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Abstract

We have experimentally studied the Landau levels near the quantum limit in the magnetic Dirac

material (Eu,Gd)MnBi2. In this series of materials, the Fermi level is systematically controlled by

substituting Eu2+ with Gd3+ while keeping high mobility. We measured the Shubnikov-de Haas

(SdH) oscillation for a single crystal with the lowest hole concentration at tilted magnetic fields

up to 20-50 T and clarified the dependence of the splitting of the Landau levels N ≥ 1 on the

ratio of Zeeman to cyclotron energy. In the low-field antiferromagnetic phase, the splitting is well

explained by the (Zeeman) spin splitting, from which we have found that the effective g factor of

Dirac fermion depends significantly on the Fermi energy. In the high-field antiferromagnetic phase,

on the other hand, the SdH oscillation was found to change in a complex manner as a function of

the tilt angle of field, implying the lifting of the valley degeneracy as well as the spin degeneracy.
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I. INTRODUCTION

Magnetic materials hosting relativistic quasiparticles, called Dirac/Weyl magnets, have

attracted much attention not only in fundamental physics but also in potential applications

owing to their unconventional transport phenomena1,2. In Weyl magnets, for instance, the

Weyl points (i.e., nondegenerate linearly crossing bands) formed by the peculiar magnetic

and/or lattice structures work as a source of Berry phase, leading to giant anomalous Hall

and Nernst effects3–12 and magneto-optical responses13,14. Another important feature of

the relativistic quasiparticle is ultrahigh mobility due to the suppression of backscattering,

which may enable new spintronic functions when coupled with the magnetism. However,

Dirac/Weyl magnets rarely exhibit high mobility probably due to the influence from many

trivial carriers.

Contrary to this, AMnX2 (A: alkaline and rare-earth ions, X: Sb, Bi) is a promising

series of materials for achieving both high mobility and magnetic order15–33. Since its crystal

structure consists of the alternative stack of the 2D Dirac fermion layer (X− square net)34

and the magnetic block layer (A2+-Mn2+-X3−) [Fig. 1(a)], the high-mobility transport of

the Dirac fermion is controllable by modifying the spatially-separated block layer35. In fact,

in EuMnBi2 (A=Eu, X=Bi), the quantum transport phenomena significantly vary upon the

field-tunable antiferromagnetic (AFM) order of Eu layer; the large magnetoresistance effect

manifests itself when the Eu spins flop by applying an external field25,26, accompanied by

a marked change in quantum oscillation.26 Specifically, the spin splitting of Landau levels

(LLs) depends on the AFM order of Eu layer, which is explained by the strong exchange

interaction between the Dirac fermion and Eu spin36.

The block layer for this material also works as charge reservoir for the Dirac fermion layer.

Partial substitution of Eu2+ with Gd3+ reduces the hole concentration in EuMnBi2, which

is unintentionally hole-doped, and even makes the crystal n-type across the charge neutral

point. Consequently, the Seebeck and Nernst effects were widely and systematically tuned

by Gd concentration in (Eu,Gd)MnBi2.
37 The variation in LLs should be also interesting,

when the Fermi level approaches to the Dirac point; the extreme quantum limit can be

achieved at strong magnetic fields. In the LLs near the Dirac point, the simple single-

particle picture may break down due to the many-body interaction and lift the sublattice

(valley) degeneracy, as intensively investigated for graphene.38–40 For EuMnBi2, only the LLs
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N ≥ 2 were observed in the AFM phases (below ∼20 T), where the quantum oscillation is

enhanced due to the two-dimensional confinement26,36. Thus, the low-energy LLs near the

Dirac point have not been uncovered in this material.

In this study, we performed the high-field transport measurements on (Eu,Gd)MnBi2

single crystals with reduced hole concentration to clarify the detailed features of low-energy

LLs including N = 1. In particular, we measured the Shubnikov-de Haas (SdH) oscillation

by changing the tilt angle of field, i.e., the Zeeman-to-cyclotron energy ratio. We have found

that the spin splitting is dominant in the LLs N ≥ 3 observed in the low-field AFM phase,

and that the effective g factor is enhanced as the Fermi energy approaches the Dirac point.

On the other hand, in the LLs N=1 and 2 appearing in the high-field AFM phase, additional

splitting other than spin origin was clearly observed. As a result, the SdH oscillation shows

much more a complicated dependence on the tilt angle of field. We shall discuss the origin

in terms of the lifting of spin and valley degeneracy.

II. EXPERIMENTAL

Single crystals of (Eu,Gd)MnBi2 were grown by a Bi self-flux method37. High purity

ingots of Eu (99.9%), Gd (99.9%), Mn (99.9%), Bi (99.999%) were mixed in the ratio of

Eu:Gd:Mn:Bi = 1-x:x:1:9 and put into an alumina crucible in an argon-filled glove box

(x=0, 0.005, 0.0075, and 0.01) The crucible was sealed in an evacuated quartz tube and

heated at 1000◦C for 10 h, followed by slow cooling to 350◦C at the rate of ∼ 2◦C/h, where

the excess Bi flux was decanted using a centrifuge. The powder x-ray diffraction at room

temperature indicates that the crystal structure of the obtained single crystals is tetragonal

(I4/mmm) and the lattice constants are almost unchanged irrespective of the nominal Gd

concentration. Since the Gd concentration in the obtained crystals is too low to precisely

determine by the energy dispersive x-ray analysis, the variation in EF among the samples

was determined by their transport properties, i.e., SdH oscillation and Hall effect, as shown

below. We thereby label the Gd-doped samples as Gd#1−#3 in order of increasing EF

[from low to high, see Fig. 1(d) ], as was adopted in Ref. 37.

In-plane resistivity ρxx and Hall resistivity ρyx were measured by a conventional 5-terminal

method with electrodes formed by room-temperature curing silver paste. For precise mea-

surements, we adopted lock-in technique at 20-150 Hz with the ac excitation of 1–5 mA. The
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measurement up to 24 T at 1.4 K was performed (for Gd#3 sample) with the 25T cryogen-

free superconducting magnet (25T-CSM) at High Field Laboratory for Superconducting

Materials in Institute for Materials Research, Tohoku University.41 The field direction was

controllable by using a sample probe equipped with a rotating stage, where the tilt angle of

the field was determined by a Hall sensor attached on the sample stage. The measurement

up to 55 T at 1.4 K was performed (for undoped, Gd#1, and Gd#2 samples) by using a

non-destructive pulsed magnet at the International Mega-Gauss Science Laboratory at the

Institute for Solid State Physics.

III. RESULTS AND DISCUSSIONS

Figures 1(b) and 1(c) show the field dependences of ρxx and ρyx for (Eu, Gd)MnBi2 single

crystals at 1.4 K for the field parallel to the c-axis (B||c), respectively. At zero field, Eu spins

order ferromagnetically within the ab plane and align along the c-axis in the AFM sequence

of up-up-down-down [low-field AFM phase shown in Fig. 1(a)]26,42,43. As schematically

shown in inset to Fig. 1(b), the AFM order of Eu spins can be controlled by applying

the external magnetic field parallel to the c-axis. Above Bflop, the direction of Eu spins

flops from the c-axis to the ab plane (high-field AFM phase), while all Eu spins are aligned

ferromagnetically above Bc (forced ferromagnetic phase). The values of Bflop and Bc are

almost independent of Gd concentration, which can be determined by the weak anomalies

(i.e., a small kink or jump) in ρxx and ρyx [vertical dotted lines in Figs. 1(b) and (c)]. As

the Gd concentration increases, the slope of ρyx with respect to field increases [Fig. 1(c)],

which evidences that the hole carriers existing in the undoped sample are reduced by Gd

substitution and the Fermi energy EF moves toward the charge neutral point [Fig. 1(d)].

Interestingly, the field dependence of ρxx also varies systematically upon Gd substitution.

Apart from the oscillatory component arising from the SdH oscillation (vide infra), the

background of ρxx is nearly linear with field, the slope of which progressively increases with

Gd concentration. For instance, ρ(20T)/ρ(0T) = 1, 800% for the undoped sample, while

ρ(20T)/ρ(0T) = 8, 300% for Gd#3. Since the carrier mobility remains almost unchanged

among the samples37, the carrier compensation due to electron doping may play a role in

such an enhancement in magnetoresistance effect.

All the ρxx and ρyx data shown in Fig. 1 exhibit marked SdH oscillations, which reflect the
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FIG. 1: (a) Crystal structure of (Eu, Gd)MnBi2 showing the antiferromagnetic (AFM) order at 0 T

(low-field AFM order)42,43. Field dependences of (a) in-plane resistivity ρxx and (b) Hall resistivity

ρyx at 1.4 K (B||c) for EuMnBi2 (undoped) and Gd-doped EuMnBi2 (Gd#1-#3). Bflop and Bc

denotes the transition fields to the high-field AFM and forced ferromagnetic phases, respectively.

Inset to (b): Schematic illustrations of the low-field (left) and high-field (right) AFM orders of Eu

layer. Inset to (c): Fast Fourier transform (FFT) of the oscillatory component of ρyx below Bflop.

The peak position corresponds to the frequency of SdH oscillation. (d) Schematic illustration of

EF shift upon Gd substitution in the 2D massive Dirac cone for (Eu, Gd)MnBi2.

high mobility of Dirac fermion even in the Gd-substituted crystals. By analyzing the SdH

oscillation in detail, we are able to obtain more quantitative information on the variation

in Dirac fermion upon Gd substitution. Inset of Fig. 1(c) shows the fast Fourier transform

of the oscillation component of ρyx, where the frequency of SdH oscillation, the extremal

cross section of quasi 2D cylindrical Femi surface, systematically decreases with increasing

Gd substitution. For Gd#3, the frequency decreases to approximately half of that for the

undoped sample. The fine structures of SdH oscillation, such as splitting of the peak, are also

important to reveal the microscopic feature of the system, since they correspond to the LL
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splitting caused by the Zeeman interaction and/or many-body electron-electron interaction.

Below, to study the details of SdH oscillation, we analyze longitudinal conductivity σxx =

ρxx/(ρ
2
xx + ρ2yx), which directly reflects the density of states of LLs in the conventional

quantum Hall systems.

Figure 2(a) presents σxx versus 1/B at 1.4 K for the undoped, Gd#1, and Gd#3 samples.

Note here that the dip of σxx corresponds to the energy gap between the LLs (i.e., the

quantum Hall gap). For the undoped sample, the LLs N=1, 2, and 3 appear in the high-

field AFM phase (1/Bc < 1/B < 1/Bflop), although the LL N=1 is terminated in the middle

at Bc. For Gd#3 with the lowest hole concentration, on the other hand, almost the entire LL

N=1 is formed at 1/Bc < 1/B. To clarify the split structure, we here take second derivative

of σxx with respect to field for Gd#3 as shown in Fig. 2(b). In the low-field AFM phase

(1/Bflop < 1/B), the LLs N=3, 4, and 5 are clearly identified, where the LL N=3 exhibits

clear splitting. The splitting is more conspicuous in the high-field AFM phase. Noting that

the deep dip at 1/B=0.12 T−1 corresponds to the energy gap between the N=1 and 2, the

LL N=1 apparently splits into four as denoted by the filled triangles. This suggests the

lifting of both spin and valley degeneracy, as detailed in Fig. 4

To reveal the origin of the LL splitting, we studied the variation of σxx when the field is

tilted from the c axis to the ab plane. For a 2D system, the ratio of Zeeman energy (EZ) to

cyclotron energy (Ec) varies depending on the tilt angle (θ) of field36,44–46:

EZ/Ec=
g∗mc

2m0 cos θ
. (1)

This results from the fact that EZ = g∗µBB is proportional to the total field (B) while

Ec=eℏB⊥/mc is proportional to the field component perpendicular to the 2D plane (B⊥ =

B cos θ), where g∗ is the effective g factor, mc the cyclotron mass, and m0 the bare electron

mass. Consequently, by analyzing the θ dependence of SdH oscillation, we can quantitatively

estimate the microscopic parameters of 2D electrons, such as g∗mc. Note here, since the

energy spacing of Landau levels for a 2D Dirac fermion is not uniform (i.e., Ec is dependent

on N), we need to effectively define Ec ≡ eℏB⊥/mc by using a semiclassical expression of

the cyclotron mass mc=EF/v
2
F with vF being the Fermi velocity47,48. With this definition,

EZ/Ec indicates the magnitude of the Zeeman spin splitting in SdH oscillation36, as in the

case for a normal 2D electron gas (for details, see supplemental Fig. S449). Below, we

analyze the LL splitting for each AFM phase in detail and compare the results for Gd#3
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with those for the undoped sample to see the dependence on EF .

We first focus on the low-field AFM phase. Figure 3(a) displays −d2σxx/d(1/B)2 versus

BF (θ)/B for Gd#3 at 1.4 K for various θ, where the field is tilted from the c axis toward

the b axis and the current is applied along the a axis [inset to Fig. 3(b)]. In principle, σxx in

a tilted field is calculated as σxx = ρxx
ρ2xx+ρ2yx

(
1 + ρ2zxρxx

(ρ2xx+ρ2yx)ρzz

)−1

. However, from the previous

study on the undoped sample36, it was known that the factor ρ2zxρxx
(ρ2xx+ρ2yx)ρzz

is so small (≪ 1) for

θ ≤ 70◦ that σxx is safely approximated as σxx = ρxx
ρ2xx+ρ2yx

50. BF (θ) is the SdH frequency for

each θ, deduced from the fast Fourier transform. Reflecting the quasi two dimensional Fermi

surface, BF (θ) is proportional to 1/ cos θ up to θ = 60◦, although it significantly deviates

downward above θ = 70◦ presumably owing to the warping of the cylindrical Fermi surface

(see Fig. S1 for details49). To clarify the θ dependence of LL splitting, it is useful to plot

the SdH oscillations as a function of BF (θ)/B, which is the filling factor normalized by the

spin/valley degeneracy factor36,51, i.e., BF (θ)/B = N+1/2−γ, where N is the Landau index

and γ is the phase factor expressed as γ=1/2−ϕB/2π with ϕB being the Berry’s phase52,53.

The deep minima of the oscillation correspond to the energy gap between the LLs. Although

these minima should be located at N +1/2 for the Dirac fermion exhibiting the Berry phase

of π (ϕB = π), their positions are found to be around N +1/4. This slight phase shift might

arise from the fact that the Fermi surface is not exactly two dimensional. At θ = 0◦, the LLs

N=3-6 are observed, where a clear split structure is discernible for N=3, as explained in

Fig. 2(b). Noteworthy is that the amplitude and phase of the SdH oscillation systematically

vary with increasing θ from 0◦. At first, the amplitude monotonically decreases and reaches

the minimum at θ ∼ 15◦. However, it begins to increase above 20◦, where the phase of the

oscillation is inverted (i.e., the peaks are located around N + 1/4). The amplitude reaches

the maximum at θ ∼ 40◦ and then decreases, reaching the minimum at θ = 50◦. Above 50◦,

the phase of oscillation is again inverted.

Such variation of SdH oscillation upon θ is well explained by spin splitting of LLs, as

schematically shown in Fig. 3(d). The LLs slightly split for EZ/Ec = 0.1 (top panel). As

EZ/Ec increases to 0.5, the splitting evolves and the amplitude of SdH oscillation becomes

minimum (middle panel). A further increase in EZ/Ec up to 1 leads to crossing of the

neighboring LLs with opposite spins, which results in the enhanced SdH oscillation with

an inverted phase (bottom panel). For each integer change in EZ/Ec, the SdH oscillation

repeats this variation. Note here that, for the LLs with large N (N ≥4), the spin splitting
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with respect to B is small, which makes it difficult to observe a clear splitting structure (see

Fig. S4 for the calculation of SdH oscillation of the spin-split LLs49).

To quantitatively clarify such θ dependence of SdH oscillation, we plot the peak and dip

values of −d2σxx/d(1/B)2 versus θ [Fig. 3(b)]. There, BF/B=4.25 corresponds to the dip

of oscillation at θ=0◦ while BF/B=3.75 and 4.75 correspond to the peak at θ=0◦. With

increasing θ, the peak and dip values are first inverted at ∼17◦, followed by the second inver-

sion at ∼52◦. Since the phase inversion of SdH oscillation corresponds to half-integer values

of EZ/Ec(= 0.5, 1.5, 2.5...), the observed θ dependence means that EZ/Ec passes through

the half-integer value twice from θ=0◦ to θ=70◦. By adjusting the g∗mc value in Eq. (1),

we have found that two cases well reproduce the experimental θ dependence [Fig. 3(c)]; (i)

EZ/Ec=1.5 (θ=17◦) and EZ/Ec=2.5 (θ=51◦) displayed in red, and (ii) EZ/Ec=2.5 (θ=17◦)

and EZ/Ec=3.5 (θ=51◦) displayed in blue. Since the value of mc/m0 is independently es-

timated to be 0.080(3) from the temperature dependence of the SdH oscillation at θ = 0◦

based on the standard Lifshitz-Kosevich formula (Fig. S249), we obtain g∗ =37 ± 2 for (i)

and g∗=54± 2 for (ii).

Also for the undoped sample, the similar phase inversion of SdH oscillation was observed

in the low-field AFM phase when the field is tilted36. However, the phase inversion occurs

only once at θ=18◦ (see Fig. S3 for details49), which results in g∗∼10 54. Therefore, the g

factor is larger for Gd#3 than for the undoped sample; it likely increases as EF approaches

to the charge neutral point. The EF dependence of g factor is roughly explained by the

theoretical expression obtained by the k ·p theory in the presence of spin-orbit interaction58;

it has a leading term ∝ 1/(∆E + |EF |), where ∆E is the energy gap of the massive Dirac

band. However, the enhancement of g factor is estimated to be ∼20-30% for Gd#3 when

we adopt the results of band calculation, i.e., ∆E ∼ 50 meV and EF ∼ −40 meV for

the undoped sample while EF ∼ −25 meV for Gd#3. The origin of such a quantitative

difference remains unclear, but might be relevant to the many-body effect.

Several other mechanisms have been reported to explain the variation of SdH oscillations

upon tilting the field. In 3D Weyl semimetals, for instance, the phase may be affected by the

change in the extremal orbits of the anisotropic Fermi surface55. It is also reported that the

band dispersion may be modified by a magnetic field tilted away from the high-symmetry

direction56,57. However, in both cases, the SdH phase exhibits various values depending on

the field direction while the SdH amplitude remains unchanged. These features are different
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2m0 cos θ
for g∗mc/m0=3.1 (4.5), where the

phase inversion corresponds to EZ/Ec=1.5 and 2.5 (EZ/Ec=2.5 and 3.5). Inset: Geometry of the

transport measurements in a tilted magnetic field, where θ is the angle between the field and the

c axis. (d) Spin-split Landau levels (N=0-3) of a 2D massless Dirac fermion at BF (θ)/B = 2 as

a function of energy, where the solid (dashed) curve represents the spin-down (spin-up) Landau
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calculation, see the supplementary Fig. S449.

from what was observed in (Eu,Gd)MnBi2.

Next, to show the details of LL splitting in the high-field AFM, we plotted

−d2σxx/d(1/B)2 versus BF (θ)/B at 1/B < 1/Bflop for various θ in Fig. 4. There, we

adopt BF (θ) obtained in the low-field AFM phase. (For the undoped sample, the change in
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BF between the high-field and low-field AFM phases is less than 3%.) For θ = 0◦, almost

the entire LL N=1 and a part of LL N=2 are observed, as explained in Fig. 2(b). The

deep dips located near BF (θ)/B=0.5 (1.5) correspond to the energy gaps between N=0 (1)

and N=1 (2), which is consistent with the Berry phase of π52,53. Considering the similar-

ity to the low-field AFM phase, the weak dips located at BF (θ)/B=1 and 2 (denoted by

red arrows in schematic diagram) should originate from the spin splitting in the LLs N=1

and 2, respectively. In addition to these splittings, clear dip structures are also discernible

around BF (θ)/B=0.75 and 1.25 in the LL N=1 (denoted by blue arrows), which suggests

the presence of splitting other than spin origin. As θ increases, the SdH oscillation shows

a very complicated change, which is quite different from the θ dependence in the low-field

AFM phase. While no significant changes are observed up to θ=15◦, the gap collapsing

is discernible around BF/B=0.75 and 1.5 at θ=20◦. In particular, the gap collapsing at

BF/B=1.5 appears to result from the LL splitting of N=2 (blue arrow), followed by the gap

growing above θ=35◦. On the other hand, the gap collapsing at BF/B=0.75 gradually grows

up to 45◦. Above θ=50◦, fine split structures become less visible, where the superposition of

multiple oscillations varies upon θ in a complex manner. Thus, the observed θ dependence

cannot be explained by the simple spin splitting.

For the undoped sample, the θ dependence of SdH oscillation in the high-field AFM phase,

which corresponds to the LLs N=2 and 3, is well explained by the spin splitting up to θ=70◦.

For Gd#3, on the other hand, the LL N=1 suffers from the splitting other than spin origin,

leading to the complicated θ dependence probably due to the overlap with each splitting.

Considering four equivalent valleys in the Fermi surface for EuMnBi2
28, the most plausible

origin of the new splitting is the valley splitting59. In fact, it is particularly pronounced

in the LL N=1 at high magnetic fields, where the strong electron-electron interaction is

anticipated. Furthermore, in graphene, the LL splitting associated with the spin-valley

degrees of freedom shows similar reentrant behavior at tilted fields, i.e., the energy gap

collapses and then grows as EZ/Ec is increased.
40 As future research, it would be important

to compare with the theoretical calculation that considers the variation of valley splitting

upon θ and its interaction with the spin splitting.

11



FIG. 4: −d2σxx/d(1/B)2 versus BF /B in the high-field AFM phase (1/B < 1/Bflop) at various tilt

angles θ for Gd#3 (1.4 K)60. Each profile is shifted vertically. Schematic of the Landau levels is

shown at the bottom, where red (blue) arrows indicate the splitting at BF /B=N (N ± 1/4).

IV. CONCLUSIONS

We report the overall features of Landau level splitting in Gd-doped EuMnBi2, where the

Landau level down to N=1 is clearly observed. In the low-field antiferromagnetic phase, the

Landau levels (N=3-5) exhibit spin splitting, from which we have found that the effective g

factor is enhanced as the Fermi energy approach the charge neutral Dirac point. In the high-

12



field antiferromagnetic phase, the Landau level N=1 shows additional splitting other than

spin origin, implying the lifting of valley degeneracy. The complicated variation of Landau

level splitting upon tilting the field cannot be reproduced by a simple model considering the

Zeeman energy.
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