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Spin squeezing protocols successfully generate entangled many-body quantum states, the key
pillars of the second quantum revolution. In our recent work [Phys. Rev. Lett. 129, 090403
(2022)] we showed that spin squeezing described by the one-axis twisting model can be generated in
the Heisenberg spin-1/2 chain with periodic boundary conditions when accompanied by a position-
dependent spin-flip coupling induced by a single laser field. In this work, we show analytically that
the change of boundary conditions from the periodic to the open ones significantly modifies spin
squeezing dynamics. A broad family of twisting models can be simulated by the system in the
weak coupling regime, including the one- and two-axis twisting under specific conditions, providing
the Heisenberg level of squeezing and acceleration of the dynamics. Our analytical findings are
confirmed by full numerical simulations.

I. INTRODUCTION

Neutral atom arrays have recently emerged as promis-
ing platforms for realizing programmable quantum sys-
tems [1–3]. Based on individually trapped cold atoms in
optical lattices [4] and tweezers with strong interactions
between Rydberg states [5], atom arrays have been uti-
lized to explore physics involving Hubbard and Heisen-
berg models [6–10]. It has been shown that indistin-
guishable Hubbard bosons serve as a platform for the
generation and storage of metrologically useful many-
body quantum states [11–15]. In some regime of pa-
rameters, arrays of ultra-cold atoms simulate chains of
distinguishable spins (qubits) which are perfectly suit-
able for quantum information tasks and the generation
of massive non-classical correlations, including Bell cor-
relations and non-locality [16–19]. These quantum many-
body systems are crucial resources for emerging quantum
technologies [20, 21].

Systems composed of ultra-cold fermions in optical
lattices have also attracted a lot of attention currently
in the context of the generation of non-classical states,
see e.g. in [22–24]. In particular, in our recent work
[25], we have shown that in a lattice of strongly inter-
acting ultra-cold fermionic atoms involving two inter-
nal states, it is possible to generate non-classical corre-
lations when adding position-dependent atom-light cou-
pling. The Fermi-Hubbard model describing the system
under periodic boundary conditions (PBC) can be cast
onto an isotropic spin-1/2 Heisenberg chain in a deep
Mott regime, while the atom-light coupling can be con-
sidered as a position-dependent spin-flipping. To gener-
ate spin squeezing the Ramsey-type spectroscopy scheme
is considered [25], as illustrated in Fig. 1. As soon as the
atoms are put in a coherent superposition of two internal
states by an electromagnetic pulse, an additional weak
atom-laser coupling is turned on. This coupling activates
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FIG. 1. Illustration of the Ramsey-type spectroscopy scheme.
(a) Preparation of the initial spin coherent state. (b) The
excitation of spin waves states (different color lines) by the
spin-flip coupling serves as an intermediate state to induce
”effective” interaction and establish correlations between el-
ementary spins. (c) Turning off the coupling freezes the dy-
namics, and the spin-squeezed states are stored in the Mott
insulating phase. Panels (b) and (c) illustrate an example of
a configuration of spins. Yet, the resulting state during and
at the end of evolution is a superposition of various possible
configurations including the initial one presented in (a).

the general mechanism in PBC case: it induces excitation
of a pair of spin waves with opposite quasi-momentum.
These spin waves extend over the entire system allowing
individual atoms to interact ”effectively” and establish
non-trivial quantum correlations [22, 23, 25–27]. When
the desired level of spin squeezing is established, the
spin-flip coupling is turned off but the quantum corre-
lations survive and are stored deeply in the Mott insu-
lating phase. We showed that the isotropic Heisenberg
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spin-1/2 chain with the weak position-dependent spin-flip
coupling generates spin-squeezing dynamics given by the
one-axis twisting (OAT) model. Furthermore, we numer-
ically observed that open boundary conditions (OBC)
change the spin squeezing dynamics. Depending on the
coupling parameters, an acceleration of squeezing gen-
eration was observed with the same or similar level of
squeezing [25].

In this paper, we provide a detailed analytical and nu-
merical analysis of the impact of OBC on the spin squeez-
ing dynamics in Heisenberg spin chains. To this end,
we develop the spin-waves theory for OBC by modify-
ing the coordinate Bethe ansatz [28]. Next, by using the
Schrieffer-Wolf transformation [23, 29–32] we derive the
effective model in terms of collective spin operators to
describe the squeezing dynamics generated in the weak
coupling regime. For OBC the coupling leads to the ex-
citation of a superposition of spin waves with different
energies and amplitudes rather than a pair of spin waves
with opposite quasi-momentum, as it is the case for PBC.
This still allows individual atoms to correlate and gen-
erate squeezing. However, the excitation of a superposi-
tion of spin waves complicates the form of the effective
model. We analyze this unconventional model in detail
identifying the initial conditions and the coupling param-
eters for spin squeezing generation with the level given
by the OAT and two-axis counter twisting (TACT) mod-
els [25, 33, 34]. Consequently, we show that it is possi-
ble to generate Heisenberg level of squeezing in spin-1/2
Heisenberg chains under OBC. In addition, we show that
the corresponding time scale of the best squeezing is re-
duced with respect to PBC when keeping the same per-
turbation level. Our analytical findings were confirmed
by full numerical simulations. The results obtained can
be used in the current state-of-the-art experiments with
ultra-cold atoms in optical lattices [35–37] and tweezer
arrays [38, 39].

II. HEISENBERG MODEL AND SPIN-WAVES
STATES FOR OBC

Let us concentrate on a specific physical system com-
posed of the total even number N of fermionic ultra-cold
atoms loaded into a one-dimensional optical lattice po-
tential of N sites. Each atom has two internal states |↑⟩
and |↓⟩ corresponding to a spin-1/2 degree of freedom.
The atoms are assumed to occupy the lowest Bloch band,
interact through s-wave collisions, and hence can be de-
scribed by the Fermi-Hubbard model.

We assume the interaction dominates over the tun-
nelling and the system is in the Mott insulating phase
at half-filling when double occupancy of a single site is
energetically unfavourable. The second order processes,
obtained by a projection onto the manifold of single oc-
cupancy of lattice sites, lead to the nearest-neighbour
spin-exchange interactions [23, 25, 29–32]. The spin dy-
namics of this system is well captured by the isotropic

Heisenberg (spin exchange) model [40, 41]

ĤSE = JSE

N−1∑
j=1

(
Ŝx
j Ŝ

x
j+1 + Ŝy

j Ŝ
y
j+1 + Ŝz

j Ŝ
z
j+1 −

1

4

)
,

(1)

where JSE represents the spin-exchange energy, Ŝ+
j =

â†j,↑âj,↓, Ŝ−
j = â†j,↓âj,↑, Ŝ±

j = Ŝx
j ± iŜy

j , Ŝz
j = (n̂j,↑ −

n̂j,↓)/2 are on-site spin operators, and where we take
ℏ = 1. The fermionic operators âj,s annihilate an
atom in the jth lattice site in the state s ∈ {↑, ↓}, and

n̂j,s = â†j,sâj,s is the corresponding on-site operator of the
number of atoms. We also introduce the collective spin
operators Ŝσ =

∑
j Ŝ

σ
j with σ = x, y, z,±. The analytical

form of the energy spectrum of the Hamiltonian (1) and
corresponding eigenstates for PBC are known from 1931
due to the famous work of Bethe [28]. Their counterpart
for OBC is less explored, up to our knowledge.

The Hamiltonian (1) is spherically symmetric with re-

spect to spin rotation. Thus eigenstates of ĤSE can be
taken to be also the eigenstates of the square of the total
spin Ŝ2 = Ŝ2

x + Ŝ2
y + Ŝ2

z and its z projection Ŝz with the
eigenvalues S(S + 1) and m, respectively. To understand
the spin squeezing dynamics let us first recall the analyt-
ical form of two energy manifolds of ĤSE characterized
by the largest values of the total spin.

The first energy manifold corresponding to the total
spin quantum number S = N/2 is spanned by Dicke
states |m⟩ ≡ |N/2,m⟩ which are zero energy eigenstates

of ĤSE . They can be represented in terms of the all
spins up state affected N/2 − m times by the collective

spin lowering operator Ŝ−:

|m⟩ =

√
(N/2 + m)!

(N/2 −m)!(N)!
Ŝ
N/2−m
−

N⊗
j=1

|↑⟩j , (2)

where the quantization axis is chosen to be along the z
direction: Ŝz

j |↑⟩j = 1/2 |↑⟩j and Ŝz
j |↓⟩j = −1/2 |↓⟩j .

Alternatively, the Dicke states |m⟩ can be defined by

using the rising operator Ŝ+ ≡ (Ŝ−)† in the place of

Ŝ− when replacing m and |↑⟩j with −m and |↓⟩j , re-

spectively, on the right-hand side of (2). The Dicke

states are eigenstates of ĤSE with zero eigen-energies
for both PBC and OBC. Altogether there are N + 1
Dicke states corresponding to different values of m ∈
(−N/2,−N/2 + 1, · · · , N/2).

The second energy manifold to be considered is
spanned by the spin-wave states [23, 25, 42, 43] contain-
ing one spin excitation and characterized by the total spin
quantum number S = N/2 − 1. In the case of OBC one
can solve analytically the eigenproblem of these states for
the Hamiltonian (1) by using the coordinate Bethe ansatz
modified appropriately to account for the difference com-
ing from the two boundary points, see Appendix A for
derivation. This leads to the following form of the spin-
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wave states

|m, q⟩ = ±
√
NcN/2,±m

N∑
j=1

p
(q)
j Ŝ±

j |m∓ 1⟩, (3)

where

cN/2,±m =

√
N − 1

(N/2 ∓m)(N/2 ∓m + 1)
. (4)

The sign ± in Eq. (3) for |m, q⟩ corresponds to two equiv-
alent definitions of the spin waves in terms of the on-
site spin raising and lowering operators Ŝ±

j acting on the
Dicke states. Furthermore, the coefficients featured in
Eq. (3) are

p
(q)
j =

√
2

N
cos

[
π

N

(
j − 1

2

)
q

]
. (5)

Altogether there are (N − 1)2 different spin-wave states
corresponding to various combinations of quantum num-
bers m ∈ (−N/2 + 1,−N/2 + 2, · · · , N/2 − 1) and
q = 1, 2, · · · , N − 1. The corresponding eigenenergies Eq

do not depend on the spin projection quantum number
m and read

Eq = JSE

[
cos

( π

N
q
)
− 1

]
. (6)

Notice, that for OBC the amplitudes p
(q)
j given by Eq. (5)

represent standing waves. They thus differ from the solu-

tion for PBC where the amplitudes p
(q)
j = N−1/2ei2πqj/N

are plane waves [43]. This has substantial consequences
for the coupling mechanism and the spin squeezing dy-
namics analyzed in Sections IV and V.

III. PROTOCOL FOR DYNAMICAL
GENERATION OF SPIN SQUEEZING

In order to generate spin squeezing in this Heisenberg
spin-1/2 chain with OBC described by Hamiltonian (1)
we add an atom-light coupling which induces position-
dependent spin-flipping. The resulting system Hamilto-
nian Ĥspin reads

Ĥspin = ĤSE + Ĥ↑↓, (7)

Ĥ↑↓ =
Ω

2

N∑
j=1

(
ei(ϕj−ϕ0)Ŝ+

j + e−i(ϕj−ϕ0)Ŝ−
j

)
, (8)

where the extra term Ĥ↑↓ represents the sum over the on-
site spin-flip coupling with the amplitude Ω and position-
dependent phase ϕj, where ϕ = π cos(α)λlatt/λL can
be tuned by properly choosing an angle α between laser
beams producing the optical lattice and the direction of
laser field inducing the coupling. The two beams are
characterized by the wave-lengths λlatt and λL, respec-
tively, see e.g. in [25]. Here, ϕ0 ∈ [0, 2π) is the global

off-set phase of the coupling lasers, which can be inter-
preted as the transformation of Ĥ↑↓ due to the global
spin rotation around the z axis by the angle ϕ0. Equiva-
lently, it can also be interpreted as the spin rotation for
the initial state around the same z axis and by the same
angle ϕ0, but in the opposite direction.

In the case of PBC, the coupling phase ϕ should be
commensurate with 2π/N , namely ϕ = 2πn/N , where

n = 1, 2, · · · , N − 1, to ensure periodicity of Ĥ↑↓ [25].
Here, however, we are interested in OBC, and therefore
ϕ can take any real values apart from the trivial one
ϕ = 0 or ϕ = 2π for which Ĥ↑↓ does not provide cou-
pling between the Dicke and the spin-wave state mani-
folds needed for the generation of spin squeezing.

The initial state convenient to start the evolution is
the spin coherent state

|θ, φ⟩ = e−iŜzφe−iŜyθ
N⊗
j=1

|↑⟩j , (9)

where all the spins point in the same direction parame-
terized by the spherical angles θ and φ. In general, the
spin-coherent state (9) belongs to the Dicke manifold of
the total spin S = N/2 and hence can be expressed in
the basis of the Dicke states (2) as

|θ, φ⟩ =

N/2∑
m=−N/2

am|m⟩, (10)

where

am =

√(
N

N
2 + m

)
cos

N
2 +m

(
θ

2

)
sin

N
2 −m

(
θ

2

)
ei(

N
2 −m)φ

(11)
are coefficients of decomposition.

The subsequent evolution of the initial state is de-

fined by the unitary operator Û = e−itĤspin . To quantify
the level of squeezing generated in time we use the spin
squeezing parameter

ξ2 =
N(∆Ŝ⊥)2min

⟨Ŝ⟩2
(12)

where the length of the mean collective spin is ⟨Ŝ⟩ and
the minimal variance of the collective spin orthogonally
to its direction is (∆Ŝ⊥)2min [44].

Non-trivial quantum correlations are produced in the
weak coupling regime, where the characteristic energy
of the coupling Hamiltonian Ĥ↑↓ is smaller than that of

the spin-exchange term ĤSE. In the next section, we
derive the effective model describing the spin squeezing
dynamics in terms of collective spin operators.

IV. EFFECTIVE MODEL

When the spin-flip coupling is weak compared to the
energy of the spin exchange, the dynamics of the initial
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spin coherent state |θ, φ⟩ governed by the spin Hamil-

tonian Ĥspin within the Dicke manifold can be well ap-
proximated using perturbation theory. Therefore, the
coupling term Ĥ↑↓ can be treated as a perturbation. For
reasons that will be explained later, let us rephrase this
operator in the following way:

Ĥ↑↓ = ˆ̃H↑↓ + vxŜx + vyŜy, (13)

where

ˆ̃H↑↓ =
Ω

2

N∑
j=1

(
α+
j Ŝ

+
j + α−

j Ŝ
−
j

)
. (14)

Here, α±
j = e±i(ϕj−ϕ0)−A± with A± = 1

N

∑
j e

±i(ϕj−ϕ0),

as well as vx = ΩRe[A+]/2 and vy = −ΩIm[A+]/2. The
separation of the two last terms in (13) is made in such
a way that α±

j sum up to zero. Notice, vx and vy are

non-zero only for phases ϕ incommensurate with 2π/N .

A. First and second order contributions

The operator ˆ̃H↑↓ on the right-hand side of (13) in-
duces the coupling between the Dicke and spin-wave state
manifolds while the remaining ones directly couple the
Dicke states and represent the first-order perturbation
term

Ĥ
(1)
eff = vxŜx + vyŜy . (15)

To generate spin squeezing one needs to take into account

the second-order contribution induced by ˆ̃H↑↓. It can be
obtained via the Schrieffer-Wolf transformation [23, 25,
29–32] leading to

Ĥ
(2)
eff = ÎN/2

ˆ̃H↑↓ĜN/2−1
ˆ̃H↑↓ÎN/2, (16)

where ÎN/2 =
∑

m |m⟩⟨m| is the unit operator for

projection onto the Dicke manifold, while ĜN/2−1 =∑
q ̸=0,m

|m,q⟩⟨m,q|
−Eq

is an operator which sums projectors

onto the spin-wave states manifold with the correspond-
ing energy mismatch denominator −Eq. The matrix ele-
ments of (16) are

⟨m′|Ĥ(2)
eff |m⟩ = −

∑
m′′,q

⟨m′| ˆ̃H↑↓|m′′, q⟩⟨m′′, q| ˆ̃H↑↓|m⟩
Eq

.

(17)
Details about the transformation and its application to
the Heisenberg spin-1/2 chain with the spin-flip coupling
can be found in the Supplementary Material of refer-
ence [25]. In the following, we focus on the derivation

of the effective Hamiltonian Ĥ
(2)
eff and its representation

in terms of the collective spin operators.
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FIG. 2. The absolute values of the normalized coefficients
|f+

q |N−1/2 are shown by color versus the coupling phase ϕ ∈ R
and the spin-waves quantum number q ∈ Z for an arbitrary
ϕ0 when N = 8.

Let us start with expressing the action of ˆ̃H↑↓ on Dicke
states, namely

ˆ̃H↑↓|m⟩ =
Ω

2
|Ψ,m + 1⟩+ +

Ω

2
|Ψ,m− 1⟩− , (18)

where states |Ψ,m ± 1⟩± =
∑

j α
±
j Ŝ

±
j |m⟩ can be ex-

panded in terms of the spin-wave states |m± 1, q⟩ as

|Ψ,m± 1⟩± =
√
NcN/2,±m+1

∑
q

f±
q |m± 1, q⟩. (19)

Here, cN/2,±m+1 are given by Eq. (4) and

f±
q =

∑
j

p
(q)
j α±

j =
∑
j

p
(q)
j e±i(ϕj−ϕ0) , (20)

with f+
q = (f−

q )∗ because p
(q)
j is real. Note, the spin-flip

term ˆ̃H↑↓ couples each Dicke state |m⟩ with a superpo-
sition of spin-wave states (19) characterized by energies

Eq. This is different from the PBC case where Ĥ↑↓ cou-
ples each Dicke state with a pair of spin-wave states of
well-defined quantum numbers q = ±ϕN/(2π) set by the
coupling phase ϕ [25]. An example of the amplitude of
elementary couplings f+

q to the |m, q⟩ states is presented
in Fig. 2. We can see that, indeed, the coupling could be
non-negligible even to the lowest state |m, q = 1⟩. There-
fore, the perturbative regime is defined by the smallest
energy gap, namely Ω ≪ |Eq=1| = JSE| cos(π/N) − 1|.

The relevant matrix elements of the second-order con-
tribution can be written as

⟨m′′, q| ˆ̃H↑↓|m⟩ =
Ω

2
N−1/2c−1

N/2,m+1f
+
q δm′′,m+1

+
Ω

2
N−1/2c−1

N/2,−m+1f
−
q δm′′,m−1, (21)
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where the coefficients N−1/2c−1
N/2,±m+1 come from the

scalar product between the Dicke state |m⟩ and the states
|Ψ,m±1⟩±. The non-zero matrix elements of the second-

order term (17), namely Hm′,m = ⟨m′|Ĥ(2)
eff |m⟩, read

Hm,m = −(c−2
N/2,m + c−2

N/2,−m) (N − 1)χz, (22)

Hm,m−2 = c−1
N/2,m−1c

−1
N/2,−(m−1) (N − 1)χx, (23)

Hm,m+2 = c−1
N/2,m+1c

−1
N/2,−(m+1) (N − 1)χx, (24)

where

χz =
Ω2

4NJSE(N − 1)

N−1∑
q=1

f+
q f−

q

cos
(
π
N q

)
− 1

, (25)

χx =
Ω2

4NJSE(N − 1)

N−1∑
q=1

(
f−
q

)2
cos

(
π
N q

)
− 1

. (26)

Comparing the matrix elements presented in Eqs. (22)-
(24) with the matrix elements of the appropriate collec-
tive spin operators, the second-order perturbation con-
tribution can be represented in the operator form as

Ĥ
(2)
eff = −2χz

(
Ŝ2 + Ŝ2

z

)
+ Re [χx]

(
Ŝ2
+ + Ŝ2

−

)
+ iIm [χx]

(
Ŝ2
+ − Ŝ2

−

)
, (27)

as explained in Appendix B. The full effective Hamilto-
nian is a sum of the first- and second-order contributions:

Ĥ
(ϕ0)
eff = Ĥ

(1)
eff + Ĥ

(2)
eff . (28)

B. Choosing the off-set phase ϕ0 = ϕ(N + 1)/2

In what follows, we will take a value of the global cou-
pling phase to be ϕ0 = ϕ(N + 1)/2, so that vy entering
Eqs. (13) and (15), as well as the imaginary part of χx

vanish, i.e. vy = Im [χx] = 0, see Appendix C. This
simplifies the form of the effective model leading to

Ĥ
(ϕ0)
eff = −2χz

(
Ŝ2 + Ŝ2

z − ηŜ2
x + ηŜ2

y + γŜx

)
, (29)

where η = χx/χz and γ = vx/χz. This specific choice
of phase ϕ0 does not involve a loss of generality as the

full effective Hamiltonian (28) containing Ĥ
(1)
eff and Ĥ

(2)
eff

of Eqs. (15) and (27) is related to that given by Eq. (29)
via a unitary transformation set by the global rotation
around the z axis through the angle ϕ0.

In Fig. 3 we show variation of the two parameters of
the effective model (29), namely η and γ, versus ϕ. The
commensurate phases corresponding to ϕ = 2πn/N with
n ∈ [1, N − 1] are marked by open points in Fig. 3 for
which one has γ = 0. In this case, we numerically observe
that η = −1/2 for ϕ ̸= π, and η = −1 for ϕ = π. In

-1

− 1
2

0

1
4

η

(a)

(b)

(c)

(d)

1 2 3 4 5 6 7

φN/(2π)

−50

−25

0

25

50

γ

FIG. 3. The parameters η (top panel) and γ (bottom panel)
of the effective model (29) versus the coupling phase ϕ are
marked by black and orange lines, respectively, for N = 8,
Ω = |Eq=1|/10 and ϕ0 = ϕ(N + 1)/2. The values of η and
γ for commensurate phases are marked by open circles. The
regions shaded in blue present examples when η < 0 while the
one shaded in red when η > 0.

addition, we have also analytically found that

χz = − Ω2

4JSE(N − 1)

2

cos(ϕ) − 1
, (30)

χx =
Ω2

4JSE(N − 1)

1

cos(ϕ) − 1
, (31)

for commensurate phases ϕ = 2πn/N apart from ϕ = π
where

χz = −χx = − Ω2

4JSE(N − 1)
. (32)

The derivation is presented in Appendix E. The non-
commensurate coupling phases ϕ result in both positive
and negative values of the parameter η which is inde-
pendent of JSE, Ω, and N . On the contrary, the coeffi-
cient γ depends on the system parameters, and scales as
γ ∝ NJSE/Ω.

In this way, we derived the second-order contribu-
tion (27), and consequently, the effective model (29)
showing that the boundaries significantly modify the spin
squeezing Hamiltonian with respect to PBC in which one
arrives at the effective Hamiltonian in a form of the OAT
model, namely Ĥeff = −χπŜ

2
x for ϕ = π and Ĥeff = χϕŜ

2
z

for ϕ ̸= π [25]. Therefore, it is not only the time scale
that is changed due to OBC but the entire dynamics as
well. This is a counter-intuitive result as usually, the
PBC describes well the system in the limit of large N .
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V. SPIN SQUEEZING FOR OBC

In these subsections, we analyze the unitary evolution
of spin squeezing parameter governed by the effective spin
Hamiltonian (29). We distinguish two cases depending
on the commensurability of the coupling phase ϕ. We
demonstrate that if the coupling phase is commensurate,
the resulting model (29) can be either OAT for ϕ = π or
non-isotropic TACT for ϕ ̸= π. The most general case
of non-commensurate phases gives rise to the squeezing
dynamics, however, not simulated by the conventional
OAT and TACT twisting models.

A. Spin squeezing with commensurate phase

Tuning the value of the coupling phase ϕ to the integer
multiple of 2π/N simplifies the problem. In particular,
by taking ϕ = π we have η = −1 and the effective Hamil-
tonian (29) acquires the form of the OAT one, namely

Ĥeff = 4χzŜ
2
y , (33)

where we omitted a term proportional to Ŝ2, as it only
shifts the origin of energy. The convenient initial spin
coherent states are the ones polarized in the x− z plane,
namely |θ, φ = 0⟩ and for any θ. The best level of
squeezing ξ2best ≈ N−2/3 is achievable for times tbest ≈
N−2/3|4χz|−1, in the large N limit according to the OAT
dynamics [33, 45]. Next, taking the analytical expression
(32) for χz we obtain tbest ≈ N1/3JSE/Ω2. Therefore, the
twisting dynamics is essentially the same as for PBC [25].
The only difference is that for OBC the resulting time
scale is four times shorter compared to the PBC case
when keeping the same perturbation level Ω. Acceler-
ation of the best squeezing time takes place because of

a broader range of amplitudes p
(q)
j contributing to the

generation of spin squeezing.
In another situation, when the coupling phase is not

equal to π we have η = −1/2 and γ = 0, so the effective
Hamiltonian (29) reduces to

Ĥeff = 2χz

(
Ŝ2
y − Ŝ2

z/2
)
, (34)

where we omitted the term proportional to Ŝ2. Equation
(34) represents the anisotropic TACT with the anisotropy
equal to 1/2. It is worth stressing here, that OBC pro-
vides anisotropic TACT without adding an extra atom-
light coupling characterized by two different phases. In
the case of PBC it was necessary to include two spin-
flipping terms in order to simulate TACT [25]. Let us
consider again the initial state for the spin squeezing
generation to be the spin coherent state polarized in
the x − z plane, |θ, φ = 0⟩. The anisotropic TACT
given by (34) generates the Heisenberg limited level
of squeezing ξ2best ≈ N−1 on the time scale tbest ≈

0.00 0.05 0.10 0.15 0.20 0.25 0.30

χzt

0.0

0.2

0.4

0.6

0.8

1.0

ξ2

FIG. 4. Variation of spin squeezing parameter (12) in time
for different values of Ω when the initial state is |θ = π/2, φ =
0⟩, N = 8 and ϕ = π − 2π/N, ϕ0 = ϕ(N + 1)/2. The result
for the effective model (29) is marked by olive crosses while
results for the coupled Heisenberg model (7) are shown with
black lines for Ω = |Eq=1|/10 (solid), Ω = |Eq=1| (dashed)
and Ω = 2|Eq=1| (dotted).
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st

Ω
2
/J

S
E

FIG. 5. The best squeezing time tbest multiplied by Ω2/JSE

for N = 100 to isolate dependence on the coupling phase
ϕ. The numerically evaluated values of the best squeezing
time using unitary evolution according to (29) are shown
with red points. The corresponding behaviour tbestΩ

2/JSE =
ln(N/2)| cosϕ − 1|/(

√
2) for ϕ ̸= π and ϕ0 = ϕ(N + 1)/2 is

shown with a solid grey line, see text for more details.

(2χzN
√

2)−1 ln(N/2) [12]. Therefore, taking into ac-
count the system parameters and the relation for χz given
by (30) we have tbest ≈ JSEln(N/2)| cosϕ− 1|/(

√
2Ω2).

In Fig. 4 we show examples of spin squeezing dynamics
for different values of Ω obtained from exact many-body
numerical simulations, using single occupied Fock states,
of the spin-exchange model ĤSE with the coupling Ĥ↑↓.
A perfect agreement with the effective model (29) is ob-
served in the perturbative regime when Ω ≪ |Eq=1|. Sig-
nificant spin squeezing can also be generated beyond this
regime, yet large discrepancies arise with respect to the
TACT dynamics.



7

0 1 2
φN/(2π)

−1.0

−0.5

0.0

0.5

1.0

η
48.0 48.5 49.0 49.5 50.0 50.5 51.0

φN/(2π)

−1000

−500

0

500

1000

γ

0.6 0.8 1.0

φN/(2π)

0.04

0.05

0.06

ξ2 b
e
st

OAT

TACT

(a)

48.4 48.6

φN/(2π)

(b)

48.75 49.00 49.25

φN/(2π)

(c)

49.75 50.00 50.25

φN/(2π)

(d)

10−2

10−1

100

101

χ
z
t b

e
st

FIG. 6. The best squeezing ξ2best (green points) and the best squeezing time tbest (red points) are shown in panels (a)-(d) for
different regions of ϕ. The numerical results for the effective model (29) with N = 100, JSE = 1, Ω = |Eq=1|/10, ϕ0 = ϕ(N+1)/2
and η > 0 as indicated by the red shadowing areas and η < 0 indicated by the blue ones. The numerical values of η and γ used
in simulations are shown in the top panels. The two limit cases for the values of ξ2best, namely OAT and TACT for N = 100,
are marked with horizontal green dotted dashed lines, respectively.

It is also worth commenting here on the importance of
the coupling strength Ω and phase ϕ on the best squeez-
ing time. Due to the perturbation regime condition, Ω
scales as ∼ N−2. This leads to a very long squeezing
time, in principle. However, dependence on ϕ; which is
hidden in the function χz, has a two-fold modification of
the time scaling. For ϕ close to 0 or 2π the time scale
is reduced by N−2. On the other hand, ϕ ∼ π doesn’t
provide an improvement directly, but the coupling to the
lowest spin wave states is smaller, increasing the per-
turbation regime condition and allowing to increase the
value of Ω. In Fig. 5 we plotted the variation of the best
squeezing time with the phase ϕ for a fixed value of the
total number of spins N = 100 obtained from the numeri-
cal simulations of the effective two-mode model (29). We
can see the time scale increases by orders of magnitude
for values of the coupling phase from ϕ = 2π/N to ϕ = π
and then decreases symmetrically to ϕ = 2π(N − 1)/N .
Thus, in practical applications, the optimization of the
system parameters JSE, Ω, ϕ will be necessary to have
the shortest possible time scale.

B. Spin squeezing with non-commensurate phases

The resulting effective model (29) simulated by the
coupled Heisenberg one (7) gives rise to the spin

squeezing generation also for non-commensurate coupling
phases ϕ, i.e. the one which is not equal to integer
multiplications of 2π/N . In general, the results depend
strongly on the chosen initial spin coherent state |θ, φ⟩
and parameters η and γ.

Let us discuss the situation when the initial spin coher-

ent state is polarized along the z axis: |0, 0⟩ =
⊗N

j=1 |↑⟩j .
Examples of the best squeezing and the best squeezing
times are shown in Fig. 6 (a)-(d) panels when N =
100 from the full numerical simulations of the effective
model (29) using Dicke states basis (2). A characteristic
behavior is the OAT level of best squeezing for positive
values of η which is demonstrated in panel (b). In other
cases, when η is negative, the OAT level is also achieved
mainly with η close to zero, see e.g. in panels (c) and
(d). It is possible to exceed the OAT level of squeezing
when η approaches the local minimum, see panels (a),
(c), and (d). Interestingly, the last term in the effective

model (29), namely γŜx, does not dominate the dynam-
ics even if γ is orders of magnitude larger than η. In
Appendix D we show the corresponding results for two
different initial states. The OAT level of squeezing can
be achieved when the initial state is polarized along the
y-axis, |θ = π/2, φ = π/2⟩. The best squeezing and times
are of the same level as the ones presented in Fig. 6. On
the other hand, if the evolution starts with the state po-
larized along the x-axis, |θ = π/2, φ = 0⟩, the dominant
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Zeeman-like term γŜx in (29) freezes the dynamics of the
spin state and only weak spin squeezing is generated for
non-commensurate phases.

VI. CONCLUSIONS AND SUMMARY

We studied in detail the effect of OBC on the gen-
eration of spin squeezing in one-dimensional isotropic
Heisenberg spin-1/2 chains induced by the position-
dependent spin-flip coupling with off-set phase ϕ0 (8).
We extended the spin-wave theory for the case of OBC
using the coordinate Bethe ansatz. We derived analyt-
ically the effective model in terms of the collective spin
operators which describe the squeezing dynamics in the
weak coupling regime. The resulting effective model ob-
tained differs significantly from the one under PBC and,
therefore, provides an example when the boundaries sig-
nificantly modify the dynamics of the system. To classify
the squeezing scenarios, we distinguished two cases de-
pending on the commensurability of the coupling phase ϕ
for well-defined off-set phase ϕ0 = ϕ(N +1)/2. When the
coupling phase is commensurate, the dynamics of spin
squeezing is well captured by the non-isotropic TACT if
ϕ ̸= π and OAT for ϕ = π. The most general case of
non-commensurate phase ϕ and arbitrary off-set phase
ϕ0 still gives rise to the simulation of a squeezing model
although not a conventional one. It is in contrary to the
PBC case where the OAT model is simulated by the sys-
tem independently of ϕ. Our analytical predictions were
confirmed by the full many-body numerical simulations.

The results presented here show how to produce entan-
gled states in the isotropic spin-1/2 Heisenberg chains
with nearest-neighbor interactions. This is possible by
the addition of the position-dependent spin-flip coupling
that is weak enough to maintain the dynamics within the
Dicke manifold and strong enough to excite spin waves
that are extended over the entire system, allowing ”effec-
tive” all-to-all interaction between the individual spins.
It is also worth adding that the dynamics of generated
spin-squeezed states can be frozen at a desired time just
by turning off the spin-flipping term. The results ob-
tained can be verified experimentally by current state-of-
the-art experiments with ultra-cold atoms.
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contributed to calculations of η for commensurate phases
as shown in Appendix E. EW and GJ conceived the idea
and guided the research. THY and EW wrote the first
draft. All the authors contributed to the discussion of
the results and the manuscript preparation and revision.



9

Appendix A: Spin-waves states for OBC

In this section, we are interested in spin-wave states
which are eigenstates of the isotropic Heisenberg model,

ĤSE = JSE

N−1∑
j=1

(Sz
j S

z
j+1 + Sy

j S
y
j+1 + Sx

j S
x
j+1 −

1

4
), (A1)

for N spins and open boundary conditions. In the fol-
lowing, we will show that the spin-wave states are given
by Eq. (3) of the main text, namely

|m, q⟩ = ±
√
NcN/2,±m

N∑
j=1

p
(q)
j Ŝ±

j |m∓ 1⟩. (A2)

In the above equation, the states |m∓1⟩ are Dicke states
while the usage of the on-site rising and lowering op-
erators Ŝ±

j corresponds to the two ways of definition

of spin wave states. Note that Sz|m, q⟩ = m|m, q⟩, as
each term comprising the state-vector (A2) is charac-
terized by the same spin projection m. Furthermore,
Ŝ2|m, q⟩ = S(S +1)|m, q⟩, with S = N/2−1. To see this
we notice that the states (A2) are constructed in such a
way that

|m, q⟩ ∝ Ŝ
N/2−1±m
± |q⟩±, (A3)

where the state-vector |q⟩± ≡ | ∓ (N/2 − 1), q⟩ corre-
sponds to the minimum and maximum value of the spin
projection m = ∓(N/2 − 1). Since [Ŝ2, Ŝ±] = 0, then

Ŝ2|m, q⟩ ∝ Ŝ
N/2−1±m
± Ŝ2|q⟩±, (A4)

Therefore, one needs to find the action of the operator
Ŝ2 on the state-vector |q⟩± which is

Ŝ2|q⟩± =
(
Ŝ2
z + Ŝz + Ŝ−Ŝ+

)
|q⟩±

=

[(
N

2

)2

− N

2

]
|q⟩± +

∑
j

p
(q)
j

 Ŝ±|N/2,∓N/2⟩.

(A5)

One can see that the state-vectors |q⟩± are eigenstates

of the Ŝ2 operator with the spin quantum number S =
N/2 − 1 if the last term in (A5) is zero, i.e.∑

j

p
(q)
j = 0. (A6)

In that case the state-vectors |m, q⟩ with an arbitrary m

are also the eigenstates of Ŝ2 with the quantum num-
ber S = N/2 − 1. Note that the explicit form of the

coefficients p
(q)
j presented later in Eq.(A16) do obey the

condition (A6).
We are looking for the spin-wave states |m, q⟩ which are

eigenstates of the Hamiltonian (A1). Since [ĤSE, Ŝ±] =

0, using Eq. (A3), one can see that the eigenstates |m, q⟩
of the Hamiltonian ĤSE have eigen-energies Eq which
do not depend on the quantum number m. Therefore,

by choosing the amplitudes p
(q)
j in such a way that |q⟩±

are eigenstates of the spin exchange Hamiltonian (A1),
the states |m, q⟩ for any magnetization m are also its
eigenstates with the same eigen-energies Eq.

Below we show how to derive the form of p
(q)
j for |q⟩+

using OBC. The equations for |q⟩− give the same ex-

pansion coefficients p
(q)
j and the same eigen-energies Eq.

Using the coordinate basis vectors:

|l̃⟩ ≡ Ŝ+
l | −N/2⟩ = Ŝ+

l

N⊗
j=1

| ↓⟩j , (A7)

the spin wave states |q⟩+ can be represented as

|q⟩+ =

N∑
l=1

pl|l̃⟩. (A8)

The coefficients pl are evaluated by considering the eigen-
value problem

(H − EI)p⃗ = 0, (A9)

where I is the identity matrix, p⃗ = (p1, p2, ...) and the

matrix elements of H are Hl′,l = ⟨l̃′|ĤSE |l̃⟩.
The matrix form of eigenproblem (A9) leads to the set

of equations

−JSE

2
p1 +

JSE

2
p2 = Ep1 (A10)

JSE

2
pl−1 − JSEpl +

JSE

2
pl+1 = Epl, for l ∈ [2, N − 1]

(A11)

−JSE

2
pN +

JSE

2
pN−1 = EpN (A12)

where (A10) and (A12) are for the boundary sites of the
lattice. We use the idea by Puszkarski [46] and add two
virtual lattice sites p0 and pN+1 subject the boundary
constrain p0 = p1 and pN+1 = pN . In that case, the
set of equations (A10)-(A12) becomes equivalent to the
following set of bulk equations valid for any l:

JSE

2
pl−1 − JSEpl +

JSE

2
pl+1 = Epl. (A13)

The solution to Eq.(A13) can be represented as

pl = p cos [k(l + u)] , (A14)

with the corresponding eigen-energies E = JSE(cos k −
1). The boundary constrain p0 = p1 requires cos(uk) =
cos(uk + k) which is fulfilled for u = −1/2. The second
constrain pN+1 = pN gives the requirement

cos(kN + k + uk) = cos(kN + uk), (A15)
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FIG. 7. (a) Energy spectrum Eq of the spin-wave states for open boundary conditions, numerical (black points) and analytical
(red dashed line) results. (b) and (c) show eigenvectors pl being solutions of (A10)-(A12) for open boundary conditions when
q = 15 and q = 2, respectively. Analytical results are marked by lines while the numerical one are marked by points (orange
dashed lines mark real parts of pl while blue solid line are imaginary parts of pl). An example for N = 20.

which is fulfilled when k = qπ/N , with q = 1, 2, · · · , N−1
being an integer. Therefore, we arrive at the required ex-
pansion coefficients and the corresponding eigen-energies:

p
(q)
l =

√
2

N
cos

[
π

N

(
l − 1

2

)
q

]
, (A16)

Eq = JSE

[
cos

( π

N
q
)
− 1

]
. (A17)

Note, that the value q = 0 is not included here, as in that

case, the coefficients p
(q)
l do not depend on l and thus do

not obey the condition (A6). Although, such a state with

q = 0 is an eigenstate of the Hamiltonian ĤSE, it belongs
to the Dicke manifold and is characterized by the spin
quantum number S = N/2 and zero eigen-energy.

In Fig. 7 we show comparison of the numerical solution
of (A10)-(A12) with the analytical results. The perfect
agreement can be noticed.

Appendix B: Matrix representation of spin
operators needed for effective model

In the following, we will present the matrix rep-
resentation of various spin operators Ŝσ with σ =

z,±, by using Ŝ−|S,m⟩ = AS,m
− |S,m− 1⟩, AS,m

− =√
(S + m)(S −m + 1), Ŝ+|S,m⟩ = AS,m

+ |S,m + 1⟩,
AS,m

+ =
√

(S −m)(S + m + 1).
The non-zero elements relevant for the relation of ma-

trix representation with the corresponding spin opera-
tors, are

⟨N/2,m|Ŝ2
−|N/2,m + 2⟩ =√

(
N

2
+ m + 2)(

N

2
−m− 1)(

N

2
+ m + 1)(

N

2
−m)

(B1)

⟨N/2,m|Ŝ2
+|N/2,m− 2⟩ =√

(
N

2
+ m)(

N

2
−m + 1)(

N

2
+ m− 1)(

N

2
−m + 2)

(B2)

One can show that the right hand site of Eq.(B1)
equals (N − 1)c−1

N/2,m+1c
−1
N/2,−(m+1) and the right hand

site of Eq.(B2) equals (N − 1)c−1
N/2,m−1c

−1
N/2,−(m−1).

In addition, ⟨N/2,m|Ŝ2
z |N/2,m⟩ = m2 and

⟨N/2,m|Ŝ2|N/2,m⟩ = N
2

(
N
2 + 1

)
while (c−2

N/2,m +

c−2
N/2,−m) = 2

N−1

(
m2 + N

2 + N2

4

)
.

Appendix C: Effective model and off-set phase

The general form of the effective model including the
first- and second-order perturbation terms is

Ĥeff = 2χz

(
Ŝ2 + Ŝ2

z

)
− Re [χx]

(
Ŝ2
+ + Ŝ2

−

)
− iIm [χx]

(
Ŝ2
+ − Ŝ2

−

)
+ vxŜx + vyŜy (C1)

which for ϕ0 = ϕ(M + 1)/2 leads to (29).

While the general form of the effective Hamiltonian
(C1) includes the mixed term Ŝ2

+ − Ŝ2
− ∝ ŜxŜy + ŜyŜx

that complicates the effective model, it can be removed
in general by a proper choice of the global phase fac-
tor in the atom-light coupling term. This is done by
choosing a phase shift ϕ0 so that Im [χx] = 0. In
fact, it is sufficient to fulfill Im[(f±

q )2] = 0; ∀q since

Im[χx] ∝
∑

q

(
Im[(f±

q )2]/Eq

)
. By calculating explicitly

f±
q =

N∑
j=1

pj(q)α±
j =

√
2

N

N∑
j=1

cos

[
π

N
q

(
j − 1

2

)]
ei(ϕj−ϕ0),

(C2)
using the geometric series result

N∑
j=1

rj =

{
1−rN

r−1−r if r ̸= 1,

N if r = 1,
(C3)
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we obtain

f±
q =



e
i(ϕ

2
−ϕ0)

√
2

[
e
−iπ( q

2
−Nϕ

2π )
N g(q,−ϕ)

+ e
iπ( q

2
+

Nϕ
2π )

N g(q, ϕ)

]
if ϕ ̸= ± π

N q,

e
i(ϕ

2
−ϕ0)

√
2

if ϕ = ± π
N q,

(C4)

where g(q, ϕ) =
sinπ( q

2+
Nϕ
2π )

sin π
N ( q

2+
Nϕ
2π )

. This can also be written

as

f±
q =


e
i(N+1

2
ϕ−ϕ0)

√
2

iq

N [(−1)qg(q,−ϕ)

+g(q, ϕ)], if ϕ ̸= ± π
N q

e
i(ϕ

2
−ϕ0)

√
2

, if ϕ = ± π
N q.

(C5)
Then

Im[
(
f±
q

)2
] ∝

{
sin ((N + 1)ϕ− 2ϕ0) if ϕ ̸= ± π

N q,

sin(ϕ− 2ϕ0) if ϕ = ± π
N q,

(C6)

for Im[
(
f±
q

)2
] = 0; ∀q it follows that

ϕ0 =

{
N+1
2 ϕ + π

2n if ϕ ̸= ± π
N q,

ϕ
2 + π

2n if ϕ = ± π
N q,

(C7)

∀n ∈ Z. Notice we can write the second case result as
the first one without any generality loss by changing the
variable n = q + n′. As such, Im[χx] = 0 when

ϕ0 =
N + 1

2
ϕ +

π

2
n; ∀n ∈ Z. (C8)

Appendix D: Spin squeezing for incommensurate
phase

We have showcased the best squeezing results for the
initial coherent state |θ = 0, ϕ = 0⟩ =

⊗
j |↑⟩j in sub-

section V B, Fig. 6. Here we show that other choices for
the initial state can provide different results. They are
shown in Fig. 8 for the initial state |θ = π/2, φ = 0⟩
(middle panels) and |θ = π/2, φ = π/2⟩ (bottom panels).
The unitary evolution with the initial state being eigen-
state of Ŝx, it is |θ = π/2, φ = 0⟩, shows practically no
squeezing except very close to the commensurate phases
or when γ is very small, see in panels (a)-(d) Fig. 8. On
the other hand, when the initial state is eigenstate of
Ŝy, it is |θ = π/2, φ = π/2⟩, the squeezing dynamics is
the same as for the initial state |θ = 0, ϕ = 0⟩ which is
presented in Fig. 6. This is shown in panels (e)-(h) of
Fig. 8.

Appendix E: Calculation of η for commensurate
phases

For commensurate phase ϕ = 2πn/N , it is possible to
calculate χz and χx analytically. Consequently, one can
obtain η.

We make use of a method originally used in the study
of random walks on lattices [47, 48] and also employed
studying excitons in molecular aggregates [49].

For convenience, let us represent Eqs. (25) and (26) in
the following way:

χz =
Ω2

4JSE(N − 1)
F

(ϕ)
diag, (E1)

χx =
Ω2

4JSE(N − 1)
F

(ϕ)
off , (E2)

where we have defined the dimensionless sums F
(ϕ)
diag and

F
(ϕ)
off :

F
(ϕ)
diag =

1

N

N∑
j,l=1

Ej,l e
iϕ(j−l), (E3)

F
(ϕ)
off =

1

N

N∑
j,l=1

Ej,l e
iϕ(j+l)−i2ϕ0 , (E4)

where

Ej,l =
2

N

N∑
q=1

cos
[
πq
N

(
j − 1

2

)]
cos

[
πq
N

(
l − 1

2

)]
cos(πq/N) − p

. (E5)

Here we added the q = N term which is zero, and intro-
duced p = 1 + ϵ to avoid divergences. The limit ϵ → 0+

will be taken at the end of calculations.
The main idea in finding this sum is to expand the

denominator into a geometric series. To achieve this, one
rewrites the denominator in the following way:

cos(πq/N) − p = − b

2

[
1 − b−1eiπq/N

] [
1 − b−1e−iπq/N

]
,

(E6)
where

b = p +
√

p2 − 1. (E7)

By using the symmetry of the summand to expand the
summation limits, one can rewrite Ej,l as

Ej,l = −Cj+l−1 − Cj−l −
1

N

1

1 − p
, (E8)

where

Cn =
1

bN

N∑
q=1−N

eiπqn/N[
1 − b−1eiπq/N

] [
1 − b−1e−iπq/N

]
(E9)
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FIG. 8. The best squeezing ξ2best (green points) and the best squeezing time tbest (red points) are shown in panels (a)-(d) for
initial state |θ = π/2, φ = 0⟩ and in panels (e)-(h) for initial state |θ = π/2, φ = π/2⟩. The numerical results for the effective
model (29) with N = 100, JSE = 1, Ω = |Eq=1|/10, ϕ0 = ϕ(N + 1)/2 and η > 0 as indicated by the red shadowing areas and
η < 0 indicated by the blue ones. The numerical values of η and γ used in simulations are shown in the top panels. The two
limit cases for the values of ξ2best, namely OAT and TACT for N = 100, are marked with horizontal green dotted dashed lines,
respectively.

with C−n = C∗
n. Note that the last term in Eq. (E8)

cancels the added q = 0 term in the summation.
Representing the denominator in terms of the geomet-

ric series, one has:

Cn =
1

bN

N∑
q=1−N

∞∑
r=0

∞∑
s=0

eiπq(n+r−s)/Nb−(r+s). (E10)

Using

1

N

N∑
q=1−N

eiπq(n+r−s)/N = 2

∞∑
m=−∞

δn+r−s,2Nm, (E11)

one obtains

Cn =
2

b

∞∑
m=−∞

∞∑
r=0

∞∑
s=0

b−(r+s)δn+r−s,2Nm.

Due to the Kronecker delta, the terms in the summation
are non-zero only if s = r + n − 2Nm or equivalently
if r = s − n + 2Nm. Assuming that 0 ≤ n < 2N , the
integer s = r + n− 2Nm is s ≥ 0 if m ≤ 0, whereas the
integer r = s− n + 2Nm is r ≥ 0 if m ≥ 1. Therefore it
is convenient to split the summation over m into a part
with m < 1 and that with m > 0, giving:

Cn = 2b−1
∞∑

m=0

∞∑
r=0

b−(2r+2Nm+n)+ (E12)

2b−1
∞∑

m=1

∞∑
s=0

b−(2s+2Nm−n). (E13)

After evaluating the geometric sums, one arrives at

Cn =
2

b− b−1

b−|n| + b−2N+|n|

1 − b−2N
(E14)

where we have used the relation C−n = C∗
n.
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Taking the limit ϵ → 0+, one obtains:

−3NEj,l = 1 − 3j + 3j2 − 3l + 3l2 + 3N−
− 6 max (j, l)N + 2N2.

(E15)

Therefore, one can rewrite Eq. (E3) in terms of a double
summation over j > l and a single summation for j = l:

F
(ϕ)
diag =

2

N

N∑
j=1

j−1∑
l=1

Ej,l e
iϕ(j−l) +

1

N

N∑
j=1

Ej,j . (E16)

Performing this summation, one obtains:

F
(ϕ)
diag = − csc2

(πn
N

)
. (E17)

Remembering that ϕ = 2πn/N , one can rewrite this into:

F
(ϕ)
diag =

2

cosϕ− 1
, (E18)

thus proving the identity mentioned in the main text.

As for F
(ϕ)
off , the steps are analogous, first rewriting the

sum (E4):

F
(ϕ)
off =

2

N

N∑
j=1

j−1∑
l=1

Ej,l e
iϕ(j+l)−i2ϕ0+

1

N

N∑
j=1

Ej,j e
i2ϕj−i2ϕ0 .

(E19)

For the initial phase ϕ0 = ϕ (N + 1) /2, summation

yields:

F
(ϕ)
off =

1

2
csc2

(πn
N

)
, (E20)

or equivalently:

F
(ϕ)
off = − 1

cosϕ− 1
, (E21)

as expected.

Having both F
(ϕ)
diag and F

(ϕ)
off , one can confirm that:

η =
Re

[
F

(ϕ)
off

]
F

(ϕ)
diag

= −1

2
, (E22)

as clearly seen in Fig. 3.
The exceptional case of ϕ = π must be considered sep-

arately giving for ϕ0 = ϕ(N + 1)/2:

F
(π)
diag = −F

(π)
off = 1. (E23)

In general, for any ϕ0 one has the following identities:

F
(π)
off =

1

2
ei(

2πn
N −2ϕ0) csc2

(πn
N

)
, (E24)

or equivalently:

F
(π)
off = −ei(ϕ−2ϕ0)

cosϕ− 1
. (E25)
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