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We report a comprehensive spin wave analysis of the semiconducting honeycomb van der Waal an-
tiferromagnet NiPS3. Using single crystal inelastic neutron scattering, we map out the full Brillouin
zone and fit the observed modes to a spin wave model with rigorously defined uncertainty. We find
that the third neighbor exchange J3 dominates the Hamiltonian, a feature which we fully account
for by ab-initio density functional theory calculations. We also quantify the degree to which the
three-fold rotation symmetry is broken and account for the Q = 0 excitations observed in other mea-
surements, yielding a spin exchange model which is consistent across multiple experimental probes.
We also identify a strongly reduced static ordered moment and reduced low-energy intensity relative
to the linear spin wave calculations, signaling unexplained features in the magnetism which requires
going beyond the linear spin wave approximation.

I. INTRODUCTION

Magnetic van der Waals materials which can be ex-
foliated down to the monolayer limit have tremendous
potential for new electronics applications and devices [1].
Of special interest is whether new and exotic states can
be stabilized because of the low-dimensional properties.
One such candidate material is NiPS3. NiPS3 is a semi-
conducting layered honeycomb antiferromagnet with the
crystal structure shown in Fig. 1. Its magnetic Ni2+
ions order magnetically at TN = 155 K [2, 3] to a zig-zag
antiferromagnetic order with moments along the c-axis
[4]. NiPS3 has very strong spin-charge coupling [5, 6],
and because of this is already being made into workable
devices [7, 8]. Its magnetic excitations have been mea-
sured with powder and single-crystal neutron scattering
[9, 10] and density functional theory shows dominant J3
exchange interaction [11, 12], but certain features in its
magnetic Hamiltonian (namely the low energy modes) re-
main imperfectly understood. Perhaps most intriguingly,
X-ray, photoluminescence, and optical absorption spec-
troscopies show a bound exciton state consistent with
Zhang-Rice triplet formation between Ni and surround-
ing S ligands [13], which suggests the magnetism is far
from conventional. This raises two key questions: what
is the full exchange Hamiltonian of NiPS3, and are there
signs of exotic quantum effects in the collective magnetic
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Figure 1. Crystal structure of NiPS3, shown for a single layer
(left) and the stacking pattern for multiple layers (right) vi-
sualized using VESTA [14]. The first three neighbor in-plane
exchanges are shown on the left.

excitations?
To answer these questions, we perform a detailed study

of single crystal NiPS3 using inelastic neutron scattering.
We fit the spin waves using linear spin wave theory to es-
timate the magnetic exchange Hamiltonian, perform first
principles Wannier function calculations in combination
with strong coupling perturbation theory to explain this
Hamiltonian, and thus derive a model which accounts for
the observed excitations in optical spectroscopy [6, 13].
We find a dominant third neighbor exchange (a behavior
which is unusual but fully explicable with first princi-
ples calculations), a strongly reduced ordered moment,
and anomalously small low-energy intensity. The third-
neighbor exchange is fully explicable with first principles
calculations, but the reduced moment and anomalous in-
tensity are not, and thus indicate quantum spin entan-
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glement and higher order effects.

II. EXPERIMENT AND RESULTS

We measured the inelastic neutron scattering spectrum
of NiPS3 using the SEQUOIA spectrometer [15, 16] at the
Spallation Neutron Source (Oak Ridge National Labora-
tory) [17]. The sample consisted of 26 coaligned crys-
tals (total 2.41 g) glued to aluminum plates with the
c-axis vertical (see Appendix A for details). Although
NiPS3 technically has broken three-fold rotation symme-
try at the Ni2+ sites, the distortion is so weak that we
could not easily distinguish (h00) from (hh0), and in the
coalignment we treated them as identical. In the plots
in this paper, the cuts listed (e.g. in Fig. 2) in real-
ity include a superposition of cuts rotated in the plane
by ±120◦. (In the spin wave modeling below, we calcu-
lated the three overlapping orientations with a weighting
1:1:1.) For a background, we measured an identical sam-
ple holder with no sample. We measured the inelastic
spectra in the (hk0) scattering plane with incident en-
ergies (Ei) of 28 meV, 60 meV, and 100 meV at 5 K,
and Ei = 28 meV and Ei = 100 meV at 100 K, and
200 K. Data were then symmetrized by in-plane reflec-
tions about (h0ℓ) and (0kℓ). Two-dimensional slices of
scattering data are shown in Fig. 2.

In the 5 K and 100 K data, spin wave modes are clearly
visible in the data, being very well-defined in the in-plane
scattering directions, with a pronounced maximum in-
tensity at ∼ 14 meV. At 200 K (above TN = 155 K),
the modes are less well defined and the gap closes. The
most intense inelastic scattering is at the bottom of the
dispersion at k and h wavevectors associated with the zig-
zag antiferromagnetic order. This mode has very steeply
dispersing magnon modes which, because of experimen-
tal resolution broadening, makes the low energy extent
difficult to experimentally determine. Nevertheless, as
temperature increases the gap steadily closes (Fig. 3).
This temperature-dependent gap is well-understood for
low-dimensional magnets [18], and was also observed in
FePS3 [19] and MnPS3 [20].

Although experiments clearly show NiPS3 to be dom-
inated by in-plane exchange interactions, a weak disper-
sion is visible in the ℓ (out-of-plane) direction as shown
in Fig. 2(d). Because of the intense, highly dispersive
scattering, the ℓ dependence appears as a lower envelope
to the scattering with a bandwidth of 6.5 meV. The ℓ
periodicity is the same as the lattice, indicating ferro-
magnetic inter-planar exchange.

III. SPIN WAVE FITS

Having observed such well-defined magnons, we fitted
a linear spin wave theory (LSWT) model to the data to
determine the exchange constants. However, we must
also ensure that our model is consistent with other ex-

periments. From other studies, it is clear that the Ni2+
magnetism is predominantly easy-plane [2, 11, 21, 22].
In addition, multiple measurements have reported three
low-energy Q = 0 magnetic modes in the NiPS3 ordered
phase: ESR indicates ∆1 = 1.07 meV [22], optical spec-
troscopy indicates ∆1 = 1.16 meV and ∆2 = 3.79 meV
[6], and photoluminescence indicates ∆1 = 1.7 meV
and ∆2 = 3.3 meV, deduced from shoulder peaks near
the main photoluminescence peak (proposed to be the
Zhang-Rice singlet to Zhang-Rice triplet transition) [13].
Meanwhile, THz optical spectroscopy reveals a clear
Q = 0 magnon mode at ∆3 = 5.5 meV which disap-
pears as T → TN , and is also present in the absence
of photo-excitation [23]. By semiclassical spin wave the-
ory, there can only be two low energy Q = 0 modes in
NiPS3. We believe the true Q = 0 magnons are ∆1 and
∆3 because the ∆2 ≈ 3.5 meV mode only appears with
> 1 eV optical pumping and is near 2∆1, suggesting it
is a nonequilibrium effect and/or involves the creation of
two low energy magnons. (One other possibility is a lon-
gitudinal magnon mode, but SU(3) simulations do not
find an additional mode, see Appendix D. Furthermore,
longitudinal modes are typically far broader in energy
than the transverse magnons [24], not sharp modes as
observed in NiPS3.) Thus, we take the low energy Q = 0
magnon gaps to be ∆ = (1.3± 0.3) meV (average of the
reported values) and ∆ = (5.5 ± 0.3) meV (uncertainty
taken from the lower energy mode). We include these
fixed average gap values in our model for the low energy
Q = 0 modes.

The fitted model is based on Heisenberg (isotropic)
exchange with single ion anisotropy terms

H =
∑
ij

JijSi · Sj +
∑
i

[
Ax(S

x
i )

2 +Az(S
z
i )

2
]

(1)

where Si are quantum spin operators of length 1, Jij
determine the exchange interaction strengths, and Ax

and Az are the single ion anisotropy terms. To con-
strain the fit, we extracted the spin wave dispersions
from the neutron data by fitting multiple independent
constant-Q cuts with a Gaussian across 18 different h̄ω
vs Q slices (see supplemental information [25]). Where
the dispersion was steep, we also fitted constant h̄ω slices,
yielding a total 267 individual Q and h̄ω points (treating
data from each different measured Ei separately). We
then fit the NiPS3 spin waves to the mode energies us-
ing SpinW [26] assuming three in-plane exchanges and
one out-of-plane exchange J4. We found that, in order
to produce a q = K = (1/2, 1/2, 0) intensity maximum
at ∼ 14 meV whilst retaining the two low energy Q = 0
modes above, the three-fold rotation axis must be weakly
broken (which, as shown in Fig. 1, is true of C2/m space
group for NiPS3). Otherwise, the only modes at q = K
would be ∆ = 1.3 meV and ∆ = 5.5 meV. We there-
fore allow the two symmetry-inequivalent first neighbor
bonds to have different values (J1a and J1b), while the
other in-plane exchanges J2 and J3 are assumed to have
the same exchange on all honeycomb bonds. The result-
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Figure 2. Measured neutron spectra of NiPS3 along different directions in reciprocal space. The top row (a)-(d) shows data at
5 K, the middle row (e)-(h) shows data at 100 K, and the bottom row (i)-(l) shows data at 200 K. In each panel, the different
Ei data are overlaid. The boundaries between the different data sets appear as faint grey lines. At 5 K and 100 K, spin wave
modes are clearly visible. The modes become broadened and gapless at 200 K. Note that all data is symmetrized about h = 0
and k = 0, and intensity is in absolute units but not corrected for the form factor.
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Figure 3. Temperature evolution of the low energy gapped
mode in NiPS3, showing (1/2, 5/2, 0) and (1, 2, 0) wavevectors
measured with Ei = 28 meV neutrons. Between 5 K and
100 K, the intensity maximum shifts slightly lower in energy,
while at 200 K (above TN ) the modes become gapless. Note
that the intensity profiles of the two points (which nominally
correspond to C and Γ) are identical, even with different ℓ
integration widths.

ing fitted parameters are in Table I, with the linear spin
wave simulated scattering in Fig. 4. A plot of higy-
symmetry cuts is shown in Fig. 5. (see Appendix B
for the uncertainty estimation method, and note that al-
though J1a and J1b individual uncorrelated uncertainties
overlap, J1b/J1a > 1 to within uncertainty.)

One thing that was immediately apparent was that—

even assuming a broken three-fold rotation symmetry—
there was far too much intensity at low energies for all
our initial LSWT simulations [Fig. 4(f)-(j)]. However,
we found that if we calculated the LSWT over a finite
window in Q transverse to match the experimental bin
widths (±0.05 reciprocal lattice units [RLU] in the plane,
and ±0.25 RLU out of the plane), we reproduced the low
energy modes better [Fig. 4(k)-(o)], though not perfectly
as we discuss below. The dispersion is so steep there
that any finite bin size broadens the modes and shifts
the intensity maximum to higher energy transfers. This
explains the anomalous intensity down to very low ener-
gies at the antiferromagnetic wavevectors also observed
in Ref. [10]. This also meant that the fitted experi-
mental Q and h̄ω points, because they were extracted
from cuts with finite bin size, are higher than the actual
modes. We therefore calculated the difference in mode
energy between the raw LSWT calculation [Fig. 4(f)-(j)]
and the finite-bin summed LSWT calculation [Fig. 4(k)-
(o)], corrected the experimental Q and h̄ω points by this
offset, and refit the Hamiltonian. The values in Table I
represent the fit to these corrected dispersions.

In fitting the Hamiltonian, we also included in-plane
exchange terms beyond the third neighbor in-plane, but
we found that these did not improve the reduced χ2 by
≥ 1, and thus we consider them to be zero to within un-
certainty. We also tried including a Kitaev term in the
exchange, but this also did not improve the fit, and in-
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Figure 4. Measured and fitted NiPS3 spin wave spectra. The top row (a)-(e) shows the measured spin wave spectra (with
Ei = 100 meV, 60 meV, and 28 meV overlaid as in Fig. 2).The second row (f)-(j) shows the fitted linear spin wave theory
(LSWT) spectra, and the bottom row shows same LSWT spectra integrated over the finite widths in h, k and ℓ for the actual
experimental data. Because of finite bin widths, the low energy scattering is much weaker than it would be with infinitesimal
bins. (Note that the low-energy intensity in panel (e) near (200) is an acoustic phonon mode.)

Table I. Hamiltonian exchange parameters for NiPS3. The
left column shows the best fit model in units of meV, where
the broken three-fold symmetry is represented by J1a (two
nearest-neighbor exchanges with components along the a axis)
and J1b (nearest-neighbor exchange along the b axis). Error
bars indicate one standard deviation uncertainty. The right
column shows the DFT calculated exchange constants for J1,
J2, and J3, which are very close to the experimental values.

model fitted LSWT DFT + perturbation
(U = 3 eV, JH = 0.5 eV)

Ax −0.010± 0.005
Az 0.21± 0.03
J1a −2.7± 0.4 -2.7
J1b −2.0± 0.4 -2.4
J2 0.2± 0.3 -0.42
J3 13.9± 0.4 13.9
J4 −0.38± 0.05

stead introduced extra modes in the spectrum which are
not present in experiment. Finally, we note that in real-
ity, the broken rotation symmetry will affect all bonds,
not just J1. However, to reduce the number of fitted
parameters we collect all such effects in J1 in order to
provide a minimal model for reproducing the experimen-
tal observations.

One of the most striking features of the fit is that the
third neighbor exchange J3 dominates the Hamiltonian.
A dominant third-neighbor in-plane exchange is not un-
usual for hexagonal 3d magnets, as seen in e.g. NiGa2S4

[27], Ba2NiTeO6 [28], Na2Co2TeO6 [29], BaNi2(AsO4)2
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Figure 5. Plot of scattering data along high-symmetry di-
rections (a) compared to the linear spin wave theory (LSWT)
simulation (b) and the LSWT mode energies (c).

[30], and BaCo2(AsO4)2 [31] and many members of the
MPX3 family [32–34]. However, the extremely large J3
we derive (nearly 6 times larger than J1, or |J3/J̄1| = 5.9)
is, to our knowledge, the largest observed.
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IV. FIRST PRINCIPLES CALCULATIONS

A. Density functional theory

To explain this enormous J3, we perform density func-
tional theory (DFT) calculations to estimate the Hamil-
tonian from first principles. Ref. [33] studied Dirac cones
formed by the half-filled eg bands in monolayer MBX3,
focusing on monolayer PdPS3. They plotted the mono-
layer Wannier functions and reported the hopping in-
tegrals to neighboring transition metal sites. Likewise,
we justify the hierarchy of magnetic exchange constant
magnitudes by examining the respective hopping inte-
grals of the eg bands first. The maximum magnitude of
the nearest, second, and third-neighbor hopping integrals
are 52.94, 29.54, and 215.52 meV, respectively (see also
Table IV). The eg-eg hopping integrals for nearest neigh-
bors are relatively small, and they are even surpassed
by the eg-t2g hopping integrals (52.94 < 176.01 meV).
The present calculation for bulk NiPS3 is distinct from
the monolayer calculation of Ref. [33] in that it incorpo-
rates the t2g orbitals, and their relative importance for
the nearest-neighbor exchange is already evident. Next
we explain why the inclusion of the t2g orbitals is neces-
sary to capture FM exchange for the nearest neighbors
(failure to do so inaccurately leaves one with an AFM J1
and overestimates J3) and examine how the large third-
neighbor hopping integral comes to be.

We visually demonstrate how the hopping integrals
are either notable or diminished in Fig. 6. The third-
neighbor (3NN) eg-eg hopping integrals are the largest
of all, leading to the large AFM 3NN exchange. Previ-
ous work has argued for substantial overlap to produce
the d-p-p-d exchange for the eg orbitals for 3NN hopping
[33, 35] and this is shown in Fig. 6(a). The 3NNs do not
share ligand S-atoms, and the p-tail lobes point toward
each other further enhancing overlap. By contrast, the
nearest-neighbor (1NN) eg-eg hopping integrals are rel-
atively diminished, leading to small FM 1NN exchange.
As shown in Fig. 6(d), the orientation of the p-tails on
the shared ligand S-atoms is nearly orthogonal leading to
substantial cancellation.

The eg-t2g hopping integrals are important both to
capture the FM nature of the 1NN exchange and to ac-
curately calculate the 3NN exchange. Fig. 6(b) shows
the 1NN overlap between dxy and dz2 orbitals. Again,
the 1NN share their ligand S-atoms, but the p-tails over-
lap each other to reinforce the hopping. In Fig. 6(c),
the 3NN overlap between dxy and dz2 orbitals is rela-
tively diminished; the dz2 orbital’s primary p-tails are
not pointing toward the neighboring Ni atom, and the
smaller p-tails point toward each other less directly than
in the eg-eg case. This eg-t2g process contributes to FM
3NN exchange, but it is merely a small fraction of the
large AFM exchange supported by the eg-eg hopping.

B. Perturbation Theory

Armed with the full eg and t2g tight-binding Hamilto-
nian, we apply perturbation theory in the strong-coupling
limit (explained in Appendix E) to extract the exchange
constants, listed in Table I. These are in close agreement
with the experimentally fit exchange constants, except
for the theoretical prediction that J2 be weakly ferro-
magnetic where it is experimentally shown to be weakly
antiferromagnetic. Our perturbation theory results are
also in close agreement with the results in Ref. [12] ob-
tained from fitting total energies of magnetic configura-
tions simulated with DFT+U.

The theoretical prediction can be understood as fol-
lows. For a given pair of atoms, there are three major
exchange processes to consider, one FM interaction and
two AFM interactions as depicted in Figure 7. The FM
(1) and AFM (2) processes involve eg-t2g hopping, and
AFM (3) process involves eg-eg hopping. The difference
between the former two processes is in the intermediate
states which arise in the calculation of the second-order
perturbation to the energy. The intermediate state of
FM (1) maximizes the spin multiplicity (total spin quan-
tum number) on one atom [in comparison to the AFM
(2) process], giving a lower Hund’s energy for that con-
figuration, and thus a larger reduction in the energy. The
FM (1) process tends to dominate for reasonable values
of the interaction parameters. For the results in Table I
we used U = 3 eV and JH = 0.5 eV. See Appendix E for
the full dependence on U and JH .

Thus, for the nearest neighbors where the strongest
hopping is eg-t2g, the FM exchange process dominates
and J1 < 0. For the second-neighbors, the strongest hop-
ping is again eg-t2g, and again FM dominates, but the
maximum magnitude of these hopping integrals is less
than half that of the nearest neighbors. So again J2 < 0
(theoretically, and maybe experimentally to within un-
certainty), but is less than one-quarter the magnitude
of the nearest-neighbor exchange. Finally for the third-
neighbors, the eg-eg AFM process is by far the dominant
exchange and J3 > 0, with the largest magnitude of all
the exchange constants. The third-neighbor dz2 -dxy hop-
ping integral is not negligible (Table VI), so the compe-
tition between the FM (1) and AFM (2) processes is still
present, but this cannot overpower the eg-eg AFM pro-
cess for which the hopping integral is three times larger.
However, this does indicate that a model including only
the eg-eg AFM process will overestimate the large J3.

V. DISCUSSION

At this point, we have a theoretical model for the ob-
served spin waves and Q = 0 excitations, as well as a
first principles explanation for the strength of the ex-
change couplings. Thus we have answered our first ques-
tion about the NiPS3 exchange Hamiltonian. Now we
turn to the second question: given the proposed exotic
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Figure 6. Wannier function overlaps. (a) The largest hopping integral for the third-neighbor (3NN) between dx2−y2 orbitals.
(b) The largest hopping integral for the nearest-neighbor (1NN) between dxy and dz2 orbitals. (c) The second largest hopping
integral between 3NN dxy and dz2 orbitals. (d) The diminished hopping integral between 1NN dx2−y2 orbitals. Red (blue)
surfaces are the positive (negative) isosurfaces. Teal atoms are Ni, grey atoms are P, and yellow atoms are S (like Fig. 1).

Ni 1 Ni 2

FM

t2g

eg

1

Ni 1 Ni 2

AFM

t2g
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3

2

Figure 7. Schematic diagram of the major ferromagnetic and
antiferromagnetic exchange processes in the eg and t2g band
manifolds. The boxes indicate electron orbitals, and the loops
indicate hopping pathways.

Zhang-Rice behavior of NiPS3, are there any features in
the inelastic spectrum which can not be accounted for by
linear spin wave theory?

Although the LSWT calculation reproduces the inelas-
tic spectrum well, the LSWT approach does not match

the static ordered moment. Antiferromagnetic spin waves
will, in general, reduce the size of the ground state or-
dered moment relative to its maximum value [36], and
substantial quantum entanglement can reduce the mo-
ment much further. Calculating the T = 0 spin expecta-
tion value for the fitted spin wave Hamiltonian, we find
g⟨S⟩ = 1.73 µB (assuming g = 2.00) for Ni2+. This
is much larger than the experimental ordered moment
1.05 µB [4], which indicates that the real material NiPS3

has substantially more quantum fluctuations than linear
spin wave theory gives.

In general, a strongly reduced static T → 0 moment
(formally defined by the “one-tangle” entanglement wit-
ness [37]) indicates substantial quantum spin entangle-
ment, showing that NiPS3 is not merely a conventional
antiferromagnet. In other words, the Ni2+ magnetism
cannot be described by linear spin wave theory alone,
and therefore are subject to more exotic quantum effects.
The missing spin components presumably reside within
the excitation spectrum, potentially at Q = 0 where neu-
trons cannot directly probe.

The next item of comparison is details in the neutron
spectrum. We compare the experimental data against
resolution-convolved simulated scattering from best fit
parameters in Table I using MCViNE, a Monte Carlo
ray tracing software to simulate time of flight resolution
effects for the exact instrumental configuration and ex-
perimental bin widths [38, 39] as shown in Fig. 8 (see
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Figure 8. Comparison between simulated resolution broad-
ened spin waves and experimental data at the bottom of the
dispersion. Panel (a) shows the Ei = 28 meV data at 5 K, and
panel (b) shows the exact same cut with the best fit Hamil-
tonian LSWT simulation with McVine simulated resolution
convolution. The intensity maxima in experiment and the-
ory are close in energy, but the theoretical intensity extends
much lower in energy. Panel (c) shows a constant Q plot
of experiment and simulation, showing that the experimental
low energy tail of the dispersion is suppressed relative to the
LSWT calculation.

Appendix C for details).
Although LSWT correctly captures the intensity near

the finite-energy maximum, LSWT predicts a much
larger low energy “tail” to the dispersion than is seen ex-
perimentally. In Appendix D we show that quadrupolar
SU(3) dynamics (as will be present in S = 1 Ni2+ [40])
explains one third of the reduced intensity, but nowhere
near the dramatic reduction seen in experiment. The ab-
sent intensity must have a more exotic explanation. It
is striking that the intensity is anomalously small at the
lowest energies, near where the h̄ω = 0 static magnetism
is also anomalously small. This means that quantum
effects somehow seem to suppress the low-energy (long-
time) magnetic response in NiPS3.

The combination of a reduced static moment and
anomalously suppressed low energy intensity shows that
LSWT fails to fully account for the low energy magnetism
of NiPS3. Further theoretical modeling is required to say
for certain whether Zhang-Rice triplets account for the
reduced moment, but we propose the observed resonances
in Ref. [13] as a potential explanation. A careful mea-
sure of the magnetic form factor could indicate whether a
portion of the magnetic moment resides on the S sites in
accord with Zhang-Rice triplet hypothesis. Be that as it
may, these experimental observations beg for theoretical

explanation: something very unusual is going on at the
lowest energies. NiPS3 has conventional magnons, that
is not the end of the story.

VI. CONCLUSION

We have measured the spin wave spectrum in NiPS3

and modeled the spin waves, extracting a magnetic
Hamiltonian with rigorously defined uncertainty. We
have also used first principles calculations to model
the magnetic exchange, and we find that DFT agrees
very well with our experimentally determined exchange
constants—in particular the anomalously large third
neighbor exchange J3. The microscopic mechanism for
the dominant third neighbor exchange is elucidated by
combining DFT with strong-coupling perturbation the-
ory. Our fitted model is able to account for the finite
energy maxima observed in neutron scattering, as well as
the mode gaps observed in other experimental methods.
The full profile we provide of long-wavelength (Q = 0)
magnetic excitations is essential knowledge for van der
Waal magnets, because these modes most directly cou-
ple to optical and electronic excitations as relevant for
spin-orbit entangled excitons and spintronic technology.

Finally, we highlight a dramatically reduced static mo-
ment and suppressed low-energy intensity, which indi-
cates that LSWT fails to fully explain NiPS3 magnetism,
especially in the low energy (long time) dynamics. This
indicates an anomalous quantum state in NiPS3, poten-
tially driven by Zhang-Rice triplet pairing.

(Note: In the final stages of this work, Ref. [10] was
published reporting similar measurements and a similar
fitted spin exchange Hamiltonian to this study.)
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Appendix A: Sample preparation and experimental
details

Single-crystal NiPS3 was grown by a standard chem-
ical vapor transport method. Pure Ni (>99.99%), P
(>99.99%), and S (>99.998%) powders were mixed in a
molar ratio of 1:1:3 inside an Ar-filled glove box. We
added an additional 5% sulfur to the mixture for va-
por transport. We analyzed the chemical composition
of the resultant single crystals using energy-dispersive
X-ray spectroscopy (Bruker QUANTAX 70), which con-
firmed a correct stoichiometry. We further characterized
its magnetic property using a commercial SQUID mag-
netometer (MPMS-XL5, Quantum Design), the result of
which is consistent with previous studies [4, 21].

The sample for the SEQUOIA experiment was several
coaligned NiPS3 crystals totaling 2.41 g, glued to alu-
minum plates with CYTOP glue [41]. The sample mount
in shown in Fig. 9. Because of the near three-fold rota-
tion symmetry about c∗ and the weak interplane van der
Waals bonding, the sister compound FePS3 has twinned
domains separated by 120◦ rotation about c∗ [42, 43], and
we expect the same situation with NiPS3. Indeed, Xray
Laue diffraction failed to distinguish the [100] from the
[−1/2, 1/2, 0] or [−1/2,−1/2, 0] directions, which meant
that the sample is a combination of orientations as shown
in Fig. 9.

The instrument settings for the SEQUOIA neutron
measurements are given in Table II. For background, we
made an identical sample holder with the same amount
of CYTOP glued to it but with no crystals. This dummy
sample was measured at the same energy and tempera-
ture configurations as the actual sample, and the mea-

Table II. SEQUOIA instrument parameters [16] for the NiPS3

spin wave measurements at the various incident energies.
Fermi Chopper 2 (middle column) is the high-resolution chop-
per.

Nominal Ei Actual Ei Fermi Fermi ν T0 ν
(meV) (meV) Chopper (Hz) (Hz)
100 103.4 2 540 120
60 62.1 2 420 90
28 28.9 2 300 60
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Figure 10. Symmetrization of NiPS3 neutron data. The left
column shows the unsymmetrized data, and the right shows
the symmetrized data (x, y, z;−x, y, z;x,−y, z;−x,−y, z) for
a constant energy (hk0) slice, and a (1/2, k, 0) slice.

sured scattering intensity was subtracted from the data.
Plotted data were symmetrized with the following sym-
metry operations: x, y, z;−x, y, z;x,−y, z;−x,−y, z, see
Fig. 10.

Data were normalized to absolute units by fitting the
(060) transverse acoustic phonon in accord with Ref. [44]
as shown in Fig. 11. Data were normalized per formula
unit, equivalent to per Ni ion.

Appendix B: Linear spin wave fits

In fitting the dispersions using linear spin wave theory,
we extracted the mode energies at 267 unique Q points,
which are plotted in the supplemental information [25].
The reduced χ2 of the Q = 0 modes and the finite Q
spin wave modes were calculated separately and added,
so that the number of points does not give undue weight
to the neutron spectra.

We estimated uncertainty for the fitted exchange pa-
rameters by mapping out the reduced χ2 contour for
one standard deviation uncertainty [45]. Following the
method in Ref. [46], we fixed each parameter to a value
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Figure 11. Phonon fits for absolute unit conversions. Linear
cuts through the T = 5 K (0, 6, 0) acoustic phonons at h̄ω =
10 meV scattering, the integrated width shown by the faint
red lines in panels (a) and (b), at Ei = 60 meV (left) and
Ei = 100 meV (right) were fitted to Gaussian curves to extract
the area a in panels (c) and (d). This was used to normalize
the scattering intensity to absolute units.

slightly above or below its best fit value and varied the
other parameters until an optimum fit was achieved. If
this new best fit χ2 is within ∆χ2 = 1 of the optimum
χ2, we keep it as a valid solution and take another step
away from the optimum. This is repeated until the best
fit values are greater than ∆χ2 = 1, and are no longer
within one standard deviation uncertainty of the opti-
mum. Plots of valid solutions are shown in Fig. 12. In
this way, the extrema of the χ2 contour is mapped out
along every fitted variable, and the extent is taken to be
a measure of statistical uncertainty.

Fig. 13 shows the effect of finite width binning on the
simulated LSWT data, and showing that this effect shifts
the dispersions up in energy from their actual locations.
In the final fits reported in the main text, the experi-
mentally fitted spin wave modes were shifted downward
in energy to account for this effect by calculating differ-
ence between the LSWT at infinitesimal Q binning and
at the actual experimental Q binning.

Effect of J3

J3 is by far the largest exchange interaction in the
NiPS3 Hamiltonian, and excluding J3 from the fitted
model worsens the a fit by an order of magnitude. To
visually demonstrate the effect of J3, we plot the best
fit Hamiltonians both with and without J3 in Figure 14.
For certain cuts along k, nonzero J3 is necessary to pro-
duce any dispersion at all, which in experiment is quite
substantial. Indeed, if we force J3 to be zero and re-fit
(including up to J5), we find that the best fit χ2

red wors-

15 10 5
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42.5

     best fit
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200 225
 ( eV)

     best fit
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1.3 1.4
/

41.5

42.0
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Figure 12. Range of solutions for NiPS3 spin waves within
∆χ2 = 1 of the best fit solution, using a method of fixing a
parameter and allowing all others to fit freely. This was used
to determine the one standard deviation uncertainty in Table
I. Panel (h) shows the χ2 contour for J1a/J1b, showing that
although the J1a and J1b single-value uncertainties overlap,
they are unequal to within uncertainty.
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Figure 13. Effect of finite integration window on spin wave
dispersion. Panel (a) shows the LSWT simulated scattering
along (h, 1/2, 0) summed over −0.05 < k < 0.05 reciprocal
lattice units (RLU) and −0.3 < ℓ < 0.3 RLU. Panel (b)
shows the same data at exactly (h, 1/2, 0), but with Gaus-
sian broadening applied. The colored circles give the fitted
mode energies at the same wavevectors that were extracted
from experiment. Panel (c) shows the difference between the
mode energies extracted from panels (a) and (b). Panel (d)
shows the experimental extracted mode energies (white) and
the corrected mode energies (blue) shifted by the offset deter-
mined in panel (c).
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ens by an order of magnitude (χ2
red = 41.5 for J1-J2-J3,

χ2
red = 414.9 with J3 = 0). Thus the magnitude of J3 is

well-constrained by the experimental neutron scattering
data.

Appendix C: Resolution Convolution

The instrumental resolution uses an incident beam pro-
file calculated by Monte Carlo ray tracing in Mcstas with
GPUs [47]. This profile is then used to calculate point
spread functions (PSF) on a discrete array across the slice
by using the dgsres tool in McVINE [48]. Next the PSFs
are fit to provide parameters that allow interpolation of
the resolution to any point in the slice [49]. The model
slice to convolute was then calculated in SpinW on a grid
much finer than the resolution. Finally, the interpolated
functions were used to convolute the model slice with the
instrumental resolution and produce the results.

For this specific slice the incident beam energy match-
ing the measurement of Ei = 28.94 meV was calculated
[50]. The discrete array grid was along k from -4 to 4 in
steps of 0.4 and along h̄ω from -5 to 26 in steps of 2 meV.
The model slice was over the same bounds with 2036 k
bins and 1466 h̄ω bins.

Appendix D: Effects of SU(3) dynammics

As noted in the main text, a S = 1 spin technically has
SU(3) symmetry. For weak anisotropies the S = 1 spin
can be treated as a dipole, but as anisotropy grows the
higher order multipolar effects become more manifest,
which allow a single-site spin singlet (S = 0) state [40].
To simulate the effects of this in NiPS3, we calculated
the inelastic neutron spectrum using the generalized spin
wave package Su(n)ny software suite [51] using Landau-
Lifshitz dynamics [52] on a 75× 75× 4 supercell at T =
5 K using the fitted Hamiltonian in Table I. (In SU(3)
simulations the anisotropy was multiplied by two to keep
the spin wave gaps at Γ the same as SU(2).) Both the
SU(3) and SU(2) results are shown in Fig. 15. Note
that the simulations in Fig. 15 do not include the effects
of finite momentum space resolution.

The simulated SU(3) and SU(2) spectra are nearly
identical, involving only a weak 14% suppression of low-
energy intensity from higher order SU(3) effects. If we
normalize the low energy intensity relative to the 10-15
meV modes from q = K (which practically speaking is
what is done in Fig. 8), we find a suppression of 39% in
SU(3) intensity relative to SU(2). This is a mild reduc-
tion in intensity, but nowhere near as much as would be
required to explain the absent intensity in Fig. 8. This
means that the reduced low-energy intensity, alongside
the reduced static magnetic moment, requires a more ex-
otic explanation.

Appendix E: First principles calculations

We perform density functional theory (DFT) calcula-
tions as implemented in VASP [53, 54]. The calcula-
tions are performed within the Perdew-Burke-Ernzerhof
(PBE) generalized gradient approximation (GGA) [55]
for the exchange-correlation functional without spin-
orbit coupling. We use projector augmented wave (PAW)
pseudopotentials [56, 57] with an energy cutoff of 300
eV and an 11 × 11 × 9 Monkhorst-Pack k-point mesh.
We adopt the experimental lattice constants of Wildes
[4] for C2/m bulk NiPS3 and relax the atomic positions
until component forces are less than 1 meV/Å. We use
Wannier90 [58–60] to create a tight-binding Hamiltonian
by projecting the band structure onto real Ni-d orbitals.
The maximal-localization step is not performed in order
to maintain the symmetry of the Wannier functions close
to their centers. The disentanglement window is shown
by the double-headed arrow in Figure 16(a) and the dis-
entanglement convergence criterion is set to 10−13 Å2.
The resulting Hamiltonian is ensured to be symmetrized
by post-processing with WannSymm [61].

The global Cartesian coordinate system was chosen
such that the projection of the z-axis onto the Ni plane is
perpendicular to the Z1 bond [62]. Explicitly, the primi-
tive lattice row vectors for this choice of axes are

a⃗ = (−2.3932999259, 4.7774699422,−2.3841700163),

b⃗ = (−4.7774699422, 2.3932999259, 2.3841700163),

c⃗ = ( 2.8698582203, 2.8698582203, 5.2691203152),
(E1)

in units of Å.
Fig. 16 shows the excellent agreement between the elec-

tronic band structure calculated with DFT and from the
Wannier tight-binding model for the Ni-d orbitals. We
accurately capture the eg bands near the Fermi level and
the lower t2g bands.

To carry out the second-order perturbation calcula-
tion, the single-particle Hamiltonian as parameterized by
a Wannier tight-binding model is supplemented by a local
Coulomb interaction Hamiltonian given by

HU =U
∑
α

d†α↑dα↑d
†
α↓dα↓ + U ′

∑
α̸=β

d†α↑dα↑d
†
β↓dβ↓

+(U ′ − JH)
∑

α>β,σ

d†ασdασd
†
βσdβσ

+JH
∑
α̸=β

(
d†α↑dβ↑d

†
β↓dα↓ + d†α↑dβ↑d

†
α↓dβ↓

)
, (E2)

where α and β label (yz, zx, xy, z2, x2 − y2) at Ni d

shell, and d
(†)
ασ is the annihilation (creation) operator of

an electron at orbital α with spin σ. U and U ′ are
the intraorbital Coulomb interaction and the interor-
bital Coulomb interaction, respectively, and JH repre-
sents the interorbital exchange interaction, i.e., the Hund
coupling, (fourth term) and the interorbital pair hop-
ping (fifth term). Between three parameters, we assume
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Figure 14. Measured and fitted NiPS3 spin wave spectra showing the effect of J3. The top row (a)-(e) shows the measured spin
wave spectra. The second row (f)-(j) shows the fitted linear spin wave theory (LSWT) spectra using a J1-J2 model, and the
bottom row shows the fit using a J1-J2-J3 model. In none of the cuts do the J1-J2 model resemble the data, while the addition
of J3 makes the spin wave calculated modes match experiment much more closely.

U ′ = U−2JH [63]. Because the energy scale of U is order
of eV, while that of the off-diagonal and anisotropic terms
in the crystal field is smaller than 0.1 eV, except for the
level difference between eg and t2g multiplets, known as
10Dq. Thus, we only consider 10Dq by averaging eg and
t2g levels

HCF = 10Dq
∑

α∈eg,σ

d†ασdασ, (E3)

with the average t2g level set to zero. The relativistic
spin-orbit coupling is not included for simplicity.

By diagonalizing HCF +HU with d8 configurations for
Ni2+ ion, we obtain the high-spin e2gt

6
2g ground state.

From a pair of such high-spin e2gt
6
2g states, we proceed

to carry out second-order perturbation calculations with
respect to intersite electron hopping between Ni sites.
Here, we consider two magnetic sites with ferromagnetic
spin alignment (EFM ) and antiferromagnetic alignment
(EAFM ) and compute the second-order correction to the
ground state energy. During this process, all excited
states for d7 and d9 configurations are included by di-
agonalizing HCF +HU . Finally, considering the full spin
rotational symmetry, an exchange constant at a given
pair of Ni spins is given by J = (EFM − EAFM )/2.

Table III. Local (on-site) hopping integrals (meV).

Local
dz2 dx2−y2 dxz dyz dxy

dz2 0.00 0.00 -2.22 -2.22 4.60
dx2−y2 0.00 -17.22 -3.40 3.40 0.00
dxz -2.22 -3.40 -1339.76 53.81 46.98
dyz -2.22 3.40 53.81 -1339.76 46.98
dxy 4.60 0.00 46.98 46.98 -1330.35
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Table IV. Nearest-neighbor hopping integrals (meV).

Z1 bond X1 bond
dz2 dx2−y2 dxz dyz dxy dz2 dx2−y2 dxz dyz dxy

dz2 -52.94 0.00 -1.97 -1.97 176.01 -21.43 17.50 66.07 -85.97 -61.37
dx2−y2 0.00 -10.72 67.39 -67.39 0.00 17.50 -39.73 34.68 157.39 -36.97
dxz -1.97 67.39 45.49 13.28 34.00 66.07 34.68 42.59 36.31 19.48
dyz -1.97 -67.39 13.28 45.49 34.00 -85.97 157.39 36.31 -174.72 36.19
dxy 176.01 0.00 34.00 34.00 -178.25 -61.37 -36.97 19.48 36.19 43.91

Table V. Second-neighbor hopping integrals (meV).

Z2 bond X2 bond
dz2 dx2−y2 dxz dyz dxy dz2 dx2−y2 dxz dyz dxy

dz2 29.54 3.25 -43.37 4.04 67.06 3.58 -12.56 27.18 -51.42 -3.02
dx2−y2 -3.25 -5.17 26.69 -31.79 19.83 -17.29 19.47 15.87 46.52 -48.79
dxz 4.04 31.79 5.15 -44.68 9.16 46.00 -22.06 5.20 11.64 20.57
dyz -43.37 -26.69 18.10 5.15 11.79 -17.11 70.16 7.20 -2.98 12.50
dxy 67.06 -19.83 11.79 9.16 -3.50 -28.69 -14.71 -42.31 8.83 4.80

Table VI. Third-neighbor hopping integrals (meV).

Z3 bond X3 bond
dz2 dx2−y2 dxz dyz dxy dz2 dx2−y2 dxz dyz dxy

dz2 -47.60 0.00 2.19 2.19 72.99 152.31 111.35 -6.38 -35.50 5.70
dx2−y2 0.00 215.52 -9.11 -9.11 0.00 111.35 18.54 -0.69 62.54 5.44
dxz 2.19 -9.11 12.03 -11.18 -5.21 -6.38 -0.69 11.03 -4.02 -10.72
dyz 2.19 -9.11 -11.18 12.03 -5.21 -35.50 62.54 -4.02 31.64 -6.26
dxy 72.99 0.00 -5.21 -5.21 32.74 5.70 5.44 -10.72 -6.26 11.37
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Figure 15. Calculated NiPS3 dispersion for SU(2) (classi-
cal dipolar) and SU(3) (S = 1) dynamics using Landau-
Lifschitz dynamics as implemented with Su(n)ny [51]. The
top panels show the calculated dispersions along two differ-
ent cuts for SU(2) (a)-(b) and SU(3) (c)-(d). The differences
are very minor, involving only a suppression of intensity at
the lowest energy q = Γ modes, and a slight enhancement
at q = K = (1/2, 1/2, 0). Thus quadripolar SU(3) dynam-
ics does not explain the discrepancy between experiment and
LSWT in Fig. 8.
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Figure 18. In-plane atoms to which the hopping integrals of
Tables IV, V, and VI refer.
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