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Two-dimensional topologically-ordered states such as fractional quantum Hall fluids host anyonic
excitations, which are relevant for realizing fault-tolerant topological quantum computers. Classifi-
cation and characterization of topological orders have been intensely pursued in both the condensed
matter and mathematics literature. These topological orders can be bosonic or fermionic depending
on whether the system hosts fundamental fermionic excitations or not. In particular, emergent
topological orders in usual solid state systems are fermionic topological orders because the electron
is a fermion. Recently, bosonic topological orders have been extensively completely classified up to
rank 6 using representation theory. Inspired by their method, we provide in this paper a systematic
method to classify the fermionic topological orders by explicitly building their modular data, which
encodes the self and mutual statistics between anyons. Our construction of the modular data relies
on the fact that the modular data of a fermionic topological order forms a projective representation
of the Γθ subgroup of the modular group SL2(Z). We carry out the classification up to rank 10
and obtain both unitary and non-unitary modular data. This includes all previously known unitary
modular data, and also two new classes of modular data of rank 10. We also determine the chiral
central charges (mod 1

2
) via a novel method which does not require the explicit computation of

modular extensions.

I. INTRODUCTION

Topological orders are gapped systems beyond the
Landau symmetry-breaking paradigm, characterized by
long-ranged entanglement of the ground state, topologi-
cal ground state degeneracy, and nontrivial statistics be-
tween emergent topological excitations [1–6]. In (2+1)D
in particular, quasiparticle excitations can have statistics
other than bosonic or fermionic, in which case they are
called anyons. The emergence of anyons in (2+1)D and
their physical properties have been extensively investi-
gated both in condensed matter physics and high energy
physics [7–10]. For example, they are at the heart of the
physics of important condensed matter systems such as
fractional quantum Hall states and gapped spin liquids
[2, 11–17]. In addition to being of theoretical interest, the
physics of anyons is highly relevant for the realization of
the fault-tolerant quantum computation, i.e., topologi-
cal quantum computation [8, 14, 18, 19]. In spite of the
strong interest in the study of anyons, a complete classi-
fication of possible topological orders hosting anyons has
proven elusive.

The bulk topological properties of (2+1)D topological
orders can be completely characterized by the fusion and
braiding properties of its anyonic excitations [6, 7, 21].
Mathematically, the types of anyons together with their
fusion and braiding properties form a structure known
as a braided fusion category (BFC) [6, 22, 23]. When
the fundamental degrees of freedom in the theory are
bosonic (we may nevertheless get emergent fermions), the
corresponding mathematical structure is called a mod-
ular tensor category (MTC), but when the fundamen-
tal degrees of freedom contain fermions [24, 25], we get

a super-modular tensor category (super-MTC) [22, 26].
(We note that there also exists a different formalism of su-
per pivotal categories for studying fermionic topoloigcal
orders [27, 28].) While such bosonic and fermionic the-
ories are intimately related via a process called modular
extension [22, 29], an intrinsically fermionic classification
for fermionic topological orders is both conceptually il-
luminating and computationally more efficient. Indeed,
for well-known condensed matter systems built out of
elections, such as the Laughlin state at filling ν = 1/3,
or more generally the odd K-matrix abelian fractional
quantum Hall states [30, 31], an intrinsically fermionic
description as a super-MTC is more natural. Super-
MTC can also be symmetry-enriched, and their anomalies
will be related to (3+1)D fermionic symmetry-protected
topological phases [32]. Hence, the study of super-MTCs
is of broad interest.
We note that there are different physical topological

orders which share the same BFC data, related by stack-
ing with invertible topological orders. Invertible topo-
logical orders are systems with no nontrivial bulk topo-
logical excitations or ground state degeneracy but which
nevertheless cannot be deformed smoothly to the trivial
product state, and support gapless edge modes (see e.g.
Refs. [16, 22] for a review of the concept). This means
they carry a chiral central charge c but do not affect the
bulk anyon data. For fermionic topological orders, all
invertible topoloigcal orders (in the absence of symme-
try) are stacks of the p+ ip superconductor, which carry
Majorana edge modes giving c = 1

2 [21, 33]. Thus we
can fully specify a 2+1D fermionic topological order via
(C, c) where C is the super-MTC representing its anyon
data and c tells us how many layers of the p+ ip super-
conductor are present [22].
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TABLE I. List of rank 4 fermionic MD. Shaded data are of nonunitary MD. MD in the same box share the same (fermionic
quotient) fusion rule. They may be related by Galois conjugation. For simplicity of notation, we have introduced ζmn =
sin[π(m+1)/(n+2)]

sin[π/(n+2)]
and χm

n = m +
√
n. In the last column, we comment on whether the MD is obtained from stacking, or is

primitive. Data of non-abelian bosonic MD are retrieved from the Supplementary Materials of Ref. [20], and given the notation
RankB

#, while abelian MD, which are taken from Table 11 of Ref. [6] and specified by RankB
c . RankB,∗

c refer to non-unitary
analogues of the unitary abelian MD. We also note the cases where the primitive MD are obtained from fermion condensation
(“f.c.”) of known affine Lie algebra constructions.

# c D2 Quantum dimensions Topological spins Comments

1 0 4 1, 1, 1, 1 0, 1
2
, 1
4
,− 1

4
F0 ⊠ 2B1

2 0 4 1, 1,−1,−1 0, 1
2
, 1
4
,− 1

4
F0 ⊠ 2B,∗

1

3 1
5

7.2360 1, 1, ζ13 , ζ
1
3 0, 1

2
, 1
10
,− 2

5
F0 ⊠ 2B#2

4 − 1
5

7.2360 1, 1, ζ13 , ζ
1
3 0, 1

2
,− 1

10
, 2
5

F0 ⊠ 2B#1

5 1
10

2.762 1, 1,− 1
ζ13
,− 1

ζ13
0, 1

2
,− 1

5
, 3
10

F0 ⊠ 2B#4

6 − 1
10

2.762 1, 1,− 1
ζ13
,− 1

ζ13
0, 1

2
, 1
5
,− 3

10
F0 ⊠ 2B#3

7 1
4

13.656 1, 1, χ1
2, χ

1
2 0, 1

2
, 1
4
,− 1

4
Primitive: f.c. of (A1)6

8 1
4

2.343 1, 1,− 1
χ1
2
,− 1

χ1
2

0, 1
2
, 1
4
,− 1

4
Primitive

In spite of the interest in BFCs, a direct classification
of the defining data of BFCs is known to be prohibitively
difficult because of huge gauge redundancies. Thus, at-
tempts at classification have instead focused on the so-
called modular data (MD) of BFCs, which consist of the
so-called S- and T - matrices. The S-matrix encodes the
mutual statistics of the anyons, while the T -matrix en-
codes their self-statistics. The dimension of these ma-
trices – or, equivalently, the number of distinct types of
anyons – is called the rank of the MD (or of the corre-
sponding BFC). For example, the topological properties
of the Kitaev toric code are described by a rank-4 MTC,
while the Ising MTC is rank 3 [7, 14]. Although the MD
do not provide a complete classification of BFCs, known
examples of BFCs which cannot be distinguished by their
MD only occur at very high rank [34, 35], and since the
MD are gauge invariant they are much more amenable to
classification. See Refs. [36–40] for the previous efforts in
this line of thinking.

Recently, Ref. [20] has introduced a method which uses
representations of SL2(Z) to classify the MD of MTCs,
i.e., bosonic topological orders, and used it to classify MD
up to rank 6. They make use of the fact that every MD
given by a pair (S, T ) forms a projective congruence rep-
resentation of SL2(Z) [41]. Since every congruence repre-
sentation of SL2(Z) can be constructed explicitly [42, 43],
this gives us a list of candidates from which valid MD can
be constructed, and leads to the most complete classifi-
cation of bosonic topological orders so far obtained.

There have also been attempts to classify super-MTCs,
which characterize fermionic topological orders. The fu-
sion rules of unitary super-MTCs have been completely
classified up to rank 6 [39] and partially for rank 8 [40],
while their explicit MD have been partially classified in
Ref. [22].

We go beyond these results and obtain a classifica-
tion of fermionic MD up to rank 10. Our classification
is complete up to some “unresolved” cases (details will
be explained in Sec. III B 1). We recover all previously

known unitary MD [22, 39, 40] and obtain non-unitary
MD, which had previously not been classified. Further-
more, we discover two completely new classes of MD with
a previously unknown fusion rule. The new types of MD
are primitive in that they are not obtained from stacking
other theories, and they contain large fusion coefficients
N̂k

ij = 3 or 4, and large total quantum dimensions, larger
than that of any MD discovered by Ref. [6].

Moreover, our method allows us to identify the central
charge modulo 1

2 of all these theories, without having to
compute their modular extensions. It had been known
that, in principle, a super-MTC determines the chiral
central charge mod 1

2 (stacking with fermionic invertible

topological orders can change c by multiples of 1
2 with-

out affecting the super-MTC data, so c only has meaning
modulo 1

2 for a given super-MTC), but due to a lack of
an explicit formula relating the MD to the central charge
in the fermionic case, previous results could only iden-
tify c through the bosonic MTC obtained by modular
extension [22]. Since modular extensions are in general
difficult to compute for a given super-MTC, it is advan-
tageous to be able to identify c without explicit reference
to modular extensions. Our classification method based
on congruence representation is in fact able to do this, as
will be explained in Sec. III B 3.

The starting point of our method is the result of Ref.
[44] that the MD of the fermionic quotient of a super-
MTC form projective congruence representations of Γθ,

a subgroup of SL2(Z) generated by [26] s =

(
0 −1
1 0

)
and

t2 where t =

(
1 1
0 1

)
. Thus, if we have a list of congruence

representations of Γθ, we could hope to do something
similar to the bosonic classification of MD carried out
in Ref. [20]. We do exactly that, by first obtaining the
list of Γθ congruence representations using representation
theory, and then constructing and checking potential MD
from the representations.
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FIG. 1. Flowchart of computation of Γθ-representations.

In Sec. II, we introduce super-MTCs and some known
facts about them which shall be relevant for our classi-
fication procedure. In Sec. III, we state the necessary
theorems which allow us to obtain all congruence repre-
sentations of Γθ (Sec. III A), and explain how to construct
MD from Γθ-representations (Sec. III B). We present and
compare our results, which classify fermionic MD up to
rank 10, to previous results in Sec. III C.

II. CATEGORICAL DESCRIPTION OF
FERMIONIC TOPOLOGICAL ORDERS

A. Fermionic topological orders, super-modular
tensor categories, and spin modular tensor

categories

Fermionic topological orders are zero temperature
phases beyond Landau’s symmetry breaking paradigm,
realized in a fermionic many-body system [22]. In
(2+1)D, fermionic topological orders (up to invertible
topological orders) are characterized by the fusion rules
and braiding statistics of emergent point-like excitations
(anyons) together with the fundamental fermionic exci-
tation. The fusion and braiding of these excitations form
a categorical structure, known as a super-MTC [22, 26].

A super-MTC is a ribbon fusion category with its non-
trivial transparent object isomorphic to the local fermion
object f . We refer to Ref. [26] for details of super-MTCs,
and only introduce some key properties necessary for our
purposes. Physically, “transparent” means that f has
trivial mutual statistics with any other point-like excita-
tions. The simple objects of a super-MTC always come
in pairs, as for any anyon a, f ⊗ a is a distinct object.
Hence the rank, or the number of anyons, of a super-
MTC is always even. The subcategory of transparent
objects (the Müger center) of a super-MTC is sVec, the
category of super-vector spaces. The trivial super-MTC
is equivalent to sVec, and we shall denote it as F0.
The full physical data of a fermionic topological order

(up to stacking with invertible bosonic topological or-
ders) is specified by a spin modular tensor category (spin
MTC), which is a modular extension of a super-MTC
[22, 26]. A spin MTC is simply a regular MTC which
contains a distinguished excitation f which is fermionic
(df = 1, θf = −1). Restricting to anyons which have
trivial double braiding with f (including f itself), we ob-

tain a super-MTC. For example, the Laughlin fractional
quantum Hall states at filling fraction ν = 1

m with odd
m are described by the U(1)4m MTC, which has anyons
labeled by l = 0, 1, · · · , 4m − 1. The l = 2m anyon is
the distinguished fermion, and the corresponding super-
MTC consists of even labels l [26].
Conversely, given a super-MTC B, we can add anyons

which braid nontrivially with the fermion f to build a
spin MTC (with non-degenerate S-matrix) M, and M
is called a modular extension of B. If M has smallest
possible total quantum dimensionD2

M = 2D2
B, it is called

a minimal modular extension. In the sequel, modular
extension will always mean minimal modular extension
unless stated otherwise.
Given a super-MTC, a modular extension always exists

[45], and there are always 16 different modular extensions
[29]. In other words, a super-MTC does not uniquely
determine its modular extension. However, the modular
extensions can be distinguished by their central charge c.
The 16 different modular extensions will have different c
mod 8, with c differing by multiples of 1/2. Thus, instead
of specifying a spin MTC, we may instead specify the
same physical data by specifying a super-MTC together
with c mod 8.

B. Fermionic modular data and congruence
representations of Γθ

As for MTCs, a full characterization of super-MTCs
requires gauge-dependent data called R- and F -tensors.
The MD S- and T -matrix are gauge-invariant and much
easier to classify, while they give only a partial character-
ization: there may be multiple inequivalent fusion cate-
gories with the same MD [34] and even if we find candi-
date MD which satisfy the necessary conditions explained
below, it remains to explicitly construct and prove the ex-
istence of a fusion category which gives rise to such MD.
However, the MD capture a large part of the physical
properties of interest [22], and the conditions are strin-
gent enough that they allow us to narrow down the list
of candidates considerably.
The S-matrix of a super-MTC is always degenerate.

However, it is known that the MD of a super-MTC always
admit a tensor decomposition [22, 26]

S =
1√
2

(
1 1
1 1

)
⊗ Ŝ, T =

(
1 0
0 −1

)
⊗ T̂ (1)

where Ŝ is unitary. Given T , T̂ is not well-defined, but
T̂ 2 is. We can always uniquely determine (Ŝ, T̂ 2) in terms
of (S, T ) and vice versa, so we refer to them interchange-
ably as fermionic MD, and also simply as MD when no
confusion with the bosonic case should arise.
The decomposition in Eq. (1) allows us to make use of

Ŝ and T̂ 2, which are unitary matrices. These together
generate a projective representation of a subgroup Γθ of
SL2(Z) [22, 26]. The fact only T̂ 2 is well-defined reflects
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TABLE II. List of rank 6 fermionic MD.

# c D2 Quantum dimensions Topological spins Comments

1 0 6 1, 1, 1, 1, 1, 1 0, 1
2
, 1
6
,− 1

3
, 1
6
,− 1

3
F0 ⊠ 3B2

2 0 6 1, 1, 1, 1, 1, 1 0, 1
2
,− 1

6
, 1
3
,− 1

6
, 1
3

F0 ⊠ 3B−2

3 0 8 1, 1, 1, 1,
√
2,
√
2 0, 1

2
, 0, 1

2
, 1
16
,− 7

16
F0 ⊠ 3B#7 = F0 ⊠ 3B#9

4 0 8 1, 1, 1, 1,
√
2,
√
2 0, 1

2
, 0, 1

2
,− 1

16
, 7
16

F0 ⊠ 3B#8 = F0 ⊠ 3B#10

5 0 8 1, 1, 1, 1,
√
2,
√
2 0, 1

2
, 0, 1

2
, 3
16
,− 5

16
F0 ⊠ 3B#15 = F0 ⊠ 3B#17

6 0 8 1, 1, 1, 1,
√
2,
√
2 0, 1

2
, 0, 1

2
,− 3

16
, 5
16

F0 ⊠ 3B#16 = F0 ⊠ 3B#18

7 0 8 1, 1, 1, 1,−
√
2,−

√
2 0, 1

2
, 0, 1

2
,− 3

16
, 5
16

F0 ⊠ 3B#12 = F0 ⊠ 3B#14

8 0 8 1, 1, 1, 1,−
√
2,−

√
2 0, 1

2
, 0, 1

2
,− 1

16
, 7
16

F0 ⊠ 3B#20 = F0 ⊠ 3B#22

9 0 8 1, 1, 1, 1,−
√
2,−

√
2 0, 1

2
, 0, 1

2
, 1
16
,− 7

16
F0 ⊠ 3B#19 = F0 ⊠ 3B#21

10 0 8 1, 1, 1, 1,−
√
2,−

√
2 0, 1

2
, 0, 1

2
, 3
16
,− 5

16
F0 ⊠ 3B#11 = F0 ⊠ 3B#13

11 1
7

18.591 1, 1, ζ15 , ζ
1
5 , ζ

2
5 , ζ

2
5 0, 1

2
,− 1

7
, 5
14
,− 3

14
, 2
7

F0 ⊠ 3B#2

12 − 1
7

18.591 1, 1, ζ15 , ζ
1
5 , ζ

2
5 , ζ

2
5 0, 1

2
, 1
7
,− 5

14
, 3
14
,− 2

7
F0 ⊠ 3B#1

13 − 3
14

5.724 1, 1,− ζ25
ζ15
,− ζ25

ζ15
, 1
ζ15
, 1
ζ15

0, 1
2
, 3
14
,− 2

7
, 1
14
,− 3

7
F0 ⊠ 3B#5

14 1
14

3.682 1, 1,− ζ15
ζ25
,− ζ15

ζ25
, 1
ζ25
, 1
ζ25

0, 1
2
, 1
7
,− 5

14
,− 1

14
, 3
7

F0 ⊠ 3B#3

15 − 1
14

3.682 1, 1,− ζ15
ζ25
,− ζ15

ζ25
, 1
ζ25
, 1
ζ25

0, 1
2
,− 1

7
, 5
14
, 1
14
,− 3

7
F0 ⊠ 3B#6

16 3
14

5.724 1, 1,− ζ25
ζ15
,− ζ25

ζ15
, 1
ζ15
, 1
ζ15

0, 1
2
,− 3

14
, 2
7
,− 1

14
, 3
7

F0 ⊠ 3B#4

17 0 44.784 1, 1, χ1
3, χ

1
3, χ

2
3, χ

2
3 0, 1

2
,− 1

6
, 1
3
, 0, 1

2
Primitive: f.c. of (A1)−10

18 0 44.784 1, 1, χ1
3, χ

1
3, χ

2
3, χ

2
3 0, 1

2
, 1
6
,− 1

3
, 0, 1

2
Primitive: f.c. of (A1)10

19 0 3.2154 1, 1,−χ1
3

χ2
3
,−χ1

3

χ2
3
, 1
χ2
3
, 1
χ2
3

0, 1
2
,− 1

6
, 1
3
, 0, 1

2
Primitive

20 0 3.2154 1, 1,−χ1
3

χ2
3
,−χ1

3

χ2
3
, 1
χ2
3
, 1
χ2
3

0, 1
2
, 1
6
,− 1

3
, 0, 1

2
Primitive

the fact that the topological spins of anyons are defined
modulo 1

2 due to existence of the local fermion f . Math-

ematically, it is because Γθ is generated by s and t2.
In Ref. [44], it was shown that any projective Γθ-

representation arising from a super-MTC (assuming that
the super-MTC admits a modular extension) is a con-
gruence representation, i.e., its kernel contains a princi-
pal congruence subgroup of SL2(Z). The definition and
properties of congruence representations will be detailed
in Appendix C. In the sequel, any representation we men-
tion will be assumed to be congruence unless otherwise
stated.

Physically, this Γθ-representation contains information
about the NS-NS sector states of the theory. In the
bosonic case, topological orders have a Hilbert space of
states on the torus, whose dimension corresponds to the
number of anyon types. The S- and T -matrices describe
how these states transform under modular transforma-
tions of the torus, which form an SL2(Z)-representation.
Similarly, fermionic topological orders carry a space of
states on the torus, but the theory is now sensitive to
the spin structure. The torus with NS-NS spin struc-
ture carries a number of states corresponding to half
the rank of the super-MTC, and under modular trans-
formations of the torus which preserve the NS-NS spin
structure (which forms Γθ), they transform precisely as

a Γθ-representation given by Ŝ and T̂ 2 [46].
For the full physical data including those of the R-R

sector (the NS-R and R-NS sectors can actually be ob-
tained from the NS-NS sector through modular trans-
formations), we need the modular extension. As dis-

cussed in Section IIA, the modular extension can be
specified by giving the central charge mod 8. The ad-
vantage of this approach is that instead of working
with higher rank SL2(Z)-representations, we can work
with Γθ-representations of much lower rank. A modu-
lar extension M of a super-MTC B satisfies 3

2 rankB ≤
rankM ≤ 2 rankB [26]. Moreover, the important infor-
mation about the modular data of the super-MTC B is
actually captured by the Γθ-representation formed by Ŝ
and T̂ 2, whose dimension is 1

2 rankB. For example, con-
sider super-MTCs of rank 10. The corresponding spin
MTCs will have rank between 15 and 20; however, the
corresponding Γθ-representation is merely of dimension
5. Thus, describing fermionic topological orders as a pair
(B, c) of a super-MTC and central charge mod 8, as op-
posed to describing them with a spin MTC M, greatly
facilitates their classification.

III. CLASSIFICATION OF FERMIONIC
TOPOLOGICAL ORDERS

A. Classification of congruence representations

A complete list of irreducible representations of the
modular group SL2(Z), organized either by level or by
dimension, can be obtained from Ref. [43]. In this sec-
tion, we explain how to obtain the representations of Γθ

from those of SL2(Z).
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TABLE III. List of rank 8 fermionic MD.

# c D2 Quantum dimensions Topological spins Comments

1 0 8 1, 1, 1, 1, 1, 1, 1, 1 0, 1
2
, 0, 1

2
, 0, 1

2
, 0, 1

2
F0 ⊠ 4B,a

0

2 0 8 1, 1, 1, 1,−1,−1,−1,−1 0, 1
2
, 0, 1

2
, 0, 1

2
, 0, 1

2
F0 ⊠ 4B,a,∗

0

3 0 8 1, 1, 1, 1, 1, 1, 1, 1 0, 1
2
, 0, 1

2
, 1
8
,− 3

8
, 1
8
,− 3

8
F0 ⊠ 4B1

4 0 8 1, 1, 1, 1, 1, 1, 1, 1 0, 1
2
, 0, 1

2
,− 1

8
, 3
8
,− 1

8
, 3
8

F0 ⊠ 4B3
5 0 8 1, 1,−1,−1,−1,−1, 1, 1 0, 1

2
, 0, 1

2
,− 1

8
, 3
8
,− 1

8
, 3
8

F0 ⊠ 4B,∗
3

6 0 8 1, 1,−1,−1,−1,−1, 1, 1 0, 1
2
, 0, 1

2
, 1
8
,− 3

8
, 1
8
,− 3

8
F0 ⊠ 4B,∗

1

7 0 8 1, 1, 1, 1, 1, 1, 1, 1 0, 1
2
, 0, 1

2
, 1
4
,− 1

4
, 1
4
,− 1

4
F0 ⊠ 4B,b

0

8 0 8 1, 1,−1,−1,−1,−1, 1, 1 0, 1
2
, 0, 1

2
, 1
4
,− 1

4
, 1
4
,− 1

4
F0 ⊠ 4B,b,∗1

0

9 0 8 1, 1, 1, 1,−1,−1,−1,−1 0, 1
2
, 0, 1

2
, 1
4
,− 1

4
, 1
4
,− 1

4
F0 ⊠ 4B,b,∗2

0

10 1
5

14.472 1, 1, 1, 1, ζ13 , ζ
1
3 , ζ

1
3 , ζ

1
3 0, 1

2
, 1
4
,− 1

4
, 1
10
,− 2

5
,− 3

20
, 7
20

F0 ⊠ 4B#18 = F0 ⊠ 4B#20

11 − 1
5

14.472 1, 1, 1, 1, ζ13 , ζ
1
3 , ζ

1
3 , ζ

1
3 0, 1

2
, 1
4
,− 1

4
, 3
20
,− 7

20
,− 1

10
, 2
5

F0 ⊠ 4B#17 = F0 ⊠ 4B#19

12 − 1
5

14.472 1, 1,−1,−1,−ζ13 ,−ζ13 , ζ
1
3 , ζ

1
3 0, 1

2
, 1
4
,− 1

4
, 3
20
,− 7

20
,− 1

10
, 2
5

F0 ⊠ 4B#26 = F0 ⊠ 4B#27

13 1
10

5.528 1, 1,−1,−1,− 1
ζ13
,− 1

ζ13
, 1
ζ13
, 1
ζ13

0, 1
2
, 1
4
,− 1

4
,− 1

5
, 3
10
, 1
20
,− 9

20
F0 ⊠ 4B#25 = F0 ⊠ 4B#29

14 1
10

5.528 1, 1, 1, 1,− 1
ζ13
,− 1

ζ13
,− 1

ζ13
,− 1

ζ13
0, 1

2
, 1
4
,− 1

4
, 1
20
,− 9

20
,− 1

5
, 3
10

F0 ⊠ 4B#22 = F0 ⊠ 4B#24

15 − 1
10

5.528 1, 1,−1,−1,− 1
ζ13
,− 1

ζ13
, 1
ζ13
, 1
ζ13

0, 1
2
, 1
4
,− 1

4
, 1
5
,− 3

10
,− 1

20
, 9
20

F0 ⊠ 4B#28 = F0 ⊠ 4B#32

16 − 1
10

5.528 1, 1, 1, 1,− 1
ζ13
,− 1

ζ13
,− 1

ζ13
,− 1

ζ13
0, 1

2
, 1
4
,− 1

4
, 1
5
,− 3

10
,− 1

20
, 9
20

F0 ⊠ 4B#21 = F0 ⊠ 4B#23

17 1
5

14.472 1, 1,−1,−1,−ζ13 ,−ζ13 , ζ
1
3 , ζ

1
3 0, 1

2
, 1
4
,− 1

4
,− 3

20
, 7
20
, 1
10
,− 2

5
F0 ⊠ 4B#30 = F0 ⊠ 4B#31

18 0 24 1, 1, 1, 1, 2, 2,
√
6,
√
6 0, 1

2
, 0, 1

2
, 1
6
,− 1

3
, 1
16
,− 7

16
Primitive

19 0 24 1, 1, 1, 1, 2, 2,
√
6,
√
6 0, 1

2
, 0, 1

2
, 1
6
,− 1

3
,− 1

16
, 7
16

Primitive

20 0 24 1, 1, 1, 1, 2, 2,
√
6,
√
6 0, 1

2
, 0, 1

2
, 1
6
,− 1

3
, 3
16
,− 5

16
Primitive: f.c. of (D6)2

21 0 24 1, 1, 1, 1, 2, 2,
√
6,
√
6 0, 1

2
, 0, 1

2
, 1
6
,− 1

3
,− 3

16
, 5
16

Primitive

22 0 24 1, 1, 1, 1, 2, 2,
√
6,
√
6 0, 1

2
, 0, 1

2
,− 1

6
, 1
3
, 1
16
,− 7

16
Primitive

23 0 24 1, 1, 1, 1, 2, 2,
√
6,
√
6 0, 1

2
, 0, 1

2
,− 1

6
, 1
3
,− 1

16
, 7
16

Primitive

24 0 24 1, 1, 1, 1, 2, 2,
√
6,
√
6 0, 1

2
, 0, 1

2
,− 1

6
, 1
3
, 3
16
,− 5

16
Primitive

25 0 24 1, 1, 1, 1, 2, 2,
√
6,
√
6 0, 1

2
, 0, 1

2
,− 1

6
, 1
3
,− 3

16
, 5
16

Primitive: f.c. of (D6)−2

26 0 24 1, 1, 1, 1, 2, 2,−
√
6,−

√
6 0, 1

2
, 0, 1

2
,− 1

6
, 1
3
,− 1

16
, 7
16

Primitive

27 0 24 1, 1, 1, 1, 2, 2,−
√
6,−

√
6 0, 1

2
, 0, 1

2
, 1
6
,− 1

3
,− 1

16
, 7
16

Primitive

28 0 24 1, 1, 1, 1, 2, 2,−
√
6,−

√
6 0, 1

2
, 0, 1

2
, 1
6
,− 1

3
,− 3

16
, 5
16

Primitive

29 0 24 1, 1, 1, 1, 2, 2,−
√
6,−

√
6 0, 1

2
, 0, 1

2
, 1
6
,− 1

3
, 3
16
,− 5

16
Primitive

30 0 24 1, 1, 1, 1, 2, 2,−
√
6,−

√
6 0, 1

2
, 0, 1

2
,− 1

6
, 1
3
, 1
16
,− 7

16
Primitive

31 0 24 1, 1, 1, 1, 2, 2,−
√
6,−

√
6 0, 1

2
, 0, 1

2
, 1
6
,− 1

3
, 1
16
,− 7

16
Primitive

32 0 24 1, 1, 1, 1, 2, 2,−
√
6,−

√
6 0, 1

2
, 0, 1

2
,− 1

6
, 1
3
,− 3

16
, 5
16

Primitive

33 0 24 1, 1, 1, 1, 2, 2,−
√
6,−

√
6 0, 1

2
, 0, 1

2
,− 1

6
, 1
3
, 3
16
,− 5

16
Primitive

1. Representations of a subgroup

Consider a finite group G and its subgroup H < G.
Suppose we have a representation of G, denoted by R.
Then we can obtain a representation of H, denoted by
ResGH R, by restriction, which simply means that we limit

ourselves to R(h) such that h ∈ H. If ResGH R of an
irreducible representation R is again irreducible, both R
and ResGH R are of the same dimension and we say that

ResGH R is extendable. In other words, any irreducible
representation of H which is extendable can be obtained
by restriction.

On the other hand, given any representation π of H,
we can construct an induced representation IndGH π of G
(this is unique for a given π). While not every irreducible
representation of H is extendable, every representation
of H can be induced to a representation of G. Restriction
and induction are “adjoint” to each other due to a prop-
erty known as Frobenius reciprocity. Roughly speaking,

Frobenius reciprocity states that the induced representa-
tion of π decomposes as a direct sum of irreducible repre-
sentations Ri of G, where each irreducible representation
appears with the multiplicity mi equal to the number of
times its restriction toH contains π. As a corollary, every
irreducible representation ofH is contained in the restric-
tion of some irreducible representation of G. Therefore,
by Frobenius reciprocity, we can obtain every irreducible
representation of Γθ from restriction of irreducible repre-
sentations of SL2(Z). Readers interested in mathematical
details are invited to Appendix D.

An explicit description of induced representations is
given as follows. Let π : H → GL(V ) be a representation
of H < G on a vector space V . Let N = [H : G] be the
index of H in G and {gi}Ni=1 be the full set of representa-

tives of left cosets in G/H. The G-representation IndGH π

acts on the vector space W =
⊕N

i=1 giV , i.e., N copies of
V . For any g ∈ G, its action on W is given by the follow-
ing. First, for each coset gi, g ·gi = gj(i)hi for some (pos-
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TABLE IV. Number of congruence irreducible representations
of SL2(Z) and Γθ.

d 1 2 3 4 5
SL2(Z) 12 54 136 180 36

Γθ 96 600 416 2436 288

sibly different) coset corresponding to gj(i) and hi ∈ H.
Once we have fixed the set {gi}ni=1 of coset representa-
tives, the decomposition is unique. Second, the g-action
permutes the cosets according to gi 7→ gj(i). Moreover,
on each subspace giV , hi acts by π(hi).

2. Computation of congruence representations of Γθ

How do these results apply to the case at hand? Both
SL2(Z) and Γθ are infinite, non-compact groups. How-
ever, SL2(Zn) and Γθ/Γ(n) are finite groups for every
n, and Γθ/Γ(n) < SL2(Zn). Here, Γ(n) is the level-n
principal congruence subgroup. Note that n is always
an even number because Γθ itself is a level-2 congruence
subgroup.

Given an SL2(Z)-representation R of level n, we can
restrict it to Γθ straightforwardly. Denote the restricted
representation by R|Γθ

. Since kerR ≤ Γ(n), kerR|Γθ
≤

Γθ ∩Γ(n). As previously mentioned, Γ(n) < Γθ for every
even n, thus Γθ ∩ Γ(n) = Γ(n) if n is even and Γ(2n)
if n is odd. On the other hand, kerR|Γθ

cannot contain
Γ(n′) for n′ < n; if it were the case, we could think
of R|Γθ

as a representation of Γθ/Γ(n
′) and induce it

to a representation of SL2(Zn′). Frobenius reciprocity
ensures the induced representation contains R, but this
contradicts the fact that R is of level n. Hence the level
of R|Γθ

is n (if n is even) or 2n (if n is odd).
As a consequence, every irreducible representation of

Γθ/Γ(n) (where n is always even) can be obtained from
the decomposition into irreducible representations of the
restriction of irreducible representations of SL2(Zn) and
SL2(Zn/2). In other words, every congruence irreducible
representation of Γθ can be obtained from restricting and
decomposing the congruence irreducible representations
of SL2(Zn). This is the key result which enables us to
obtain the full list of congruence representations of Γθ up
to a given dimension.

In order to facilitate the computation, we make explicit
use of induction. For simplicity, we shall speak of the
induction from Γθ to SL2(Z) in the sequel, but technically
this should always be understood as an induction from
Γθ/Γ(n) to SL2(Zn), which are both finite groups. Note
that N = [Γθ : SL2(Z)] = [Γθ/Γ(n) : SL2(Zn)] = 3 [47],
so that if we start with a d-dimensional representation of
Γθ/Γ(n), the dimension of the induced representation is
always 3d.
A choice of left coset representatives of Γθ < SL2(Z) is

given by {1, t, st}. Let us denote the Γθ-representation by
ρ : Γθ → GL(V ), and its induced representation by R :

SL2(Z) → GL(W ). If the action of ρ on V is represented
by the matrices ρ(s) = S and ρ(t2) = T2, then the action
of R on W = V ⊕ tV ⊕ stV is given by the matrices
R(s) = S and R(t) = T which take the block form

S =

S 0 0
0 0 S2

0 1 0

 , T =

0 T2 0
1 0 0
0 0 (ST2)−1

 . (2)

This explicit form of the induced representation allows
us to efficiently compute d-dimensional irreducible repre-
sentations of Γθ coming from 3d-dimensional irreducible
representations of SL2(Z), using the reverse induction
formula detailed in Appendix B. The restriction to Γθ

means the generators are now

S =

S 0 0
0 0 S2

0 1 0

 , T 2 =

T2 0 0
0 T2 0
0 0 (ST2)−2

 . (3)

Note that the restriction of the induced representation
indeed contains the original representation of Γθ in the
first block.
Frobenius reciprocity heavily constrains which irre-

ducible representations of SL2(Z) give rise to an irre-
ducible representation of Γθ of a given dimension d. Con-
sider a d-dimensional irreducible representation ρ of Γθ.
Its induced representation takes the form

Ind ρ =
⊕
i

miRi (4)

for some irreducible representations R of SL2(Z), which
in turn satisfy

ResRi = miρ⊕ · · · (5)

for each i. Since dim Ind ρ = 3d, Ind ρ (if it is not 3d-
dimensional) can only decompose as 3d = d + d + d (in
which case ρ is extendable), or (d+a)+(2d−a) for some
0 ≤ a ≤ d. The (d+ a)-dimensional irreducible represen-
tation Rd+a satisfies ResRd+a = ρ⊕σ⊕· · · where σ can
at most be a-dimensional. Indσ should in turn contain
Rd+a, so we need

3a ≥ dim Indσ ≥ dimRd+a = d+ a. (6)

This translates to a ≥ d/2, or

d+ a ≥ 3

2
d. (7)

On the other hand, if a > d/2, then 2d − a < 3d/2, so
the (2d−a)-dimensional irreducible representation R2d−a

would not satisfy the above requirements. Hence we need
exactly a = d/2, or, in other words,

d+ a =
3

2
d. (8)

Thus, for any given ρ, either its induced representation
is a 3d-dimensional irreducible representation of SL2(Z),
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or it decomposes into two 3d/2-dimensional irreducible
representations of SL2(Z). When d is odd, the latter
possibility is precluded as 3d/2 is not an integer.

For example, if we are interested in obtaining 4-
dimensional irreducible representations of Γθ, we should
look at the restrictions of (i) 4-dimensional SL2(Z)-irreps
(these give rise to extendable irreps), (ii) 6-dimensional
SL2(Z)-irreps, and (iii) 12-dimensional SL2(Z)-irreps and
obtain their irreducible components.

When the spectrum of T is degenerate, the reverse in-
duction formula is difficult to be utilized due to the free-
dom of orthogonal transformation in the degenerate sub-
space. Fortunately, at least for d ≤ 5, the 3d-dimensional
irreducible representations of SL2(Z) which have de-
generate T are not induced representations. However,
(3d/2+3d/2)-dimensional representations should always
have degenerate T ; otherwise, they cannot be valid MD.
Thus, we directly block-diagonalize the restricted rep-
resentations (i.e., S and T 2) simultaneously to get ir-
reducible representations of Γθ. Schematic flowchart of
Γθ-representation computing process is shown in Fig. 1.

We compute all congruence irreducible representations
of Γθ up to dimension 5. The number of irreducible rep-
resentations for each dimension is shown in Table IV. For
comparison, the number of irreducible representations of
SL2(Z) for each dimension is shown as well.

B. Construction of fermionic modular data

Once we have obtained all irreducible representations
of Γθ from those of SL2(Z), using methods outlined in
Sec. IIIA 2, we can use them to construct candidate
MD. As in bosonic case [20], we first construct a Γθ-
representation ρisum for a given dimension d as a direct
sum of irreducible Γθ-representations. Then, by applying
an orthogonal transformation U , we put it into a specific
basis which makes it a candidate for an MD. After ob-
taining the list of candidates, we can check the necessary
conditions for being a valid MD of a super-MTC, such as
the Verlinde formula and the Frobenius-Schur indicator
condition. In this work, we carry this program out up to
dimension 5 (which corresponds to super-MTCs of rank
10).

1. Basis transformation and resolved representations

The MD (Ŝ, T̂ 2) are basis-dependent quantities, and

even if (Ŝ, T̂ 2) form a reducible representation, the cor-
responding super-MTC may be indecomposable. Thus,
if we are interseted in fermionic MD (Ŝ, T̂ 2) of dimension
d, we need to look at all d-dimensional representations of
Γθ (including reducible ones), in all possible valid bases.
Following Ref. [20], we denote by ρisum the direct sum of
irreducible representations in the basis coming from our
list of symmetric irreducible representations Γθ (in their

case ρisum denotes a direct sum of irreducible SL2(Z)-
representations), and ρ = UρisumU

−1 the basis-changed
version, which is a candidate for the MD. More precisely,
ρ is a linear lift of the projective representation formed
by (Ŝ, T̂ 2).

There are several conditions for a valid basis. First,
ρ(t2) should be diagonal. As our irreducible representa-
tions of Γθ are all in this form, this condition is auto-
matically satisfied by any ρisum. In orther to preserve
this under a transformation UρisumU

−1, U can only act
block-diagonally, where each block corresponds to a de-
generate subspace of the eigenvalues of ρ(t2). Second,
we require that ρ(s) is symmetric. As ρisum is always
symmetric, we need U to be an orthogonal matrix. (To
make each step clear, we think of U as a combination
of a signed diagonal matrix V and an orthogonal ma-
trix U0, i.e., U = V U0.) Lastly, ρ(s) should not have
zeroes in the first row (or, equivalenly, the column, since
it is symmetric), i.e., ∀i, ρ(s)1i ̸= 0, corresponding to the
fact that quantum dimensions cannot be zero. This leads
to the t2-spectrum condition, which states that whenever
ρisum is a direct sum, the t2-spectrum of each direct sum-
mand should have nonempty overlap [37]. (In Ref. [37],
authors deal with SL2(Z)-representations and hence the
t-spectrum, rather than the t2-spectrum, but the idea is
the same.)

Accordingly, for a given dimension, we build ρisum
and organize them into types, according to how much
overlap their t-spectra have. For example, for dimen-
sion 4, we consider the following types of ρisum: 4-d ir-
reps, (3+1)-d Type (2), (2+2)-d Type (2), (2+2)-d Type
(2,2), (2+1+1)-d Type (2,2), and (2+1+1)-d Type (3,1).
Here, Type (a, b) denotes that the eigenvalues of ρisum(t

2)
(hence ρ(t2)) overlap in sets of sizes a and b. For exam-
ple, if the four eigenvalues are {1, 1, 1,−1}, the represen-
tation is of Type (3,1). In dimension 5, (1+1+1+1+1)-d
Type (5) does not yield any valid MD. We prove in Ap-
pendix G that a direct sum of 1-dimensional represen-
tations can only give rise to split (hence non-primitive)
super-MTCs.

We observe that when ρisum is irreducible, the t2-
spectrum is nondegenerate, at least up to dimension 5,
so there is no further possibility of orthogonal transfor-
mation U0 available. In such a case we simply perform
all possible signed diagonal transformations, V ρisumV

−1,
which gives us the candidate ρ. On the other hand, when
ρisum is a direct sum, the t2-spectrum is degenerate, and
in each degenerate eigenspace of dimension dθ (corre-
sponding to the topological spin θ) we can perform an
orthogonal transformation of dimension dθ.

The possible orthogonal transformations are in fact
heavily constrained for the so-called “resolved represen-
tations” [20], for which the degenerate eigenspace can
be “resolved” (i.e., the degeneracy lifted) by the set of
matrices

H(a) = ρ(s)2ρ(t)−(a−1)ρ(s)(ρ(t)2ρ(s))ā−1ρ(t)−(a−1)ρ(s)
(9)
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TABLE V. List of rank 8 fermionic MD. Continued. In the Comments, 4F#n refers to the nth entry of our rank 4 fermionic MD
table I.

# c D2 Quantum dimensions Topological spins Comments

34 − 1
10

26.180 1, 1, ζ13 , ζ
1
3 , ζ

1
3 , ζ

1
3 , ζ

2
8 , ζ

2
8 0, 1

2
, 1
10
,− 2

5
, 1
10
,− 2

5
, 1
5
,− 3

10
F0 ⊠ 4B#2

35 0 26.180 1, 1, ζ13 , ζ
1
3 , ζ

1
3 , ζ

1
3 , ζ

2
8 , ζ

2
8 0, 1

2
, 1
10
,− 2

5
,− 1

10
, 2
5
, 0, 1

2
F0 ⊠ 4B#5

36 1
10

26.180 1, 1, ζ13 , ζ
1
3 , ζ

1
3 , ζ

1
3 , ζ

2
8 , ζ

2
8 0, 1

2
,− 1

10
, 2
5
,− 1

10
, 2
5
,− 1

5
, 3
10

F0 ⊠ 4B#1

37 0 3.820 1, 1,− 1
ζ13
,− 1

ζ13
,− 1

ζ13
,− 1

ζ13
, 1
ζ28
, 1
ζ28

0, 1
2
, 1
5
,− 3

10
,− 1

5
, 3
10
, 0, 1

2
F0 ⊠ 4B#6

38 − 1
5

3.820 1, 1,− 1
ζ13
,− 1

ζ13
,− 1

ζ13
,− 1

ζ13
, 1
ζ28
, 1
ζ28

0, 1
2
, 1
5
,− 3

10
, 1
5
,− 3

10
,− 1

10
, 2
5

F0 ⊠ 4B#3

39 1
5

3.820 1, 1,− 1
ζ13
,− 1

ζ13
,− 1

ζ13
,− 1

ζ13
, 1
ζ28
, 1
ζ28

0, 1
2
,− 1

5
, 3
10
,− 1

5
, 3
10
, 1
10
,− 2

5
F0 ⊠ 4B#4

40 − 1
5

10 1, 1,−1,−1,− 1
ζ13
,− 1

ζ13
, ζ13 , ζ

1
3 0, 1

2
,− 1

10
, 2
5
,− 1

5
, 3
10
, 1
10
,− 2

5
F0 ⊠ 4B#10

41 − 1
10

10 1, 1,−1,−1,− 1
ζ13
,− 1

ζ13
, ζ13 , ζ

1
3 0, 1

2
,− 1

5
, 3
10
, 1
5
,− 3

10
, 1
10
,− 2

5
F0 ⊠ 4B#9

42 1
10

10 1, 1,−1,−1,− 1
ζ13
,− 1

ζ13
, ζ13 , ζ

1
3 0, 1

2
, 1
5
,− 3

10
,− 1

5
, 3
10
,− 1

10
, 2
5

F0 ⊠ 4B#8

43 1
5

10 1, 1,−1,−1,− 1
ζ13
,− 1

ζ13
, ζ13 , ζ

1
3 0, 1

2
, 1
10
,− 2

5
, 1
5
,− 3

10
,− 1

10
, 2
5

F0 ⊠ 4B#7

44 1
4

27.313 1, 1, 1, 1, χ1
2, χ

1
2, χ

1
2, χ

1
2 0, 1

2
, 1
4
,− 1

4
, 0, 1

2
, 1
4
,− 1

4
4F#7 ⊠ 2B1

45 1
4

27.313 1, 1,−1,−1,−χ1
2,−χ1

2, χ
1
2, χ

1
2 0, 1

2
, 1
4
,− 1

4
, 0, 1

2
, 1
4
,− 1

4
4F#7 ⊠ 2B,∗

1

46 1
4

4.6863 1, 1,−1,−1,− 1
χ1
2
,− 1

χ1
2
, 1
χ1
2
, 1
χ1
2

0, 1
2
, 1
4
,− 1

4
, 1
4
,− 1

4
, 0, 1

2
4F#8 ⊠ 2B1

47 1
4

4.6863 1, 1, 1, 1,− 1
χ1
2
,− 1

χ1
2
,− 1

χ1
2
,− 1

χ1
2

0, 1
2
, 1
4
,− 1

4
, 0, 1

2
, 1
4
,− 1

4
4F#8 ⊠ 2B,∗

1

48 1
6

38.468 1, 1, ζ17 , ζ
1
7 , ζ

2
7 , ζ

2
7 , ζ

3
7 , ζ

3
7 0, 1

2
, 1
6
,− 1

3
,− 2

9
, 5
18
,− 1

6
, 1
3

F0 ⊠ 4B#12

49 − 1
6

38.468 1, 1, ζ17 , ζ
1
7 , ζ

2
7 , ζ

2
7 , ζ

3
7 , ζ

3
7 0, 1

2
,− 1

6
, 1
3
, 2
9
,− 5

18
, 1
6
,− 1

3
F0 ⊠ 4B#11

50 − 1
6

10.890 1, 1,− ζ37
ζ17
,− ζ37

ζ17
,− ζ37

ζ17
,− ζ37

ζ17
,
ζ27
ζ17
,
ζ27
ζ17

0, 1
2
,− 1

6
, 1
3
, 1
6
,− 1

3
, 1
18
,− 4

9
F0 ⊠ 4B#15

51 − 1
6

4.640 1, 1,− ζ27
ζ37
,− ζ27

ζ37
,− 1

ζ37
,− 1

ζ37
,
ζ17
ζ37
,
ζ17
ζ37

0, 1
2
,− 1

9
, 7
18
,− 1

6
, 1
3
, 1
6
,− 1

3
F0 ⊠ 4B#16

52 1
6

10.890 1, 1,− ζ37
ζ17
,− ζ37

ζ17
,− ζ37

ζ17
,− ζ37

ζ17
,
ζ27
ζ17
,
ζ27
ζ17

0, 1
2
, 1
6
,− 1

3
,− 1

6
, 1
3
,− 1

18
, 4
9

F0 ⊠ 4B#14

53 1
6

4.640 1, 1,− ζ27
ζ37
,− ζ27

ζ37
,− 1

ζ37
,− 1

ζ37
,
ζ17
ζ37
,
ζ17
ζ37

0, 1
2
, 1
9
,− 7

18
, 1
6
,− 1

3
,− 1

6
, 1
3

F0 ⊠ 4B#13

where a is an element of Z×
n which satisfies θa

2

= θ. Here,
n is the level of the representation ρ, and ā is the inverse
of a modulo n, i.e., aā ≡ 1 mod n. Due to a theorem
related to Galois conjugation [48], each H(a) should be a
signed permuation for a valid ρ. The theorem is proved
for the bosonic case, but using the existence of a modu-
lar extension, we can extend the result to fermionic case.
The fact thatH(a) has to be a signed permutation matrix

after the orthogonal transforamtion U0 places severe con-
straints on what U0 can be for resolved representations.
For details, see Section C.1 of Ref. [20]. We apply their
logic to the fermionic case, and find that we need only
consider the follwoing orthogonal transformations for the
resolved degenerate eigenspaces (as mentioned above and
in Appendix G, we need not consider a 5-dimensional
eigenspace). For a 2-dimensional subspace,

(
cosϕ − sinϕ
sinϕ cosϕ

)
(10)

with ϕ = 0, π/4,−π/4. For a 3-dimensional subspace,cosϕ − sinϕ 0
sinϕ cosϕ 0
0 0 1

 ,

cosϕ 0 − sinϕ
0 1 0

sinϕ 0 cosϕ

 ,

1 0 0
0 cosϕ − sinϕ
0 sinϕ cosϕ

 (11)

with ϕ = 0, π/4,−π/4. For a 4-dimensional subspace,cosϕ − sinϕ 0 0
sinϕ cosϕ 0 0
0 0 1 0
0 0 0 1

 ,

cosϕ 0 − sinϕ 0
0 1 0 0

sinϕ 0 cosϕ 0
0 0 0 1

 ,

1 0 0 0
0 cosϕ − sinϕ 0
0 sinϕ cosϕ 0
0 0 0 1

 ,

cosϕ 0 0 − sinϕ
0 1 0 0
0 0 1 0

sinϕ 0 0 cosϕ

 ,

1 0 0 0
0 cosϕ 0 − sinϕ
0 0 1 0
0 sinϕ 0 cosϕ

 ,

1 0 0 0
0 1 0 0
0 0 cosϕ − sinϕ
0 0 sinϕ cosϕ


(12)
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TABLE VI. List of rank 8 fermionic MD. Continued.

# c D2 Quantum dimensions Topological spins Comments

54 − 1
20

49.410 1, 1, ζ13ζ
2
6 , ζ

1
3ζ

2
6 , ζ

2
6 , ζ

2
6 , ζ

1
3 , ζ

1
3 0, 1

2
,− 3

20
, 7
20
, 1
4
,− 1

4
, 1
10
,− 2

5
4F#7 ⊠ 2B#2

55 1
20

49.410 1, 1, ζ13ζ
2
6 , ζ

1
3ζ

2
6 , ζ

2
6 , ζ

2
6 , ζ

1
3 , ζ

1
3 0, 1

2
, 3
20
,− 7

20
, 1
4
,− 1

4
,− 1

10
, 2
5

4F#7 ⊠ 2#1

56 − 1
20

8.478 1, 1,− ζ13
ζ26
,− ζ13

ζ26
,− 1

ζ26
,− 1

ζ26
, ζ13 , ζ

1
3 0, 1

2
, 3
20
,− 7

20
, 1
4
,− 1

4
,− 1

10
, 2
5

4F#8 ⊠ 2B#1

57 − 3
20

18.873 1, 1,− ζ26
ζ13
,− ζ26

ζ13
, ζ26 , ζ

2
6 ,− 1

ζ13
,− 1

ζ13
0, 1

2
, 1
20
,− 9

20
, 1
4
,− 1

4
,− 1

5
, 3
10

4F#7 ⊠ 2B#4

58 − 3
20

3.2381 1, 1, 1
ζ13ζ

2
6
, 1
ζ13ζ

2
6
,− 1

ζ26
,− 1

ζ26
,− 1

ζ13
,− 1

ζ13
0, 1

2
, 1
20
,− 9

20
, 1
4
,− 1

4
,− 1

5
, 3
10

4F#8 ⊠ 2B#4

59 3
20

18.873 1, 1,− ζ26
ζ13
,− ζ26

ζ13
, ζ26 , ζ

2
6 ,− 1

ζ13
,− 1

ζ13
0, 1

2
,− 1

20
, 9
20
, 1
4
,− 1

4
, 1
5
,− 3

10
4F#7 ⊠ 2B#3

60 3
20

3.2381 1, 1, 1
ζ13ζ

2
6
, 1
ζ13ζ

2
6
,− 1

ζ26
,− 1

ζ26
,− 1

ζ13
,− 1

ζ13
0, 1

2
,− 1

20
, 9
20
, 1
4
,− 1

4
, 1
5
,− 3

10
4F#8 ⊠ 2B#3

61 − 1
20

8.478 1, 1,− ζ13
ζ26
,− ζ13

ζ26
,− 1

ζ26
,− 1

ζ26
, ζ13 , ζ

1
3 0, 1

2
,− 3

20
, 7
20
, 1
4
,− 1

4
, 1
10
,− 2

5
4F#8 ⊠ 2B#2

62 0 93.254 1, 1, χ1
2, χ

1
2, χ

1
2, χ

1
2, χ

3
8, χ

3
8 0, 1

2
, 1
4
,− 1

4
, 1
4
,− 1

4
, 0, 1

2
4F#7 ⊠F0 4F#7

63 0 16 1, 1,−1,−1,− 1
χ1
2
,− 1

χ1
2
, χ1

2, χ
1
2 0, 1

2
, 0, 1

2
, 1
4
,− 1

4
, 1
4
,− 1

4
4F#7 ⊠F0 4F#8

64 0 2.7452 1, 1, 1

(χ1
2)

2 ,
1

(χ1
2)

2 ,− 1
χ1
2
,− 1

χ1
2
,− 1

χ1
2
,− 1

χ1
2

0, 1
2
, 0, 1

2
, 1
4
,− 1

4
, 1
4
,− 1

4
4F#8 ⊠F0 4F#8

65 − 1
8

105.09 1, 1, ζ214, ζ
2
14, ζ

4
14, ζ

4
14, ζ

6
14, ζ

6
14 0, 1

2
,− 1

8
, 3
8
, 1
8
,− 3

8
, 1
4
,− 1

4
Primitive: f.c. of (A1)−14

66 1
8

105.09 1, 1, ζ214, ζ
2
14, ζ

4
14, ζ

4
14, ζ

6
14, ζ

6
14 0, 1

2
, 1
8
,− 3

8
,− 1

8
, 3
8
, 1
4
,− 1

4
Primitive: f.c. of (A1)14

67 1
8

12.959 1, 1,− ζ414
ζ214

,− ζ414
ζ214

, 1
ζ214

, 1
ζ214

,
ζ614
ζ214

,
ζ614
ζ214

0, 1
2
, 1
4
,− 1

4
,− 1

8
, 3
8
, 1
8
,− 3

8
Primitive

68 − 1
8

12.959 1, 1,− ζ414
ζ214

,− ζ414
ζ214

, 1
ζ214

, 1
ζ214

,
ζ614
ζ214

,
ζ614
ζ214

0, 1
2
, 1
4
,− 1

4
, 1
8
,− 3

8
,− 1

8
, 3
8

Primitive

69 1
8

5.7859 1, 1,− ζ614
ζ414

,− ζ614
ζ414

, 1
ζ414

, 1
ζ414

,
ζ214
ζ414

,
ζ214
ζ414

0, 1
2
,− 1

8
, 3
8
, 1
8
,− 3

8
, 1
4
,− 1

4
Primitive

70 − 1
8

5.7859 1, 1,− ζ614
ζ414

,− ζ614
ζ414

, 1
ζ414

, 1
ζ414

,
ζ214
ζ414

,
ζ214
ζ414

0, 1
2
, 1
8
,− 3

8
,− 1

8
, 3
8
, 1
4
,− 1

4
Primitive

71 − 1
8

4.1583 1, 1,− ζ414
ζ614

,− ζ414
ζ614

,− 1
ζ614

,− 1
ζ614

,
ζ214
ζ614

,
ζ214
ζ614

0, 1
2
,− 1

8
, 3
8
, 1
4
,− 1

4
, 1
8
,− 3

8
Primitive

72 1
8

4.1583 1, 1,− ζ414
ζ614

,− ζ414
ζ614

,− 1
ζ614

,− 1
ζ614

,
ζ214
ζ614

,
ζ214
ζ614

0, 1
2
, 1
8
,− 3

8
, 1
4
,− 1

4
,− 1

8
, 3
8

Primitive

with ϕ = 0, π/4,−π/4.

Hence, for resolved representations, there are only a
discrete set of possible candidates for MD. The vast ma-
jority of known valid MD come from resolved represen-
tations — in fact, up to rank 8, for which there is a more
or less complete classification for unitary super-MTCs,
all but one of them come from resolved representations
(the one exception corresponds to the toric code stacked
with the trivial fermionic theory, 4B0 ⊠ F0). For rank
10, a few of the known unitary super-MTCs are obtained
from unresolved representations. We discuss how we ob-
tained them, as well as their non-unitary versions, and
our general (though incomplete) strategy for dealing with
unresolved representations, in Appendix E.

2. From linear to projective representations and modular
data

Once we obtain the candidate linear representations
ρ = UρisumU

−1, we can easily construct the MD by

Ŝ =
|ρ(s)11|
ρ(s)11

ρ(s)11, T̂ 2 =
ρ(t2)

ρ(t2)11
(13)

where the vacuum corresponds to the first index. The
MD (Ŝ, T̂ 2) now only satisfy the relations of the con-

gruence representation projectively, and the level may
change.
The linear representation ρ may be thought of as a lift

of the projective representation formed by Ŝ and T̂ 2 to a
linear representation. If every projective representation
of Γθ formed by MD admits such a linear lift, then we
can claim that our search for MD is complete, since we
begin with a complete list of linear representations of a
given dimension. For SL2(Z), the existence of linear lifts
of the projective reprsentations formed by bosonic MD is
guaranteed [48]. We state a similar theorem for fermionic
MD and Γθ.

Theorem III.1. Suppose ρ̃ is a projective representation
of Γθ formed by the fermionic MD (Ŝ, T̂ 2) of a super-

MTC B, i.e., ρ̃(s) = Ŝ and ρ̃(t2) = T̂ 2. Then, ρ̃ always
admits a lift to a linear congruence representation of Γθ.

For brevity, we detail the proof of Theorem III.1 in
Appendix F.
After obtaining the candidate (Ŝ, T̂ 2) via Eq. (13), we

check whether they are valid using the Verlinde formula

N̂ ij
k =

∑
l∈Π0

ŜilŜjlŜ
∗
kl

Ŝ1l

(14)

where the nonnegative integer fusion coefficients N̂ ij
k

form a fusion ring, and the Frobenius-Schur indicator
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TABLE VII. List of rank 10 fermionic MD.

# c D2 Quantum dimensions Topological spins Comments

1 0 10 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 0, 1
2
, 1
10

,− 2
5
, 1
10

,− 2
5
, 2
5
,− 1

10
, 2
5
,− 1

10
F0 ⊠ 5B4

2 0 10 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 0, 1
2
, 1
5
,− 3

10
, 1
5
,− 3

10
, 3
10

,− 1
5
, 3
10

,− 1
5

F0 ⊠ 5B0
3 0 24 1, 1, 1, 1,

√
3,

√
3,

√
3,

√
3, 2, 2 0, 1

2
, 0, 1

2
, 0, 1

2
, 0, 1

2
, 1
6
,− 1

3
Primitive: f.c. of (A1)−4 ⊠ U(1)4

4 0 24 1, 1, 1, 1,
√
3,

√
3,

√
3,

√
3, 2, 2 0, 1

2
, 0, 1

2
, 0, 1

2
, 0, 1

2
, 1
3
,− 1

6
Primitive: f.c. of (A1)4 ⊠ U(1)−4

5 0 24 1, 1, 1, 1,−
√
3,−

√
3,−

√
3,−

√
3, 2, 2 0, 1

2
, 0, 1

2
, 0, 1

2
, 0, 1

2
, 1
6
,− 1

3
Primitive

6 0 24 1, 1, 1, 1,−
√
3,−

√
3,−

√
3,−

√
3, 2, 2 0, 1

2
, 0, 1

2
, 0, 1

2
, 0, 1

2
, 1
3
,− 1

6
Primitive

7 0 24 1, 1, 1, 1,
√
3,

√
3,

√
3,

√
3, 2, 2 0, 1

2
, 0, 1

2
, 1
4
,− 1

4
, 1
4
,− 1

4
, 1
6
,− 1

3
Primitive: f.c. of (A1)−4 ⊠ 4B3

8 0 24 1, 1, 1, 1,
√
3,

√
3,

√
3,

√
3, 2, 2 0, 1

2
, 0, 1

2
, 1
4
,− 1

4
, 1
4
,− 1

4
, 1
3
,− 1

6
Primitive: f.c. of (A1)4 ⊠ 4B−3

9 0 24 1, 1, 1, 1,−
√
3,−

√
3,−

√
3,−

√
3, 2, 2 0, 1

2
, 0, 1

2
, 1
4
,− 1

4
, 1
4
,− 1

4
, 1
6
,− 1

3
Primitive

10 0 24 1, 1, 1, 1,−
√
3,−

√
3,−

√
3,−

√
3, 2, 2 0, 1

2
, 0, 1

2
, 1
4
,− 1

4
, 1
4
,− 1

4
, 1
3
,− 1

6
Primitive

11 0 24 1, 1, 1, 1, 2, 2,
√
3,

√
3,

√
3,

√
3 0, 1

2
, 0, 1

2
, 1
6
,− 1

3
, 1
8
,− 3

8
, 1
8
,− 3

8
F0 ⊠ 5B#5

12 0 24 1, 1, 1, 1, 2, 2,
√
3,

√
3,

√
3,

√
3 0, 1

2
, 0, 1

2
, 1
6
,− 1

3
, 3
8
,− 1

8
, 3
8
,− 1

8
F0 ⊠ 5B#2

13 0 24 1, 1, 1, 1, 2, 2,
√
3,

√
3,

√
3,

√
3 0, 1

2
, 0, 1

2
, 1
3
,− 1

6
, 1
8
,− 3

8
, 1
8
,− 3

8
F0 ⊠ 5B#1

14 0 24 1, 1, 1, 1, 2, 2,
√
3,

√
3,

√
3,

√
3 0, 1

2
, 0, 1

2
, 1
3
,− 1

6
, 3
8
,− 1

8
, 3
8
,− 1

8
F0 ⊠ 5B#6

15 0 24 1, 1, 1, 1, 2, 2,−
√
3,−

√
3,−

√
3,−

√
3 0, 1

2
, 0, 1

2
, 1
6
,− 1

3
, 1
8
,− 3

8
, 1
8
,− 3

8
F0 ⊠ 5B#4

16 0 24 1, 1, 1, 1, 2, 2,−
√
3,−

√
3,−

√
3,−

√
3 0, 1

2
, 0, 1

2
, 1
6
,− 1

3
, 3
8
,− 1

8
, 3
8
,− 1

8
F0 ⊠ 5B#8

17 0 24 1, 1, 1, 1, 2, 2,−
√
3,−

√
3,−

√
3,−

√
3 0, 1

2
, 0, 1

2
, 1
3
,− 1

6
, 1
8
,− 3

8
, 1
8
,− 3

8
F0 ⊠ 5B#7

18 0 24 1, 1, 1, 1, 2, 2,−
√
3,−

√
3,−

√
3,−

√
3 0, 1

2
, 0, 1

2
, 1
3
,− 1

6
, 3
8
,− 1

8
, 3
8
,− 1

8
F0 ⊠ 5B#3

19 0 40 1, 1, 1, 1, 2, 2, 2, 2,
√
10,

√
10 0, 1

2
, 0, 1

2
, 1
10

,− 2
5
, 2
5
,− 1

10
, 1
16

,− 7
16

Primitive

20 0 40 1, 1, 1, 1, 2, 2, 2, 2,
√
10,

√
10 0, 1

2
, 0, 1

2
, 1
10

,− 2
5
, 2
5
,− 1

10
, 3
16

,− 5
16

Primitive: f.c. of (D10)2
21 0 40 1, 1, 1, 1, 2, 2, 2, 2,

√
10,

√
10 0, 1

2
, 0, 1

2
, 1
10

,− 2
5
, 2
5
,− 1

10
, 5
16

,− 3
16

Primitive: f.c. of (D10)−2

22 0 40 1, 1, 1, 1, 2, 2, 2, 2,
√
10,

√
10 0, 1

2
, 0, 1

2
, 1
10

,− 2
5
, 2
5
,− 1

10
, 7
16

,− 1
16

Primitive

23 0 40 1, 1, 1, 1, 2, 2, 2, 2,
√
10,

√
10 0, 1

2
, 0, 1

2
, 1
5
,− 3

10
, 3
10

,− 1
5
, 1
16

,− 7
16

Primitive

24 0 40 1, 1, 1, 1, 2, 2, 2, 2,
√
10,

√
10 0, 1

2
, 0, 1

2
, 1
5
,− 3

10
, 3
10

,− 1
5
, 3
16

,− 5
16

Primitive

25 0 40 1, 1, 1, 1, 2, 2, 2, 2,
√
10,

√
10 0, 1

2
, 0, 1

2
, 1
5
,− 3

10
, 3
10

,− 1
5
, 5
16

,− 3
16

Primitive

26 0 40 1, 1, 1, 1, 2, 2, 2, 2,
√
10,

√
10 0, 1

2
, 0, 1

2
, 1
5
,− 3

10
, 3
10

,− 1
5
, 7
16

,− 1
16

Primitive

27 0 40 1, 1, 1, 1, 2, 2, 2, 2,−
√
10,−

√
10 0, 1

2
, 0, 1

2
, 1
10

,− 2
5
, 2
5
,− 1

10
, 1
16

,− 7
16

Primitive

28 0 40 1, 1, 1, 1, 2, 2, 2, 2,−
√
10,−

√
10 0, 1

2
, 0, 1

2
, 1
10

,− 2
5
, 2
5
,− 1

10
, 3
16

,− 5
16

Primitive

29 0 40 1, 1, 1, 1, 2, 2, 2, 2,−
√
10,−

√
10 0, 1

2
, 0, 1

2
, 1
10

,− 2
5
, 2
5
,− 1

10
, 5
16

,− 3
16

Primitive

30 0 40 1, 1, 1, 1, 2, 2, 2, 2,−
√
10,−

√
10 0, 1

2
, 0, 1

2
, 1
10

,− 2
5
, 2
5
,− 1

10
, 7
16

,− 1
16

Primitive

31 0 40 1, 1, 1, 1, 2, 2, 2, 2,−
√
10,−

√
10 0, 1

2
, 0, 1

2
, 1
5
,− 3

10
, 3
10

,− 1
5
, 1
16

,− 7
16

Primitive

32 0 40 1, 1, 1, 1, 2, 2, 2, 2,−
√
10,−

√
10 0, 1

2
, 0, 1

2
, 1
5
,− 3

10
, 3
10

,− 1
5
, 3
16

,− 5
16

Primitive

33 0 40 1, 1, 1, 1, 2, 2, 2, 2,−
√
10,−

√
10 0, 1

2
, 0, 1

2
, 1
5
,− 3

10
, 3
10

,− 1
5
, 5
16

,− 3
16

Primitive

34 0 40 1, 1, 1, 1, 2, 2, 2, 2,−
√
10,−

√
10 0, 1

2
, 0, 1

2
, 1
5
,− 3

10
, 3
10

,− 1
5
, 7
16

,− 1
16

Primitive

condition

±1 = ν2(a) =
2

D2

∑
j,k∈Π0

N̂ jk
a djdk

(
θj
θk

)2

(15)

for any self-dual anyon a (i.e., an anyon which satisfies

ā = a). Here, Π0 is the label set of anyons, di = Ŝ1i is the

quantum dimension of anyon i, θi = T̂ii = e2iπsi where
si is the topological spin of anyon i, and D =

√∑
i d

2
i is

the total quantum dimension.
In addition, we check the balancing equation (A3).

While the Verlinde formula and the Frobenius-Schur in-
dicator conditions can be checked in terms of the fusion
rules N̂k

ij of the fermionic quotient, to check the balanc-

ing equation we need the full fusion rules Nk
ij . Checking

the balancing equation then is really a question of ask-
ing: given the N̂k

ij , obtained from our candidate Ŝ, can

we construct Nk
ij satisfying Eq. A3 such that the balanc-

ing equation is satisfied? We find that, sometimes there
are two very similar MD (with identical lists of spins and
quantum dimensions) with minor differences in some of

the entries of Ŝ, and that only one of the Ŝ is consis-
tent with the balancing equation. Hence the balancing
equation helps us pin down the correct Ŝ-matrix.

3. Central charge from linear representations

A strength of our approach is that we can determine
the central charge of the resulting super-MTC, which is
defined modulo 1/2. For bosonic MTCs, whose central
charge is defined modulo 8, the approach of congruence
representations confers no additional advantage as it is
straightforward to determine the central charge from the
modular matrices S and T via (ST )3 = e2iπc/8S2. In

the fermionic case, where S is degenerate, and (Ŝ, T̂ 2)
only form a projective representation of Γθ rather than
SL2(Z), it is impossible to determine c from the given
MD by themselves using only the group relations of Γθ.

Rather, for super-MTCs, c is defined in terms of the
central charge of the modular extensions [22]. While the
central charge of each modular extension is defined mod-
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TABLE VIII. List of rank 10 fermionic MD. Continued.

# c D2 Quantum dimensions Topological spins Comments

35 1
22

69.2929 1, 1, ζ19 , ζ
1
9 , ζ

2
9 , ζ

2
9 , ζ

3
9 , ζ

3
9 , ζ

4
9 , ζ

4
9 0, 1

2
, 2
11

,− 7
22

, 7
22

,− 2
11

, 9
22

,− 1
11

, 5
11

,− 1
22

F0 ⊠ 5B#15

36− 1
22

69.2929 1, 1, ζ49 , ζ
4
9 , ζ

3
9 , ζ

3
9 , ζ

2
9 , ζ

2
9 , ζ

1
9 , ζ

1
9 0, 1

2
, 1
22

,− 5
11

, 1
11

,− 9
22

, 2
11

,− 7
22

, 7
22

,− 2
11

F0 ⊠ 5B#16

37 5
22

5.6137 1, 1,− ζ19
ζ49

,− ζ19
ζ49

,− ζ39
ζ49

,− ζ39
ζ49

,
ζ29
ζ49

,
ζ29
ζ49

, 1
ζ49

, 1
ζ49

0, 1
2
, 1
22

,− 5
11

, 1
11

,− 9
22

, 3
11

,− 5
22

, 9
22

,− 1
11

F0 ⊠ 5B#23

38− 5
22

5.6137 1, 1, 1
ζ49

, 1
ζ49

,
ζ29
ζ49

,
ζ29
ζ49

,− ζ39
ζ49

,− ζ39
ζ49

,− ζ19
ζ49

,− ζ19
ζ49

0, 1
2
, 1
11

,− 9
22

, 5
22

,− 3
11

, 9
22

,− 1
11

, 5
11

,− 1
22

F0 ⊠ 5B#18

39 2
11

6.64709 1, 1,
ζ49
ζ39

,
ζ49
ζ39

,− ζ29
ζ39

,− ζ29
ζ39

,− 1
ζ39

,− 1
ζ39

,− ζ19
ζ39

,− ζ19
ζ39

0, 1
2
, 3
22

,− 4
11

, 5
22

,− 3
11

, 3
11

,− 5
22

, 7
22

,− 2
11

F0 ⊠ 5B#22

40− 2
11

6.64709 1, 1,− ζ19
ζ39

,− ζ19
ζ39

,− 1
ζ39

,− 1
ζ39

,− ζ29
ζ39

,− ζ29
ζ39

,
ζ49
ζ39

,
ζ49
ζ39

0, 1
2
, 2
11

,− 7
22

, 5
22

,− 3
11

, 3
11

,− 5
22

, 4
11

,− 3
22

F0 ⊠ 5B#19

41 3
22

9.62957 1, 1,
ζ49
ζ29

,
ζ49
ζ29

,− 1
ζ29

,− 1
ζ29

,− ζ39
ζ29

,− ζ39
ζ29

,
ζ19
ζ29

,
ζ19
ζ29

0, 1
2
, 1
22

,− 5
11

, 5
22

,− 3
11

, 4
11

,− 3
22

, 5
11

,− 1
22

F0 ⊠ 5B#20

42− 3
22

9.62957 1, 1,
ζ19
ζ29

,
ζ19
ζ29

,− ζ39
ζ29

,− ζ39
ζ29

,− 1
ζ29

,− 1
ζ29

,
ζ49
ζ29

,
ζ49
ζ29

0, 1
2
, 1
22

,− 5
11

, 3
22

,− 4
11

, 3
11

,− 5
22

, 5
11

,− 1
22

F0 ⊠ 5B#21

43 1
11

18.8168 1, 1,
ζ49
ζ19

,
ζ49
ζ19

,− ζ29
ζ19

,− ζ29
ζ19

,− ζ39
ζ19

,− ζ39
ζ19

, 1
ζ19

, 1
ζ19

0, 1
2
, 3
22

,− 4
11

, 7
22

,− 2
11

, 4
11

,− 3
22

, 9
22

,− 1
11

F0 ⊠ 5B#24

44− 1
11

18.8168 1, 1, 1
ζ19

, 1
ζ19

,− ζ39
ζ19

,− ζ39
ζ19

,− ζ29
ζ19

,− ζ29
ζ19

,
ζ49
ζ19

,
ζ49
ζ19

0, 1
2
, 1
11

,− 9
22

, 3
22

,− 4
11

, 2
11

,− 7
22

, 4
11

,− 3
22

F0 ⊠ 5B#17

45 1
14

70.6848 1, 1, ζ212, ζ
2
12, ζ

2
5 , ζ

2
5 , ζ

2
5 , ζ

2
5 , ζ

4
12, ζ

4
12 0, 1

2
, 1
7
,− 5

14
, 5
14

,− 1
7
, 5
14

,− 1
7
, 3
7
,− 1

14
F0 ⊠ 5B#10

46− 1
14

70.6848 1, 1, ζ412, ζ
4
12, ζ

2
5 , ζ

2
5 , ζ

2
5 , ζ

2
5 , ζ

2
12, ζ

2
12 0, 1

2
, 1
14

,− 3
7
, 1
7
,− 5

14
, 1
7
,− 5

14
, 5
14

,− 1
7

F0 ⊠ 5B#9

47 1
7

4.3117 1, 1,
ζ25
ζ412

,
ζ25
ζ412

,
ζ25
ζ412

,
ζ25
ζ412

,− 1
ζ412

,− 1
ζ412

,− ζ212
ζ412

,− ζ212
ζ412

0, 1
2
, 3
14

,− 2
7
, 3
14

,− 2
7
, 2
7
,− 3

14
, 5
14

,− 1
7

F0 ⊠ 5B#14

48 − 1
7

4.3117 1, 1,− ζ212
ζ412

,− ζ212
ζ412

,− 1
ζ412

,− 1
ζ412

,
ζ25
ζ412

,
ζ25
ζ412

,
ζ25
ζ412

,
ζ25
ζ412

0, 1
2
, 1
7
,− 5

14
, 3
14

,− 2
7
, 2
7
,− 3

14
, 2
7
,− 3

14
F0 ⊠ 5B#11

49 3
14

9.00346 1, 1,− ζ25
ζ212

,− ζ25
ζ212

,− ζ25
ζ212

,− ζ25
ζ212

,− 1
ζ212

,− 1
ζ212

,
ζ412
ζ212

,
ζ412
ζ212

0, 1
2
, 1
14

,− 3
7
, 1
14

,− 3
7
, 2
7
,− 3

14
, 3
7
,− 1

14
F0 ⊠ 5B#12

50− 3
14

9.00346 1, 1,
ζ412
ζ212

,
ζ412
ζ212

,− 1
ζ212

,− 1
ζ212

,− ζ25
ζ212

,− ζ25
ζ212

,− ζ25
ζ212

,− ζ25
ζ212

0, 1
2
, 1
14

,− 3
7
, 3
14

,− 2
7
, 3
7
,− 1

14
, 3
7
,− 1

14
F0 ⊠ 5B#13

51 1
5

204.317 1, 1, ζ818, ζ
8
18, ζ

6
18, ζ

6
18, ζ

2
18, ζ

2
18, ζ

4
18, ζ

4
18 0, 1

2
, 0, 1

2
, 1
10

,− 2
5
, 1
10

,− 2
5
, 3
10

,− 1
5

Primitive: f.c. of (A1)18
52 − 1

5
204.317 1, 1, ζ818, ζ

8
18, ζ

4
18, ζ

4
18, ζ

6
18, ζ

6
18, ζ

2
18, ζ

2
18 0, 1

2
, 0, 1

2
, 1
5
,− 3

10
, 2
5
,− 1

10
, 2
5
,− 1

10
Primitive: f.c. of (A1)−18

53 1
5

5.12543 1, 1, 1
ζ818

, 1
ζ818

,− ζ218
ζ818

,− ζ218
ζ818

,− ζ618
ζ818

,− ζ618
ζ818

,
ζ418
ζ818

,
ζ418
ζ818

0, 1
2
, 0, 1

2
, 1
10

,− 2
5
, 1
10

,− 2
5
, 3
10

,− 1
5

Primitive

54 − 1
5

5.12543 1, 1, 1
ζ818

, 1
ζ818

,
ζ418
ζ818

,
ζ418
ζ818

,− ζ218
ζ818

,− ζ218
ζ818

,− ζ618
ζ818

,− ζ618
ζ818

0, 1
2
, 0, 1

2
, 1
5
,− 3

10
, 2
5
,− 1

10
, 2
5
,− 1

10
Primitive

55 1
10

6.29808 1, 1,− ζ218
ζ618

,− ζ218
ζ618

,
ζ818
ζ618

,
ζ818
ζ618

,− 1
ζ618

,− 1
ζ618

,− ζ418
ζ618

,− ζ418
ζ618

0, 1
2
, 0, 1

2
, 3
10

,− 1
5
, 3
10

,− 1
5
, 2
5
,− 1

10
Primitive

56− 1
10

6.29808 1, 1,− ζ218
ζ618

,− ζ218
ζ618

,− ζ418
ζ618

,− ζ418
ζ618

,
ζ818
ζ618

,
ζ818
ζ618

,− 1
ζ618

,− 1
ζ618

0, 1
2
, 0, 1

2
, 1
10

,− 2
5
, 1
5
,− 3

10
, 1
5
,− 3

10
Primitive

57 1
10

24.2592 1, 1,− ζ618
ζ218

,− ζ618
ζ218

,− 1
ζ218

,− 1
ζ218

,
ζ818
ζ218

,
ζ818
ζ218

,
ζ418
ζ218

,
ζ418
ζ218

0, 1
2
, 0, 1

2
, 3
10

,− 1
5
, 3
10

,− 1
5
, 2
5
,− 1

10
Primitive

58− 1
10

24.2592 1, 1,− ζ618
ζ218

,− ζ618
ζ218

,
ζ418
ζ218

,
ζ418
ζ218

,− 1
ζ218

,− 1
ζ218

,
ζ818
ζ218

,
ζ818
ζ218

0, 1
2
, 0, 1

2
, 1
10

,− 2
5
, 1
5
,− 3

10
, 1
5
,− 3

10
Primitive

ulo 8, there are 16 different modular extensions for a
given super-MTC (as a consequence of Theorem 5.4 of
Ref. [29]) with their central charges differing by multi-
ples of 1/2 [26], so c is defined modulo 1/2 for a super-
MTC. This means that, in order to compute the central
charge of a super-MTC, we first need to compute (one
of) the modular extensions. The modular extensions are
bosonic MTCs of much higher rank (see Lemma 4.2 of
Ref. [39] for an explicit bound on the rank), and their
computation is a highly nontrivial task.

Our approach, which begins first with linear represen-
tations and then constructs the projective representa-
tions, allows us to determine the central charge of the
super-MTCs we obtain without having to compute their
modular extensions. The key idea is that the central
charge of the modular extensions is involved in the lift
of the fermionic MD to a linear representation. (See Ap-
pendix F.)

For each MD (Ŝ, T̂ 2), if ρ(t2) = e−2iπc/12T̂ 2 furnishes a

linear lift, then e−2iπ(c+m/2)/12T̂ 2 also furnishes a linear
lift. Hence there are at least 24 different linear repre-
sentations (up to tensor product with 1-dimensional rep-

resentations, which does not affect the central charge)
for a given MD. In our classification process, we start
with a complete list of linear representations which can
potentially yield valid MD. Thus, our list of linear repre-
sentations must include these linear lifts coming from the
existence of minimal modular extensions, i.e., for every
projective representation formed by a given MD, there
are at least 24 different linear representations which all
lead to it. If there are exactly 24, their c should differ by
multiples of 1/2, and this fixes the c of the super-MTC
modulo 1/2.

More concretely, consider a particular pair (Ŝ, T̂ 2). We
keep track of which linear representations ρα gave raise
to this MD. These ρα differ from one another by a phase
of ρα(t

2). If we find that there are 24 such ρα with
ρα(t

2) = e2iπα/12ρ0(t
2), where ρ0 is a chosen reference

representation, and α come in steps of 1/2, then we can
fix c modulo 1/2. For every MD we obtain, this has been
the case, enabling us to determine c modulo 1/2.
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TABLE IX. New class of rank 10 primitive fermionic MD.

# c D2 Quantum dimensions Topological spins Comments

59 0 472.379 1, 1, χ4
15, χ

4
15, χ

5
15, χ

5
15, χ

3
15, χ

3
15, χ

3
15, χ

3
15 0, 1

2
, 0, 1

2
, 1
6
,− 1

3
, 1
10
,− 2

5
, 2
5
,− 1

10
Primitive, N̂ ≤ 3

60 0 472.379 1, 1, χ4
15, χ

4
15, χ

5
15, χ

5
15, χ

3
15, χ

3
15, χ

3
15, χ

3
15 0, 1

2
, 0, 1

2
, 1
6
,− 1

3
, 1
5
,− 3

10
, 3
10
,− 1

5
Primitive, N̂ ≤ 3

61 0 472.379 1, 1, χ4
15, χ

4
15, χ

5
15, χ

5
15, χ

3
15, χ

3
15, χ

3
15, χ

3
15 0, 1

2
, 0, 1

2
, 1
3
,− 1

6
, 1
10
,− 2

5
, 2
5
,− 1

10
Primitive, N̂ ≤ 3

62 0 472.379 1, 1, χ4
15, χ

4
15, χ

5
15, χ

5
15, χ

3
15, χ

3
15, χ

3
15, χ

3
15 0, 1

2
, 0, 1

2
, 1
3
,− 1

6
, 1
5
,− 3

10
, 3
10
,− 1

5
Primitive, N̂ ≤ 3

63 0 7.621 1, 1, 1
χ4
15
, 1
χ4
15
,
χ5
15

χ4
15
,
χ5
15

χ4
15
,−χ3

15

χ4
15
,−χ3

15

χ4
15
,−χ3

15

χ4
15
,−χ3

15

χ4
15

0, 1
2
, 0, 1

2
, 1
6
,− 1

3
, 1
10
,− 2

5
, 2
5
,− 1

10
Primitive, N̂ ≤ 3

64 0 7.621 1, 1, 1
χ4
15
, 1
χ4
15
,
χ5
15

χ4
15
,
χ5
15

χ4
15
,−χ3

15

χ4
15
,−χ3

15

χ4
15
,−χ3

15

χ4
15
,−χ3

15

χ4
15

0, 1
2
, 0, 1

2
, 1
6
,− 1

3
, 1
5
,− 3

10
, 3
10
,− 1

5
Primitive, N̂ ≤ 3

65 0 7.621 1, 1, 1
χ4
15
, 1
χ4
15
,
χ5
15

χ4
15
,
χ5
15

χ4
15
,−χ3

15

χ4
15
,−χ3

15

χ4
15
,−χ3

15

χ4
15
,−χ3

15

χ4
15

0, 1
2
, 0, 1

2
, 1
3
,− 1

6
, 1
10
,− 2

5
, 2
5
,− 1

10
Primitive, N̂ ≤ 3

66 0 7.621 1, 1, 1
χ4
15
, 1
χ4
15
,
χ5
15

χ4
15
,
χ5
15

χ4
15
,−χ3

15

χ4
15
,−χ3

15

χ4
15
,−χ3

15

χ4
15
,−χ3

15

χ4
15

0, 1
2
, 0, 1

2
, 1
3
,− 1

6
, 1
5
,− 3

10
, 3
10
,− 1

5
Primitive, N̂ ≤ 3

67 0 475.151 1, 1, χ5
24, χ

5
24, χ

3
6, χ

3
6, χ

3
6, χ

3
6, χ

4
24, χ

4
24 0, 1

2
, 0, 1

2
, 1
4
,− 1

4
, 1
4
,− 1

4
, 1
6
,− 1

3
Primitive, N̂ ≤ 4

68 0 475.151 1, 1, χ5
24, χ

5
24, χ

3
6, χ

3
6, χ

3
6, χ

3
6, χ

4
24, χ

4
24 0, 1

2
, 0, 1

2
, 1
4
,− 1

4
, 1
4
,− 1

4
, 1
3
,− 1

6
Primitive, N̂ ≤ 4

69 0 4.84898 1, 1, 1
χ5
24
, 1
χ5
24
,

χ3
6

χ5
24
,

χ3
6

χ5
24
,

χ3
6

χ5
24
,

χ3
6

χ5
24
,−χ4

24

χ5
24
,−χ4

24

χ5
24

0, 1
2
, 0, 1

2
, 1
4
,− 1

4
, 1
4
,− 1

4
, 1
6
,− 1

3
Primitive, N̂ ≤ 4

70 0 4.84898 1, 1, 1
χ5
24
, 1
χ5
24
,

χ3
6

χ5
24
,

χ3
6

χ5
24
,

χ3
6

χ5
24
,

χ3
6

χ5
24
,−χ4

24

χ5
24
,−χ4

24

χ5
24

0, 1
2
, 0, 1

2
, 1
4
,− 1

4
, 1
4
,− 1

4
, 1
3
,− 1

6
Primitive, N̂ ≤ 4

C. Comparison to previous results

The results of the classification are summarized in Ta-
ble tables I to III and V to IX. Let us compare our results
to previous results in the literature. First, previous re-
sults (for any rank) were limited to unitary MD, but we
obtain both unitary and non-unitary MD. We find that
for every non-abelian fusion rule, there are both unitary
and non-unitary MD realizing it (for comparison, in the
bosonic case, every non-abelian fusion rule up to rank 5
has both a unitary and non-unitary realization [20, 49]).
We expect that the non-unitary MD are related by Galois
conjugation to the unitary MD. Moreover, in the unitary
case, we recover all previously known MD [22].

In addition, we obtain two completely new fusion rules
of rank 10, and unitary and non-unitary MD realizing it
(Table IX). The unitary MD for these fusion rules have
total quantum dimensionD2 = 472.379 or 475.151, which
are much larger than any previously known total quan-
tum dimension for rank 10 [22]. The new MD are non-
abelian and primitive, and do not fall into (the fermion
condensation of) any known series of MTCs [50]. One
may ask whether these new MD are in fact realizable by
a super-MTC. The answer is yes. First, in a work to be
published [51], we compute the minimal modular exten-
sions (on the level of bosonic modular data) for these
MD. If we assume that those bosonic MD are realiz-
able by MTCs, these fermionic MD are also realizable
by super-MTCs through fermion condensation. More-
over, recently, inspired by the the arXiv version of the
present article, Ref. [52] has used the Drinfeld centers
of near-group fusion categories to construct super-MTC
realizing these new MD. Their construction is explicit
for representative cases, and others are believed to be
closely related to these via Galois conjugation. Hence it
is reasonable to believe that these new MD all realizable.
These new MD involve largest fusion coefficient N̂ ij

k = 3
or 4. For comparison, all previously known examples of

rank 10 MD had the bound N̂ ij
k ≤ 2.

The classification of rank 8 fusion rules by Ref. [40] had
to place some bounds on the fusion coefficients in certain
cases, though the bounds are very generous (N̂ ij

k ≤ 14

or N̂ ij
k ≤ 21). Our method places no such bound on the

fusion coefficients, and yet do not find new fusion rules of
rank 8; this is evidence for the results of Ref. [40] being
complete.
The arXiv version of Ref. [22] listed some MD which

did not have valid modular extensions, colored in red.
These do not appear in our classification as they do not
form congruence representations. Our method automat-
ically excludes such spurious MD without having to in-
dependently check the existence of modular extensions.
Moreover, as noted in Sec. III B 3, we find central charges
modulo 1/2 for every MD we obtain. Previously, the cen-
tral charge data was missing for several MD of rank 8 and
rank 10 in Ref. [22].

IV. CONCLUSION

In this paper, we have detailed a procedure to clas-
sify the MD of super-MTCs using congruence represen-
tations, and have provided a full classification of both
unitary and non-unitary MD up to rank 10. The clas-
sification is complete up to potential new MD coming
from unresolved representations. Our result includes ev-
ery unitary MD hitherto obtained, and also includes non-
unitary MD. We also find new primitive MD of rank 10
with completely new fusion rules.
The generalization to higher rank should be straight-

forward. There are several advantages to our approach
compared to other approaches [22, 39, 40]: (1) we do not
need to place any bound on either the fusion coefficients
or the total quantum dimension, (2) by treating unitary
and non-unitary MD on an equal footing, we can easily
obtain non-unitary as well as unitary MD, (3) we can
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determine the central charge without having to compute
the modular extensions explicitly, and (4) spurious MD
which do not admit a modular extension (see arXiv ver-
sion of Ref. [22]) are automatically excluded.

Another advantage is that it allows to focus on non-
split super-MTCs. In this paper, we have included split
super-MTCs as well as non-split super-MTCs to illus-
trate the power of this approach, but a classification of
split super-MTCs are redundant since they follow triv-
ially from the classification of MTCs. By excluding rep-
resentations ρisum which are projectively extendable, we
can automatically get rid of this redundancy and obtain
a only the MD of non-split super-MTCs. A weakness of
our approach is that it is difficult to handle unresolved
representations. In practice, a judicious choice of orthog-
onal transformations allows us to obtain some valid MD
even from unresolved representations. Thus, we cannot
claim the completeness of our classification. We leave
a complete treatment of unresolved representations to a
future work.

Congruence representations also appear in rational
conformal field theories (RCFTs): it is known that char-
acters of RCFTs transform as representations of SL2(Z),
and that these representations are congruence [48]. Ref-
erence [53] has used this idea to classify characters of
bosonic RCFTs, and Ref. [54] has used congruence rep-
resentations of subgroups of SL2(Z) to carry out a simi-
lar classification program for fermionic RCFTs. It would
be interesting to flesh out the bulk-boundary relation be-
tween super-MTCs and fermionic RCFTs, along the lines
of Refs. [55–57] which dealt with the bosonic case. In a
future work [51], we will make this connection by explic-
itly computing the modular extensions of super-MTCs.
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Appendix A: Algebraic structure of anyons

Anyons in a topologically ordered system are charac-
terized by their fusion and braiding data. In terms of
mathematics, these data are encoded in braided fusion
categories (BFCs). For bosonic topological orders, rele-
vant BFCs are modualr tensor categories (MTCs) [6, 7].
In contrast, for fermionic topological orders, so-called
super-modular tensor categories (super-MTCs) play the
role [22, 26]. Because of its relevance to our work, we here
briefly review some important concepts of super-MTCs.
A super-MTC, as in MTCs, has gauge-invariant data

called S- and T -matrices. Each element Sij gives us the
information of mutual statistics of anyons labeled by i
and j, while Tij = δije

2iπsi encodes the self-statistics
of an anyon i. Here, si is called the topological spin of
anyon i and defined modulo 1.
The consistency of fusion of anyons translates as a fu-

sion ring given by

i⊗ j =
∑
k∈Π

N ij
k k (A1)

where N ij
k are the fusion coefficients and Π is the label

set of simple objects, i.e., anyons. The fusion coefficients
N ij

k and the S-matrix are related by the Verlinde formula
[22] ∑

k∈Π

N ij
k Skl =

SilSjl

S1l
. (A2)

Elements in the first column of the S-matrix correspond
to the quantum dimension of anyons, di = Si1/S11, where
the index 1 corresponds to the vacuum. The total quan-
tum dimension is given by D2 =

∑
i∈Π d2i . These data

satisfy the balancing equation [23]

Sij =
1

D

∑
k∈Π

N ij
k

θk
θiθj

dk. (A3)

Since the simple objects of a super-MTC always come
in pairs related by fusion with f , i.e., a and a⊗ f ≡ af ,
we can decompose the set of simple objects into two

S =
1√
2

(
1 1
1 1

)
⊗ Ŝ, T =

(
1 0
0 −1

)
⊗ T̂ . (A4)

After this decomposition, we obtain the fermionic quo-
tient B0 of a super-MTC B, which is a fusion category
with half the number of simple objects as B. While the
decomposition is not canonical, the properties which fol-
low will not depend on the choice [26]. The pair (Ŝ, T̂ )
can now be thought of as the MD of the fermionic quo-
tient B0. The anyons of B0 form a fusion ring among
themselves

i⊗ j =
∑
k∈Π0

N̂ ij
k dk (A5)
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where Π0 is the label set of simple objects of B0, and N̂ ij
k ,

satisfy

N̂ ij
k = N ij

k +N ij
kf . (A6)

Not all (Ŝ, T̂ ) can describe a valid super-MTC. There

are necessary conditions which (Ŝ, T̂ ) need to satisfy if
they are to describe a valid super-MTC [22, 26, 39]: the
Verlinde formula

N̂ ij
k =

2

D

∑
l∈Π0

ŜilŜjlŜ
∗
kl

Ŝ1l

(A7)

and the Frobenius-Schur indicator condition

±1 = ν2(a) =
2

D2

∑
j,k∈Π0

N̂ jk
a djdk

(
θj
θk

)2

(A8)

for any self-dual anyon a.

Appendix B: Reverse induction formula

Suppose we have a 3d-dimensional symmetric repre-
sentation of SL2(Z) given by (S, T ). We assume that the
spectrum of T is non-degenerate. If the representation
is an induced representation of some d-dimensional rep-
resentation of Γθ given by (S,T2), then there exists a
3d× 3d unitary matrix U such that

USU−1 =

S 0 0
0 0 S2

0 1 0

 ,

UT U−1 =

0 T2 0
1 0 0
0 0 (ST2)−1

 .

(B1)

To find such U , first we re-arrange T via a permutation
matrix P so that

PT P−1 =

−T 0 0
0 T 0
0 0 T′

 . (B2)

Second, we introduce

U =

−1 1 0
T−1 T−1 0
0 0 C

 (B3)

where CT′C−1 = (ST2)−1, then Eq. (B1) is satisfied
for U = UP . Note that the U in Eq. (B3) confines S
to a symmetric matrix. In addition, we have freedom
of signed diagonal conjugation before conjugating with
U . We denote the signed diagonal matrix by D. As a
result, the transformation (B1) can be implemented by
U = UDP . We can obtain a d-dimensional representa-
tion of Γθ given by (S,T2) from 3d-dimensional (S, T )
via

USU−1 =

S 0 0
0 0 S2

0 1 0

 , PT P−1 =

−T 0 0
0 T 0
0 0 T′

 .

(B4)

To efficiently implement above formula on a computer,
we further simplify the procedure. Let

PSP−1 =

S11 S12 S13

S21 S22 S23

S31 S32 S33

 , D = diag(a, b, c), (B5)

where each Sij is a d × d matrix satisfying Sji = ST
ij

for all i, j, and a, b, c are d× d signed diagonal matrices.
Explicit calculation yields

USU−1 =
1

2

 Saa
11 + Sba

21 + Sab
12 + Sbb

22 (−Saa
11 − Sba

21 + Sab
12 + Sbb

22)T ∗
−T−1(Saa

11 − Sba
21 + Sab

12 − Sbb
22) −T−1(Saa

11 − Sba
21 − Sab

12 + Sbb
22)T ∗

∗ ∗ ∗

 (B6)

where Sab = aSb−1 (same for similar notations) and irrel-
evant blocks are denoted by ∗ for simplicity. Comparing
Eq. (B4) and Eq. (B6), we notice that

S = 2Saa
11 , Saa

11 = Sab
12 = Sbb

22. (B7)

Therefore, for given (S, T ), we first find all permutation
matrices P satisfying Eq. (B2), and permute (S, T ) by

them. Then, for each permutation, we check if Eq. (B7)
is satisfied for some signed diagonal matrices a, b. If
Eq. (B7) is satisfied, we store (S,T2).
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Appendix C: Congruence representations of Γθ

The subgroup Γθ < SL2(Z) is defined as

Γθ =

{(
γ11 γ12
γ21 γ22

)
∈ SL2(Z)

∣∣∣∣ γ11γ21 ≡ γ12γ22 ≡ 0 mod 2

}
. (C1)

Based on the connection to the MD of super-MTCs, we
are interested in congruence representations of Γθ, rather
than general representations.

A congruence representation of SL2(Z) is a representa-
tion whose kernel contains the principal congruence sub-
group

Γ(n) = { γ ∈ SL2(Z) | γ ≡ 1 mod n } (C2)

for some positive integer n. The smallest such n is called
the level of the congruence representation. In other
words, a congruence representation of level n is a rep-
resentation of a level-n congruence subgroup. (A con-
gruence subgroup of level n is a subgroup which have
Γ(n) as its subgroup.) A congruence representation of
Γθ is defined in the same way, i.e., a representation ρ
such that Γ(n) < ker ρ for some positive integer n. It
is noteworthy that for any congruence representation of
Γθ, n is always even since Γθ itself is a level-2 congruence
subgroup of SL2(Z).
While the only relations among generators, s and t2,

of Γθ are s4 = 1 and s2t2 = t2s2, the generators sat-
isfy much more relations in Γθ/Γ(n), and any congruence
representation of Γθ needs its representation matrices to
satisfy these relations. The precise number and content
of these relations depend on the level n, since these rela-
tions are extra conditions which a representation ρ needs
to satisfy in order to be a congruence conditions of Γθ-
representations.

We start from Theorem 1 of Ref. [58], which lists the
congruence conditions for representations of SL2(Z). The
expressions used there to write the conditions involve odd
powers of ρ(t) = T, which are ill-defined for Γθ, and
are unusable for our purposes. However, the conditions
themselves are well-defined for Γθ. Thus, we need only
re-write the expressions in terms of elements of Γθ. We
have re-written the expressions so that the conditions are
written in terms of ρ(s) = S and ρ(t2) = T2 only. Note
that the level n is always even for a Γθ-representation.

Below, we list the congruence conditions for Γθ-
representations, generated by S and T2:

1. T forms an orbit of order n under matrix multipli-
cation, i.e., Tn = 1.

2. For a, b ∈ Z×
n , let H(a) = ρ

((
a 0
0 ā

))
where ā is

the multiplicative inverse of a modulo n. Note that

(
a 0
0 ā

)
is indeed an element of Γθ/Γ(n). Then,

H(−1) = S2,

H(a)H(b) = H(ab),

SH(a) = H(ā)S,

H(a) = S2Ta2−aST−(ā−1)S(T2S)a−1.

(C3)

3. (ST2)n = 1. This condition is not independent of
the above conditions, but provides a simple check
in many cases.

Appendix D: More on Frobenius reciprocity

In this section, we formally state Frobenius reciprocity
and prove its corollary.

Theorem D.1. (Frobenius reciprocity) Given a subgroup
H < G and an irreducible representation π of H, the
induced representation of π decomposes as a direct sum of
irreducible G-representations Ri, where each irreducible
representation appears with multiplicity mi equal to the
number of times its restriction to H contains π. In other
words, IndGH π =

⊕
i miRi such that ResGH Ri = miπi ⊕

· · · .
Frobenius reciprocity allows us to obtain every irre-

ducible representation ofH from restriction of irreducible
representations of G.

Corollary D.1. Every irreducible representation of H
is contained in the restriction of some irreducible repre-
sentation R of G, i.e., ResGH R = mπ ⊕ · · · where m is
the multiplicity of R.

Proof. Every irreducible representation π of H has an
induced representation IndGH π, which is a representation

of G, and this decomposes as IndGH π =
⊕

i miRi where
Ri are irreducible representations of G. By Frobenius
reciprocity, ResGH Ri = miπ⊕· · · so these Ri are precisely
those irreducible representations of G whose restriction
to H contains π.

Appendix E: Unresolved representations

In Sec. III B 1, we saw that the possible orthogonal ba-
sis transformations U0 are constrained to a finite set for
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resolved representations. For unresolved representations,
we have a continuum of potential orthogonal transforma-
tions we need to apply and then check.

In practice, however, all known cases are obtained from
π/4 and −π/4 rotations, and we expect all valid MD will
be obtained from orthogonal transformations involving
simple angles, since the resulting Ŝ-matrix must solve
the Verlinde formula condition that Ŝ must diagonalize
the fusion matrices, which are nonnegative integer ma-
trices. Hence, we check the following set of angles for
unresolved Type (2), Type (2,2), and Type (3) represen-
tations: {±π/4,±π/6,±π/3}. For Type (3), we allow
the combination of all such rotations along all three axes
of rotations, but again along every possible axes of rota-
tion.

We find that, among dimension 5 reducible representa-
tions, those of (2+2+1)-d Type (2,2) and (2+1+1+1)-d
Type (4) yield valid MD. Among dimension 4 reducible
representations, those of (1+1+1+1)-d Type (4) yield
valid MD. Every unitary MD obtained this way had pre-
viously been obtained [22], though we also obtain the
non-unitary MD with the same fusion rules. In every
case, the valid MD is obtained from a π/4 or −π/4 or-
thogonal transformation. (For Type (4), we make two
such orthogonal transformations along different axes.)

For unresolved Type (2) representations, there is only
a single parameter ϕ for the orthogonal transformation,
since we only have a rotation matrix on a 2-dimensional
subspace. In this case, we use Mathematica to directly
solve for this unknown parameter given that all fusion
coefficients (which depends on ϕ) must be non-negative
integers. We find that there is no solution, meaning we
can definitively claim that unresolved Type (2) represen-
tations do not yield valid MD. (Technically, because of
numerical issues we need to specify some upper bound for
the fusion coefficients, and in this case we only check up
to N̂ ij

k ≤ 7. However, we believe this should be sufficient,
since the largest known fusion coefficient from valid MD
is 4.)

Thus, our classification is complete for Type (2) unre-

solved representations (with the bound N̂ ij
k ≤ 7); for

other types, our classification may be incomplete and
there may exist valid MD we have missed. However, up
to rank 10, only a small minority of known MD come
from unresolved representations, and in those few cases
they are all obtained by orthogonal transformations in-
volving only the angles ±π/4, so in practice it is unlikely
that we have missed very many.

Appendix F: Proof of Theorem III.1

In this section, we prove Theorem III.1 in Sec. III B 2.

Proof. The super-MTC B admits a minimal modular ex-
tension M. According to Sec. 3.1 of Ref. [44], we can
choose a particular basis so that S and T 2 of M take the

block-diagonal form

S =


Ŝ 0 0 0 0

0 0 2A
√
2X 0

0 2AT 0 0 0

0
√
2XT 0 0 0

0 0 0 0 B

 ,

T 2 =


T̂ 2 0 0 0 0

0 T̂ 2 0 0 0

0 0 T̂ 2
v 0 0

0 0 0 T 2
σ 0

0 0 0 0 T̂ 2
v

 ,

(F1)

where Ŝ and T̂ 2 are the MD of B. (The other matri-
ces such as A and X are not relevant for our purposes.)
This means that the projective SL2(Z)-representation
formed by S and T , after restriction to Γθ, becomes re-
ducible. (We are here interested only in representation-
theoretic properties and are thus free to choose a basis.)

More precisely, if we denote by Φ̃ the projective SL2(Z)-
representation formed by S and T , we have

Φ̃|Γθ
= ρ̃⊕ Φ̃′ (F2)

where Φ̃′ is the remaining part.
Let N = ordT . By Theorem II of Ref. [48], Φ̃ always

admits a lift to a linear congruence representation Φ of
level n such that N |n|12N , which takes the form

Φ(s) = Φ̃(s),

Φ(t) = e−2iπc/12Φ̃(t),
(F3)

where c is determined modulo 8 by Φ̃. (We can also
always take the tensor product of this linear representa-
tion with 1-dimensional representations of SL2(Z), but
this does not affect our argument.) The restriction of Φ
to Γθ then takes the form

Φ̃|Γθ
(s) = Ŝ ⊕ · · · ,

Φ̃|Γθ
(t2) = e−2iπc/12T̂ 2 ⊕ · · · .

(F4)

Since Φ|Γθ
is a linear representation of Γθ, its direct sum-

mand ρ given by

ρ(s) = Ŝ,

ρ(t2) = e−2iπc/12T̂ 2
(F5)

must also be a linear representation of Γθ. Moreover,
since the level of Φ is n, we note that

ker ρ ≥ kerΦ|Γθ
≥ Γθ ∩ Γ(n). (F6)

Since N is always even (because the list of simple objects
of M includes fermions, of spin 1/2), n is also even, so
Γθ ∩ Γ(n) = Γ(n). Thus, we have

ker ρ ≥ Γ(n), (F7)

i.e., the linear lift ρ obtained by attaching a phase
e−2iπc/12 to T̂ , where c is the central charge of one of
the modular extensions, is congruence.
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Appendix G: Modular data from a direct sum of
1-dimensional representations

In Sec. III B 1, we have mentioned that a direct sum of
five 1-dimensional representations of Γθ do not give rise
to any valid MD. Let us call representations which are
a direct sum of 1-dimensional representations “1d-sum
representations,” and super-MTCs arising from them as
“1d-sum super-MTCs.” Here we prove that no 1d-sum
representations of dimension 5 give rise to valid super-
MTCs. We also prove that 1d-sum super-MTCs are al-
ways split and abelian.

Let ρ =
d⊕

i=1

χi for some 1-dimensional representations

χi. By the t2-spectrum criterion (see section III B 1),
ρ(t2) must be proportional to the identity. The result-

ing MD will be T̂ 2 = 1, and T will consist of 1s and
−1s. Thus, the resulting super-MTC will have ordT = 2.
Spherical fusion categories (of which super-MTCs are a
special case) satisfying this condition have been classified
in Ref. [59]. In particular, they find that any such spher-

ical fusion category is pointed (abelian). On the other
hand, any pointed super-MTC is split (see Proposition
2.1 of Ref. [40]). Thus, there is no need for extra classifi-
cation of 1d-sum super-MTCs, as all of them come from
stacking bosonic theories with F0.
For the specific case of dimension 5, we can simply look

at the known bosonic classification in, say, Ref. [20], and
see that there is no rank 5 MTC whose T -matrix consists
exclusively of 1s and −1s. This proves the assertion in
section III B 1 that there are no rank 10 1d-sum super-
MTCs. On the other hand, in the bosonic classification
of rank 4 MTCs there is a well-known MTC whose T -
matrix consists exclusively of 1s and −1s: the toric code
theory. Hence in rank 8 the toric code theory stacked
with F0 is a 1d-sum super-MTC.

Appendix H: Explicit modular data of new classes

We present the explicit data of the new classes of rank-
10 MD we have found. We show only one representative
from each class. The MD of the first class is

Ŝ =
1√
30χ4

15



1 χ4
15 χ5

15 χ3
15 χ3

15

χ4
15 1 χ5

15 −χ3
15 −χ3

15

χ5
15 χ5

15 −χ5
15 0 0

χ3
15 −χ3

15 0
χ1
5χ

3
15

2 − 2
√

30χ4
15

χ5
5

χ3
15 −χ3

15 0 − 2
√

30χ4
15

χ5
5

χ1
5χ

3
15

2

 , T̂ 2 =


1 0 0 0 0
0 1 0 0 0
0 0 e2iπ/3 0 0
0 0 0 e4iπ/5 0
0 0 0 0 e−4iπ/5

 , (H1)

where χm
n = m+

√
n and the total quantum dimensions is D2 = 472.379. The MD of the second class is

Ŝ =
1

2
√
6χ5

24


1 χ5

24 χ3
6 χ3

6 χ4
24

χ5
24 1 χ3

6 −χ3
6 −χ4

24

χ3
6 χ3

6 −χ3
6 − i

√
6χ5

24 −χ3
6 + i

√
6χ5

24 0

χ3
6 χ3

6 −χ3
6 + i

√
6χ5

24 −χ3
6 − i

√
6χ5

24 0
χ4
24 −χ4

24 0 0 χ4
24

 , T̂ 2 =


1 0 0 0 0
0 1 0 0 0
0 0 −1 0 0
0 0 0 −1 0
0 0 0 0 e2iπ/3,

 (H2)

where the total quantum dimensions is D2 = 475.151.

∗ gilyoungcho@postech.ac.kr
† heecheol@postech.ac.kr
‡ donghae98@postech.ac.kr
§ miyou849@gmail.com

[1] X. G. Wen, Int. J. Mod. Phys. B 4, 239 (1990).
[2] X.-G. Wen, Phys. Rev. B 40, 7387 (1989).
[3] E. Keski-Vakkuri and X.-G. Wen, International Journal

of Modern Physics B 07, 4227 (1993).
[4] X.-G. Wen, Physics Letters A 300, 175 (2002).
[5] B. Zeng, X. Chen, D.-L. Zhou, and X.-G. Wen, Quantum

information meets quantum matter – from quantum en-
tanglement to topological phase in many-body systems

(2018), arXiv:1508.02595 [cond-mat.str-el].
[6] X.-G. Wen, Natl. Sci. Rev. 3, 68 (2015).
[7] A. Kitaev, Ann. Phys. 321, 2 (2006).
[8] C. Nayak, S. H. Simon, A. Stern, M. Freedman, and

S. Das Sarma, Rev. Mod. Phys. 80, 1083 (2008).
[9] G. Moore and N. Seiberg, Commun. Math. Phys. 123,

177 (1989).
[10] E. Witten, Commun. Math. Phys. 121, 351 (1989).
[11] D. C. Tsui, H. L. Stormer, and A. C. Gossard, Phys. Rev.

Lett. 48, 1559 (1982).
[12] H. L. Stormer, D. C. Tsui, and A. C. Gossard, Rev. Mod.

Phys. 71, S298 (1999).

mailto:gilyoungcho@postech.ac.kr
mailto:heecheol@postech.ac.kr
mailto:donghae98@postech.ac.kr
mailto:miyou849@gmail.com
https://doi.org/10.1142/S0217979290000139
https://doi.org/10.1103/PhysRevB.40.7387
https://doi.org/10.1142/s0217979293003644
https://doi.org/10.1142/s0217979293003644
https://doi.org/10.1016/s0375-9601(02)00808-3
https://arxiv.org/abs/1508.02595
https://doi.org/10.1093/nsr/nwv077
https://doi.org/10.1016/j.aop.2005.10.005
https://doi.org/10.1103/RevModPhys.80.1083
https://doi.org/cmp/1104178762
https://doi.org/cmp/1104178762
https://doi.org/cmp/1104178138
https://doi.org/10.1103/PhysRevLett.48.1559
https://doi.org/10.1103/PhysRevLett.48.1559
https://doi.org/10.1103/RevModPhys.71.S298
https://doi.org/10.1103/RevModPhys.71.S298


18

[13] L. Savary and L. Balents, Rep. Prog. Phys. 80, 016502
(2016).

[14] A. Kitaev, Ann. Phys. 303, 2 (2003).
[15] D. Tong, Lectures on the quantum hall effect (2016),

arXiv:1606.06687 [hep-th].
[16] X.-G. Wen, Rev. Mod. Phys. 89, 10.1103/revmod-

phys.89.041004 (2017).
[17] D. E. Feldman and B. I. Halperin, Reports on Progress

in Physics 84, 076501 (2021).
[18] A. Kitaev and C. Laumann, Topological phases and

quantum computation (2009), arXiv:0904.2771 [cond-
mat.mes-hall].

[19] Z. Wang, Topological Quantum Computation, Regional
Conference Series in Mathematics (American Mathemat-
ical Society, 2010).

[20] S.-H. Ng, E. C. Rowell, Z. Wang, and X.-G. Wen, Recon-
struction of modular data from SL2(Z) representations
(2022), arXiv:2203.14829.

[21] A. Bernevig and T. Neupert, Topological superconduc-
tors and category theory (2015), arXiv:1506.05805 [cond-
mat.str-el].

[22] T. Lan, L. Kong, and X.-G. Wen, Phys. Rev. B 94,
155113 (2016).

[23] B. Bakalov and A. Kirillov Jr., Lectures on Tensor Cat-
egories and Modular Functors, University Lecture Series
(American Mathematical Society, 2001).

[24] Z.-C. Gu, Z. Wang, and X.-G. Wen, Phys. Rev. B 90,
085140 (2014).

[25] Z.-C. Gu, Z. Wang, and X.-G. Wen, Phys. Rev. B 91,
125149 (2015).

[26] P. Bruillard, C. Galindo, T. Hagge, S.-H. Ng, J. Y.
Plavnik, E. C. Rowell, and Z. Wang, J. Math. Phys. 58,
041704 (2017).

[27] D. Aasen, E. Lake, and K. Walker, J. Math. Phys. 60,
121901 (2019).

[28] J.-R. Zhou, Q.-R. Wang, and Z.-C. Gu, Physical Review
B 106, 10.1103/physrevb.106.245120 (2022).

[29] T. Lan, L. Kong, and X.-G. Wen, Commun. Math. Phys.
351, 709 (2016).

[30] R. B. Laughlin, Phys. Rev. Lett. 50, 1395 (1983).
[31] X. G. Wen and A. Zee, Phys. Rev. B 46, 2290 (1992).
[32] S. Tata, R. Kobayashi, D. Bulmash, and M. Barkeshli,

Communications in Mathematical Physics 397, 199
(2022).

[33] N. Read and D. Green, Phys. Rev. B 61, 10267 (2000).
[34] M. Mignard and P. Schauenburg, Lett. Math. Phys. 111,

1 (2021).
[35] P. Bonderson, C. Delaney, C. Galindo, E. C. Rowell,

A. Tran, and Z. Wang, On invariants of modular cat-
egories beyond modular data (2018), arXiv:1805.05736
[math.QA].

[36] E. Rowell, R. Stong, and Z. Wang, Commun. Math. Phys.
292, 343 (2009).

[37] P. Bruillard, S.-H. Ng, E. C. Rowell, and Z. Wang, Int.
Math. Res. Not. 2016, 7546 (2016).

[38] G. Y. Cho, D. Gang, and H.-C. Kim, J. High Energy
Phys. 2020 (11).

[39] P. Bruillard, C. Galindo, S.-H. Ng, J. Y. Plavnik, E. C.
Rowell, and Z. Wang, Algebras Represent. Theory 23,
795 (2019).

[40] P. Bruillard, J. Y. Plavnik, E. C. Rowell, and
Q. Zhang, Classification of super-modular categories
(2019), arXiv:1909.09843.

[41] S.-H. Ng and P. Schauenburg, Commun. Math. Phys.
300, 1 (2010).

[42] S.-H. Ng, Y. Wang, and S. Wilson, On symmetric repre-
sentations of SL2(Z) (2022), arXiv:2203.15701.

[43] S.-H. Ng, Y. Wang, and S. Wilson, SL2Reps, Con-
structing symmetric representations of SL(2,z), Version
1.0, https://snw-0.github.io/sl2-reps (2021), GAP
package.

[44] P. Bonderson, E. Rowell, Z. Wang, and Q. Zhang, Pac.
J. Math. 296, 257 (2018).

[45] T. Johnson-Freyd and D. Reutter, Minimal nondegener-
ate extensions (2021), arXiv:2105.15167.

[46] D. Delmastro, D. Gaiotto, and J. Gomis, J. High Energy
Phys. 2021 (11).

[47] K. Conrad, SL2(Z), https://kconrad.math.uconn.edu/
blurbs/grouptheory/SL(2,Z).pdf (n.d.).

[48] C. Dong, X. Lin, and S.-H. Ng, Algebra Number Theory
9, 2121 (2015).

[49] D. Green, Classification of Rank 6 Modular Cat-
egories with Galois Group ⟨(012)(345)⟩ (2019),
arXiv:1908.07128.
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