measurements recorded for a longer time range
of 1300 ps but with a larger time step. This data set is
selectively fitted with exponential decay functions. The
fit between 13.0-306 ps (in orange) results in a shorter
time constant τ3 of 39.1±1.38 ps, and the fit between 173-
1213 ps (in magenta) gives a much longer time constant
τ4 of 394±39.6 ps. In the upcoming sections, we relate
these time constants to various spin relaxation processes.

Unfortunately, to precisely theoretically model the ul-
trafast Kerr rotation, we need both the conduction band
as well as valence bands’ contributions. As a result, we
can not utilize the simple model used for determining the
conduction band CR. Instead, theoretical explorations on
InAsxP1−x start with the single-particle electronic band
structure calculation, using the 8-band Pidgeon-Brown
model for a bulk semiconductor, in an external magnetic
field ofB = Bzẑ. [18, 27] The effective mass Hamiltonian
of the system is given by

H = HL +HZ , (8)
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FIG. 7. (a) TRKR profile for a short duration of 300 ps in
InAs0.34P0.66. The green curve is the experimental plot and
the red is the biexponential fit with the time constants τ1
=7.24±1.15 ps and τ2 =38.2±1.66 ps. The vertical arrow
points to the biexponential nature of the data (b) TRKR
profile for a longer duration of 1300 ps with τ3 of 39.1±1.38
ps from the fit F1 (in orange) and τ4 of 394±39.6 ps from the
fit F2 (in magenta).

where HL is the k−dependent Landau Hamiltonian and
HZ is the k−independent Zeeman Hamiltonian. The ex-
plicit matrix representation is adopted from elsewhere
[18], wherein the matrix elements are expressed in terms
of empirical parameters such as the band gap Eg, the
spin-orbit splitting ∆, the Luttinger parameters (γ1, γ2,
and γ3), the conduction electron effective mass mc, and
the Kane energy Ep. For InAsxP1−x, these parameters
are all estimated by using linear interpolation between
InAs and InP with bowing parameters, wherever appli-
cable [28] and were determined to produce an agreement
with the experimental CR data. Using envelope functions
within the axial approximation, the energy eigenvalues
and eigenfunctions were calculated.

In nonmagnetic semiconductors such as n-type GaAs

[29] and n-type InAsxP1−x, the spin polarization of con-
duction electrons can be achieved by ultrafast photoexci-
tation with circularly-polarized light even in the absence
of the magnetic field. For example, Fig. 8 shows a sam-
ple schematic band structure of InAsxP1−x and the al-
lowed optical transitions. For circularly polarized light,
the green vertical line shows heavy hole (HH) transition,
the brown line shows light hole (LH) transition, and the
black line shows split-off hole (SH) transition to the con-
duction band for α ↑ and α ↓ absorption.

En
er

gy
kz

FIG. 8. Sample schematic band structure at B =0 and show-
ing the allowed optical transitions between the SH, LH, HH
and CB for a circularly polarized photon of energy greater
than Eg + ∆.

In particular, for σ− excitation energy E ⩾ Eg+∆, the
selection rules, governed by conservation of spin angular
momentum, permit HH↑→CB↑ (α ↑), LH↑→CB↓ (α ↓),
and SH↑→CB↓ (α ↓) transitions. On the other hand for
σ+ , HH↓→CB↓ (α ↓), LH↓→CB↑ (α ↑), and SH↓→CB↑
(α ↑) are the allowed transitions. The strengths of the
transition for HH and SH are respectively 3 and 2 times
greater than that for the LH transition [30]. For energies
Eg ⩽ E ⩽ Eg+∆, only LH and HH transitions can occur,
thereby resulting in a maximum net spin polarization as
follows:

S+ =
1

2

(
α ↑ −α ↓
α ↑ +α ↓

)
=

1

2

(
1− 3

1 + 3

)
= −1

4
(9a)

for σ+ and

S− =
1

2

(
α ↑ −α ↓
α ↑ +α ↓

)
=

1

2

(
3− 1

3 + 1

)
=

1

4
(9b)

for σ− polarization. For E ⩾ Eg +∆ transitions from
SH bands are also possible. However, since SH, LH, and
HH transitions occur at different non-zero k and the band
masses are different, the joint density of states is different
for them. Also, due to non-zero band mixing at k ̸=0,
the strength of the transitions is not exactly 3:2:1. All
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of these contribute to a small but non-zero spin polariza-
tion. [31]

As an example, Fig. 9 shows spin polarization as a
function of photon energy for both σ+ and σ− helicities.
The dashed vertical line shows the spin polarization mag-
nitude of 0.05 at a pump energy of 1.305 eV (950 nm),
which is small but nonzero. The spin polarization seems
to be close to ±0.25 at around the band-gap energy of
0.986 eV.

FIG. 9. Sample spin polarization at B =0 for InAs0.34P0.66for
σ+ (green) and σ− (blue) helicities at T =300 K and zero
magnetic field with the broadening FWHM =5 meV.

A. Spin Relaxation

The spin polarizations mentioned above are at the in-
stant of excitation which decays due to processes like
carrier recombination and spin relaxation. Right after
the photoexcited spin polarization, the electrons ther-
malize to become hot electrons through electron-electron
scattering among themselves. What then follows is
the relaxation of the momentum of the hot electrons
by means of momentum scattering with LO phonons,
ionized-impurity, alloy centers, etc with the characteristic
momentum scattering time τ of a few picoseconds. [32]
In this process, the electron spin polarization (magneti-
zation) also dissipates which is characterized by spin re-
laxation time τs. This can be measured by time-resolved
Kerr rotation of an ultrafast probe light of linear polar-
ization since the transient Kerr rotation is directly pro-
portional to the spin polarization. [33] The details of the
spin relaxation are provided in Appendix A. The mea-
sured spin relaxation times in this study are compared
with the calculated ones using Dyanokov and Perel (DP)
[34] and Elliot-Yafet (EY) [35, 36] mechanisms.

Now we discuss the connection between momentum
scattering and spin relaxation. We start with the EY
mechanism [35, 36] according to which spin dephasing
occurs due to spin-orbit interaction. In NGS with a large

spin-orbit splitting ∆ (such as InAs or InSb) as well as
the Rashba effect [37], the conduction bands states are an
admixture of both spin up and spin down states. Right
after an event of momentum scattering due to lattice or
impurities, an electron can scatter to a different spin state
than it was before. This results in the spin dephasing
in the EY mechanism. Using the perturbative method,
the spin relaxation time τs in the non-degenerate limit is
given as: [38]

1

τEY
s

= Aβ2 (αkBT )
2

Eg

1

τ
(10a)

with

α ≈ γ

(
1− γ

2

1− γ
3

)
. (10b)

Here τ is the momentum relaxation time, and A is
determined by the dominant momentum relaxation pro-
cess. Here Eg and me are the band gap and the electron
effective mass, respectively. On the other hand in semi-
conductors such as GaAs and InP, ∆ is small due to weak
spin-orbit coupling. But due to the bulk inversion asym-
metry of the crystal structure, spin-splitting occurs in the
conduction bands such that they become non-degenerate
for k ̸= 0. This is called the Dresselhaus effect. [39]
This k-dependent splitting can be thought to be due to
a k-dependent effective magnetic field Beff(k).
The spin polarization components in Eq. A1 undergo

precession around the direction of the Beff(k) with a
k-dependent precession frequency. During the momen-
tum scattering events, the electron wave vector k changes
to k′ resulting in a new Beff(k

′) with a new direction.
Consequently, the precession frequency of the spin polar-
ization components changes and spin dephasing occurs.
This is called the Dyakonov-Perel (DP) spin relaxation.
[34] Again, using the perturbative method, it is found
that the spin relaxation time τDP

s is inversely propor-
tional to the momentum relaxation time τ . In the non-
degenerate limit [38], and is given by:

1

τDP
s

= Qβ2 (kBT )
3

ℏ2Eg
τ (11a)

with

β ≈
4γ√
3− γ

me

m0
, (11b)

where

γ ≈
∆

Eg +∆
. (11c)

The momentum relaxation time, τ , is fundamental to
the spin relaxation times, both in DP and EY mechanism
and it can be related to the DC mobility µ by:
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µ =
eτ

me
⇒ τ =

µme

e
. (12)

τ and µ depend on the type of scattering the electrons
undergo. In order to calculate the spin relaxation time in
the absence of a magnetic field using the DP mechanism
in Eq. 11 and EY mechanism in Eq. 10, we first calcu-
late the dc mobility µ and momentum relaxation time τ
for all three different scattering mechanisms mentioned
in Appendix B. We recall that the material parameters
ϵs, ϵ∞, θ, me, a in InAsxP1−x are a function of the As
concentration x through the linear interpolation. [28, 32]
For example, the effective mass me and ϵs are given by:

me(x) = xme,InAs + (1− x)me,InP (13a)

and

ϵs(x) = xϵs,InAs + (1− x)ϵs,InP (13b)

Figure 10(a) shows the theoretical estimation of µ as a
function of the As concentration x with different momen-
tum scattering processes. The curve in green corresponds
to the mobility µLO due to the LO scattering given by
Ehrenreich’s formula in Eq. B1. The orange curve rep-
resents the mobility µIm due to the impurity scattering
using Eq. B2, and the mobility µAl is due to the alloy
scattering (purple curve) in Eq. B3. The black curve in
Fig. 10 represents the effective mobility µEff calculated
using Matthiessen’s rule:

1

µEff
=

1

µLO
+

1

µIm
+

1

µAl
, (14)

where it is assumed that these scattering processes are
independent of each other. Meanwhile, the dashed blue
curve represents the mobility obtained by using the in-
terpolation between the mobilities of InAs and InP [40]
given by:

µIP = xµInAs + (1− x)µInP − x(1− x)b. (15)

Here for the electron density n =1.0×1017cm−3, we use
µInP =2500 cm2V−1s−1 using Hilsum’s formula [41] and
µInAs =25000 cm2V−1s−1. [9] The bowing parameter b
=30000 cm2V−1s−1. [40]
The effective mobility (the black curve) suggests that

LO scattering is the dominant process followed by
ionized-impurity scattering. The alloy scattering is the
least significant process. However, between x =0.3 to
x =0.5, it is comparable with the ionized-impurity scat-
tering. The direct interpolation method can be a good
approximation to the effective mobility due to its very
close proximity. The momentum relaxation times vary
somewhat differently as shown in the lower graph. This
may be attributed to the x-dependence of the electron
effective mass me in the mobility formula in Eq. 12. The

FIG. 10. Upper: Calculated dc mobilities for InAsxP1−x

due to LO scattering (green), ionized-impurity scattering (or-
ange), and alloy scattering (purple). The black curve repre-
sents effective mobility and the blue dashed curve for mobility
from direct interpolation. Lower: momentum relaxation time
using Eq. 12.

momentum relaxation time τ was calculated and can be
used to further to obtain the spin relaxation time, under
the DP mechanism in Eq. 11 and EY mechanism in Eq.
10.

Figure 11 shows the spin relaxation under DP mecha-
nism. The relaxation time τDP

Eff represented by the black
curve corresponds to the effective momentum relaxation
time τEff , whereas τDP

IP corresponds to τIP . Since LO
scattering dominates the momentum relaxation process,
we assume Q =0.8. [9, 38] The DP relaxation time for
InAs0.34P0.66, is around 360 ps as shown in Fig. 11(b),
whereas for pure InAs it is around 40 ps, as shown in Fig.
11(a) which is in a good agreement with the calculation
by Murzyn et al. [9], with me =0.026m0 for InAs slightly
different from our estimated me =0.023m0.

On the other hand, Fig. 12 shows the spin relaxation
under EY mechanism. The black curve represents the
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Fig 11.
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FIG. 11. (a) Calculated DP spin relaxation time as a function
of As concentration x for InAsxP1−x. (b) Expanded view with
the vertical dashed line showing the values for InAs0.34P0.66.

Fig. 12
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FIG. 12. (a) Calculated EY spin relaxation time as a function
of As concentration x for InAsxP1−x. (b) Expanded view with
the vertical dashed line showing the values for InAs0.34P0.66.

relaxation time τEY
Eff corresponding to the effective mo-

mentum relaxation time τEff , and τEY
IP corresponds to

τIP . For this calculation, we set A =2.0 in Eq. 10 due to
dominating LO scattering [38]. The EY relaxation time
for InAs0.34P0.66, is around 6 ns as shown in Fig. 12(b).
A closer look at Fig. 12(a) shows that for pure InAs,

the relaxation time is around 184 ps. Similar to the DP
case, a very good agreement between the effective and
interpolated relaxation times are obtained for x larger
than 0.5.

TABLE II. Comparison of the calculated spin relaxation times with the experimental fits for InAs0.34P0.66.

µ (cm2/V s) τ (ps) τDP (ps) τEY (ps) τs (ps)

Experiment

µEff =5956 τEff =0.203 τDP
Eff =359 τEY

Eff =7420 τ1 =7.24±1.15

τ2 =38.2±1.66

µIP =3418 τIP =0.117 τDP
IP =626 τEY

IP =4260 τ3 =39.1±1.38

τ4 =394±39.6

In Table II, we present a comparison between the ex-
perimental and calculated values of the spin relaxation
times for InAs0.34P0.66. The last column contains the re-

laxation times obtained from the TRKR data in Fig. 7,
here τ1 and τ2 are taken from the biexponential fit in the
Fig. 7(a) while τ3 and τ4 are taken from the exponential
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fit in the Fig. 7(b). Although they are taken from some-
what different data sets, τ2 and τ3 can be considered to
equally represent the same relaxation process.

Since the excitation energy of 1.305 eV is more than
the Eg + ∆ =1.154 eV, the photoexcited electrons are
hot [42], and it may be that τ1 =7.24, τ2 =38.2, τ3 =39.1
ps correspond to the loss of spin-polarization due to the
thermalization of these hot electrons by electron-electron
scattering and electron-phonon scattering. [43] At the
same time, the electrons may also lose the original spin
orientation due to trapping in the impurity centers [44].
Due to strong spin-orbit interaction between the hole
bands, the relaxation of hole spins also occurs around
the same time. It can, therefore, be concluded that the
longer relaxation time τ4 =394 ps corresponds to the elec-
trons’ spin polarization.

The calculated DP relaxation time τDP
Eff =359 ps and

τDP
IP =626 ps are based on the effective momentum scat-
tering times τEff and the interpolated scattering time
τIP , respectively. The electron effective masses are also
taken from the linear interpolation. Our experimental
value of τ4 =394 ps, shows a very good agreement with
the calculated DP relaxation time τDP

Eff . However, the
EY relaxation times overestimate τ4 by at least an order
of magnitude, which could be true since the spin-orbit
interaction in InAs0.34P0.66, is not as strong compared
to InAs and InSb. [9, 45, 46]

Also, the estimated mobility from the linewidth of the
CR measurement is around 810 cm2V−1s−1, which sug-
gests a low momentum scattering time τ . However, we
note that this estimation could be premature as the CR
resonance occurs at a very high magnetic field (around
75 T) and an accurate magnetic-dependence of the mo-
bility is unavailable at this time. Nonetheless, since the
DP relaxation time is related inversely to τ , this supports
the argument towards the DP is being the dominant re-
laxation mechanism for the spin.

An earlier study on n-type GaAs samples with low mo-
bilities has shown very long spin lifetimes [29] under DP
mechanism. However, in another study of high mobil-
ity GaAs, the DP mechanism is suppressed [47] as well
as in n-type InAs. [9] In a related study of an undoped
InAs0.4P0.6 film, the spin relaxation time shows a sen-
sitive response to excitation energies and temperature.
[16] Therefore, it is clear that the spin relaxation time in
III-V semiconductors depends on many factors such as
mobility, doping density, temperature, photoexcitation
energy, and intensity, etc. For a more definitive conclu-
sion, further explorations with the inclusion of several of
these factors are necessary.

B. Effect of Magnetic Field on Spin Polarization

As an important extension, we also studied the effect of
weak magnetic fields at RT on the spin-relaxation in the
Voigt configuration under the same experimental condi-
tions of the previous section. As shown in Appendix B,

in the presence of such a field results in a precession of
the spin polarization about the field with the Larmor’s
frequency given as:

Ω =
gµBB

ℏ
. (16)

Figure 13 shows TRKR for InAs0.34P0.66at different
magnetic fields B, including 0 and 800 mT, where the
colored symbols represent the experimental data. The
solid lines without symbols are from the fitting of the
data beyond the delay time of 0 ps. The data at 0, 200,
and 300 mT are fitted with ∆θ ≈ e−

t
τ due to the absence

of oscillation. On the other hand, the data at 400, 550,
700, 800 mT are fitted with an oscillating decay function
∆θ ≈ e−

t
τ sin(Ωt + ϕ0), where τ is the spin relaxation

time and Ω is the Larmor’s frequency. In Fig. 14 (a-b),
we show the B-dependence of the Larmor frequency (Ω)
and effective g-factor calculated based on Eq. 16.
The g-factor as determined by the experimental TRKR

is different from the calculation done in the previous sec-
tions based on the simple Kane like model, where we
found the g-factor was close to zero. This is not sur-
prising and as pointed out by Pfeffer and Zawadski [48],
the expression for the band edge g-factor, g∗0 given in
equation 4, is valid for NGS but needs to be modified for
medium gap semiconductors to take into account higher
bands. As a result, the simple model predicts a g-factor
close to zero, but in fact, the TRKR measurements show
that it is most likely closer to -1 (we note that the TRKR
measurements do not give the sign of the g-factor). This
indicates that the alloy concentration (x) for a zero g-
factor is most likely less than 0.34. We note, however,
that the simple Kane like model is sufficient to determine
the cyclotron’s effective masses.

V. CONCLUSIONS

In this work, we have experimentally studied the
magneto-optical properties of InAsxP1−x films at RT em-
ploying ultrahigh magnetic fields (by employing CR mea-
surements) and compared our results with good agree-
ments with two different theoretical models. The InAsP
alloys have important applications for devices owing to
the possibility of changing the gap from 0.36 to 1.35 eV
which covers a broad optical spectrum from mid to near
infrared, as well as the possibility of designing a material,
with the right alloy concentration (x), that has a g-factor
close to zero.
Theoretical calculations were based on the Pidgeon-

Brown model as well as a simpler, single band, non-
parabolic model that we previously used to investigate
effective masses in near surface InAs quantum wells.[12]
To describe our CR experiments, we used a simpler, sin-
gle, nonparabolic model since this avoids the need to de-
termine how the many parameters in the Pidgeon-Brown
model vary with alloy concentration. We found that our
simpler model produced an excellent agreement with the
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Fig. 13
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FIG. 13. MOKE at different magnetic fields. Solid lines with-
out symbols represent fitting with a damping function.
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FIG. 14. Magnetic-field dependence of InAs0.34P0.66 Larmor’s
frequency (blue) and effective g-factor (orange).

experimental results for the CR masses and their depe-
dence on alloying using just a simple linear interpolation
of both the band gap and spin-orbit splitting. The sim-
ple model also predicted a g-factor close to zero for the
concentration x =0.34.
Furthermore, for our reported time resolved measure-

ments, we needed to use the full Pidgeon-Brown model,
since both the conduction band and valence band Lan-
dau levels are needed to determine the spin-polarization
relaxation. Using the FWHM of the experimental CR
curves the AC electron mobilities can be estimated. This
information was used to model the TRMOKE and to es-
timate the spin relaxation time in a low magnetic field
regime, in the Voigt configuration.
The observed precession of the spin polarization with

the B-dependent Larmor’s frequency (at low magnetic
fields), was also used to estimate the effective g-factor
for InAs0.34P0.66. These results showed that the g-factor
is not zero for x =0.34, but probably closer to -1. This in-
dicates that while the simple model does very well in pre-
dicting the CR effective masses at high magnetic fields, it
does not do as well on the g-factor. This is not surprising,
since InAsxP1−x for x =0.34 is a medium gap material.
While the simple model presented here for modeling the
g-factor works well for NGS, it has been pointed out in
the literature that for medium gap materials, the cou-
pling to higher conduction bands can influence the value
of the g-factor. [6, 48]
A thorough analysis of the g-factor is suggestive of a

potential for the engineering of a zero-g-factor InAsP al-
loy. Our results show that the proper As concentration
for a zero g-factor most likely is slightly less than the
current value of x =0.34 predicted by the simple model
presented in this study.
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VI. APPENDIX

Appendix A: Bloch equations for spin relaxation

The dissipation of the spin polarization can be de-
scribed by Bloch equations for a homogeneous spin po-
larization vector function S(t) in a magnetic field, say

B = (0, 0, B0) as:

dSx

dt
= −ΩSy +

Sx

T2
(A1a)

and

dSy

dt
= −ΩSx +

Sy

T2
(A1b)

for the transverse components. Here Ω is the Larmor’s
frequency with which the Sx and Sy precess around Bz

given by

Ω =
gµBBz

ℏ
, (A1c)

where g is the electron g-factor and µB is the Bohr’s
magneton. For the longitudinal component we have,

dSz

dt
=

S0 − Sz

T1
, (A1d)

where S0 is the equilibrium spin polarization due to B0.
T1 is called longitudinal relaxation time which is the time
taken by Sz to reach its equilibrium value S0. It involves
loss of energy from the spin system due to scattering
with the lattice, and, therefore, is equivalent to thermal-
ization time of the spin system with the lattice. [30] T2 is
called the spin dephasing time, during which the phases
of the transverse components Sx and Sy, are destroyed
due to the spatiotemporal fluctuations in the precession
frequency (Ω) brought about due to momentum scatter-
ing. In cubic isotropic semiconductors, T1 and T2 can be
approximated to be equal when B is not very high. [30]
Hereafter we call T1 and T2, as the spin relaxation time
τs.

Appendix B: Estimation of the Mobilities

The mobility µLO due to LO scattering given by Ehren-
reich’s variational calculation is [49, 50]

µLO =
4eℏ

3
√

πm3
eRkBT

(
ϵsϵ∞

ϵs − ϵ∞

)
×
(
eθ/T − 1

θ/T

)
G(1)e−ξ.

(B1)
Here ϵs and ϵ∞ are the low and high frequency dielec-

tric constants, respectively. θ is optical phonon Debye
temperature and R =13.6 eV is the Rydberg’s constant.
G(1)e−ξ estimated from the calculation in Ref. [49]. Elec-
trons lose momentum by scattering with the impurities
as well. According to H. Brooks [51, 52], the electron
mobility due to ionized impurity scattering is given by:

µIm =
128

√
2π

NIe3
√
me

(ϵsϵ0)
2
(kBT )

3/2

(
ln(1 + γ2

B)−
γ2
B

1 + γ2
B

)−1

(B2a)
with

γ2
B = 24

me(ϵsϵ0)(kBT )
2

e2ℏ2NI
(B2b)
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Here ϵ0 is the permittivity of free space, and NI is the
density of impurity and is approximated by a constant
density of 1.0×1017cm−3.

Since InAsxP1−x is a semiconductor alloy, it is impor-
tant to consider the mobility due to alloy scattering. It
is given by [32, 53, 54]

µAl =
128

√
2eℏ4

9π3/2(∆EAl)2(kBT )1/2
× 1

m
1/5
e x(1− x)a3

, (B3)

where x is alloy ratio, a is the lattice constant of the
alloy, and ∆EAl is alloy scattering potential, which is

set equal to 0.581.[32] The material parameters involved
in the above equations such as ϵs, ϵ∞, θ, me, a are ob-
tained by using linear interpolation between InAs and
InP. [28, 32] Therefore, they are also functions of the As
concentration x.
However, since the prefactors Q and A involved in Eq.

11 and 10 vary for different momentum scattering pro-
cesses, it is suggested that the best way is measuring
the mobility of the sample using different experimental
methods such has Hall effect. In our case, alternatively,
the estimated mobilities in Sec. II from the CR mea-
surements can be the starting point for estimating the
momentum relaxation time by using Eq. 12 in the main
text.


