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Abstract:  

The Ni(NCS)2(pyzdo)2 coordination polymer is found to be an S = 1 spatially-anisotropic square lattice 

with easy-axis single-ion anisotropy.  This conclusion is based upon considering in concert the 

experimental probes X-ray diffraction, magnetic susceptibility, magnetic-field-dependent heat capacity, 

muon-spin relaxation, neutron diffraction, neutron spectroscopy, and pulsed field magnetization.  Long 

range antiferromagnetic order develops at TN = 18.5 K.  Although the samples are polycrystalline, there 

is an observable spin-flop transition and saturation of the magnetization at ≈80 T.  Linear spin-wave 



theory yields spatially-anisotropic exchanges within an antiferromagnetic square lattice, Jx = 0.235 

meV, Jy = 2.014 meV, and an easy-axis single-ion anisotropy D = −1.622 meV (after renormalization).  

The anisotropy of the exchanges is supported by density functional theory. 

I. Introduction 

Low-dimensional quantum magnetism continues to be an intensively studied research field, for both 

fundamental aspects of physics and potentially technological implications. [1]  Moreover, because of 

the multitude of different structures and connectivities provided by hybrid organic/inorganic 

compounds, it seems likely that molecule-based materials will play an important role in the future of 

electronic and magnetic devices. Understanding how different molecular ligands can be used to couple 

magnetic moments and underpin low-dimensional structures are important milestones along this road. 

Towards this end, we have studied a variety of coordination-polymer magnetic systems with different 

dimensionalities, exchange energies, and spin quantum numbers (see, e.g. Refs  [2–11]). Within the 

field of quantum magnets, the subfield of two-dimensional systems is attractive due to the ability to 

support long-range entangled states [12] and the analogies to theories of high temperature 

superconductivity (HTSC).  Historically, HTSC in copper compounds has pushed extensive research of 

S = ½ materials, while the discovery of iron-based HTSC has highlighted the need for S = 1 (and 

maybe larger) two-dimensional quantum magnets to be studied in that context. [13]  The extension to S 

= 1 allows the usual three dipolar operators and dipolar magnetic ordering (as in S = ½), but adds the 

complexity of five additional quadrupolar operators and respective magnetic order parameters. [14]  

Recently, advances in neutron scattering data acquisition and modeling have shown the quantitative 

effects of quadrupolar excitations in the triangular lattice S = 1 material FeI2. [15] 

Here we consider a Hamiltonian of the spatially-anisotropic S = 1 antiferromagnet on a square lattice 

with single-ion anisotropy.  Typically, this equation is written as 

𝐻 = 𝐽𝑥 ∑ 𝑺𝑖 ⋅ 𝑺𝑗

〈𝑖,𝑗〉𝑥

+ 𝐽𝑦 ∑ 𝑺𝑖 ⋅ 𝑺𝑗

〈𝑖,𝑗〉𝑦

+ 𝐷 ∑ 𝑆𝑖𝑧
2

𝑖

 
(1) 

where the first sum is along the x-direction of the square-lattice having exchange energy Jx, the second 

sum along the y-direction with exchange energy Jy, brackets denote nearest neighbor summations, and 

D is the single-ion anisotropy.  There are often “1” subscripts on Jx and Jy, as a common addition to this 

Hamiltonian is diagonal exchange within the square (J2), which is frustrating with respect to J1. [13]  In 

the limit that Jx or Jy are zero and D is zero, then equation 1 reduces to uncoupled S = 1 isotropic spin-

chains that have a gapped ground-state called the Haldane phase. [16–18]  The parameter α = Jx/Jy is 

often introduced as a notational convenience.  Then, this Haldane phase has a region of stability in the 

phase space of α and D/Jy. [19]  In the D = 0 limit, a small but finite coupling (e.g. α ≈ 0.04) between 

chains induces a quantum phase transition from the Haldane phase to a long-range ordered 

antiferromagnetic phase. [19–21]  Jointly considering D and α shows that both parameters are 

destabilizing with respect to the Haldane phase, either towards long range magnetic order or quantum 

paramagnetism.  The parameter J2d = ½ (Jx + Jy) is used in cases where the effect of spatially 

anisotropic exchange is undeterminable, and 𝐽𝑥 =
2𝛼

(1+𝛼)
𝐽2𝑑 and 𝐽𝑦 =

2

(1+𝛼)
𝐽2𝑑.  Finally, sufficiently 



large easy-plane anisotropy introduces a quantum paramagnetic phase that has no dipolar order but 

instead a quadrupolar order parameter 〈𝑆𝑧
2 −

2

3
〉. 

Experimentally, coordination-polymer chemistry has been foundational to provide real systems that 

obey equation 1.  There is a synergistic relationship between the parallel maturity of magnetochemistry 

and the many-body physics that describes low-dimensional quantum magnets.  While the state of the 

art does not yet allow deterministic crystal engineering to connect synthesis to the resultant magnetism 

Hamiltonian in some cases, the ever-growing library of compounds allows for increasing control of 

parameters like D and J from the constituent ligands and ions of compounds.  An example of this 

connection is in our work on S = 1 Ni(II) coordination polymers. [8]  We have been engaged in the 

detailed study of S = ½ and S = 1 quantum magnets based on polymeric two-dimensional [M(pyz)2]
2+ 

(M = Cu or Ni) square grids. [2,5,22]  The geometry of these grids may be perfectly square (due to 

tetragonal in-plane symmetry) or bear some rhombic distortion by imposing M∙∙∙M edges of slightly 

different lengths and/or metal-ligand bond angles appreciably more or less than 90°. 

Among metal-organic compounds, Cu(II) square-lattice coordination polymers are most known and the 

best characterized.  However, the library of related S = 1 Ni(II) compounds is far less populated and the 

ability to grow suitable single crystals for detailed investigation is challenging. Unlike octahedral 

Cu(II) complexes where the single magnetic electron usually resides in the dx2-y2 orbital, octahedral 

Ni(II) has unpaired electron density distributed in both dx2-y2 and dz2 orbitals. In addition, Cu(II) is 

Jahn-Teller active while such a distortion does not occur in Ni(II) systems. The impact of the difference 

in electronic structure tends towards stronger magnetic couplings exhibited by Cu(II) coordination 

compounds compared to Ni(II) irrespective of the organic bridging ligands, such as pyrazine (pyz).  

Pyrazine may be the most utilized bridging ligand in coordination chemistry applications, while its 

dioxide, namely pyrazine-N,N’-dioxide (hereafter pyzdo), is less explored although a few notable 

examples exist such as CuX2(H2O)2(pyzdo) (X = Cl, Br), [23] Co(dca)2(pyzdo) (dca = 

dicyanamide), [24] and Mn(NCS)2(pyzdo)2. [25]  Presented in this work, we have now combined Ni(II) 

ions with pyzdo ligands to afford the two-dimensional coordination polymer Ni(NCS)2(pyzdo)2 that is 

isostructural to the Mn(II) and Co(II) analogues. [25]  The magnetometry data of Mn(NCS)2(pyzdo)2 

and Co(NCS)2(pyzdo)2 are consistent with highly two-dimensional magnetism, suggesting that 

Ni(NCS)2(pyzdo)2 is likely to obey equation 1. 

So, Ni(NCS)2(pyzdo)2 adds to the small library of experimental realizations of spatially-anisotropic S = 

1 square-lattice antiferromagnets with single-ion anisotropy.  Aside from the aforementioned 

NiX2(pyz)2 compounds, [5] (of which NiBr2(pyz)2 was reported before [26]) we have also found a 

recent report on Ni[SC(NH2)2]6Br2. [27]  Ni[SC(NH2)2]6Br2 was shown to have long-range 

antiferromagnetic order at TN = 2.23 K, and magnetization data showed a strong magnetic anisotropy, 

although details of the Hamiltonian parameters are yet to be determined. 

II. Results and Discussion 

Here, we subjected Ni(NCS)2(pyzdo)2 to a variety of experimental probes and theoretical models with 

the goal of quantitatively determining the Hamiltonian.  We begin in Section II-A by presenting X-ray 



diffraction to determine the crystal structure.  Section II-B presents the temperature dependent 

magnetic susceptibility data, from which the system appears antiferromagnetic and highly two-

dimensional with J2d = 13.4 K (1.15 meV) and TN ≈ 18 K.  Heat capacity measurements in zero-field 

are reported in Section II-C and show a clear peak at TN = 18.5 K that decreases in temperature with 

applied magnetic field consistent with antiferromagnetism.  Muon-spin relaxation (Section II-D) further 

corroborates these results.  Section II-E presents neutron diffraction data, which show the magnetic 

structure is an antiferromagnetic square-lattice with moments (≈1.8 μB per nickel) approximately along 

the putative easy-axis of the NiN2O4 moieties.  Plane-wave density functional theory (DFT, Section II-

F) sets the stage for considerations of magnetic exchange and upholds the emerging picture of a 

spatially-anisotropic square lattice.   Section II-G contains neutron spectroscopy data on a 

polycrystalline sample, which are quantitatively modeled with linear spin-wave theory (LSWT) by a 

spatially anisotropic square-lattice (Jx = 0.235 meV, Jy = 2.014 meV) having an easy-axis single-ion 

anisotropy (D = −0.811 meV, renormalized to −1.622 meV in the low-temperature limit beyond the 

approximation of LSWT). Some theoretical modelling is discussed in Section II-H and Section II-I 

discusses pulsed-field magnetization data on a polycrystalline sample. The latter show quantitative 

agreement with the saturation field of the spectroscopy derived Hamiltonian (μ0HSAT ≈ 80 T), and 

qualitative agreement of the magnetizing curve, considering a mean-field model.  Density matrix 

renormalization group (DMRG) theory is also compared to magnetization and neutron spectroscopy 

giving highly similar, but quantitatively different Hamiltonian parameters.  Dimer cluster DFT is 

presented in Section II-J shows how the same pyzdo ligand can yield an order of magnitude difference 

in exchange energies due to modifications of the connecting geometry.  Additional considerations are 

discussed in Section III and the main conclusions are summarized in Section IV. Experimental details 

that are not present in the main body of the text are available in Appendix A. 

A. X-ray Diffraction 

Single crystal X-ray diffraction was used to determine the crystal structure of Ni(NCS)2(pyzdo)2 at 90 

K, and this compound is isomorphous to the Mn- and Co-analogues reported several years ago. [25]  

The CIF is available in the Supplementary Materials. [28]  These data are presented first as knowledge 

of the crystal structure is foundational to considering the magnetic properties.  Each Ni(II) ion resides 

on an inversion center and is equatorially coordinated to O-donor atoms from four different pyzdo 

ligands at distances of 2.101(1) Å and 2.104(1) Å. The axial positions are occupied by N-donors from 

the NCS− anion and each NiO4N2 octahedron is slightly compressed along this direction. The octahedra 

are rhombically distorted away from ideal D4h symmetry, with the largest deviation being 86.81(6)°. 

Bridging pyzdo ligands connect NiO4N2 octahedra into two-dimensional arrays of tiled parallelograms 

defined by [1, −1,0] and [0,0,1] real space directions, Figure 1 (a).  These two-dimensional arrays 

propagate along the [1,1,0] direction, Figure 1 (b), and are staggered in order to maximize interlayer 

van der Waals contacts.  Molecular units of Ni(NCS)2(pyzdo)2 are shown in Figure 1 (c-e). Within each 

two-dimensional layer, adjacent octahedra adopt the same configuration and are tilted in accord with 

the non-linear Ni-O-N bond angles of 115.3(1)° and 120.9(1)° for Ni1-O5-N6 and Ni-O1-N2, 

respectively.  Also noticeable is the interdigitation of the protruding NCS− anions which themselves are 

nearly linear [178.8(2)°].  Weak electrostatic interactions comprised of N-O∙∙∙H hydrogen bonds exist 

and help hold the layers together.  



 

 

Figure 1.  Crystal structure of 

Ni(NCS)2(pyzdo)2.  (a) A section of one layer 

of nickel ions bridged by pyzdo ligands.  (b) 

Stacking of the layers.  Molecular units of (c) 

NiO4N2 octahedra, (d) NCS, and (e) pyzdo. 

 

 

B. Magnetic susceptibility 

Magnetic susceptibility (χ) for polycrystalline samples is sensitive to magnetic interactions, and less-so 

to single-ion anisotropy.  This low-field magnetic response is sensitive to the onset of long-range 

magnetic order and to magnetic correlations in the sample and allows comparison to quantitative 

models of the superexchange.  The χ(T) data for Ni(NCS)2(pyzdo)2 as measured in a 0.1 T field is 

shown in Figure 2 (a). A broad maximum is identified at Tmax = 28 K where χ(T) takes the value of 

0.013 emu/mol. Below Tmax, χ(T) decreases to reach a minimum value of 0.009 emu/mol at a base 

temperature of 2 K. The broad maximum signifies the presence of short-range spin correlations, which 

may be two-dimensional as suggested by the crystal structure. The Tmax value was used to estimate the 

intralayer exchange constant (𝐻𝐿𝑖𝑛𝑒𝑠 = 𝐽2𝑑 ∑ 𝑺𝑖 ⋅ 𝑺𝑗〈𝑖,𝑗〉 ) for a two-dimensional antiferromagnet without 

single-ion anisotropy from the equation developed by Lines for any value of S and J2d  > 0, [29] Tmax/J 

= 1.12S(S + 1) + 0.1, which yields J2d ≈ 12 K (1.0 meV) for S = 1.  The χ(T) data above 30 K were fit to 

the Lines model of susceptibility, and the resulting fit is shown as the solid line in Figure 2 (a). 

Excellent agreement between the data and fit were obtained for the parameters, g = 2.091(1), J2d = 

13.35(1) K (1.15 meV), and TIP = 220(6) × 10-6 emu/mol.  Here, g is the Landé g-factor, and TIP is 

temperature-independent paramagnetism. In accord with the Lines model, a positive J-value indicates 



an antiferromagnetic interaction. Inclusion of an interlayer magnetic coupling based on the mean-field 

approximation with “z” magnetic neighbors led to a small ferromagnetic zJ’ value of −0.009(1) K (−8 × 

10−4 meV) which further supports a high degree of isolation between the two-dimensional magnetic 

layers. 

The reciprocal magnetic susceptibility, 1/χ vs. T, is shown in Figure 2 (b) and these data were fitted to a 

Curie-Weiss law (𝜒 =
𝑁𝑔2𝜇𝐵

2

3𝑘𝐵(𝑇+θ𝐶𝑊)
𝑆[𝑆 + 1]) between 80 and 300 K, where 𝑘𝐵 is Boltzmann’s constant, 

𝜇𝐵 is the Bohr magneton, and θCW is the Weiss temperature. Good agreement was achieved for g = 

2.121(1) and θCW = −49.78(1) K.  The g-factor is typical of Ni(II) whereas the large and negative Weiss 

constant are an indication for significant antiferromagnetic interactions between S = 1 Ni(II) ions. 

The temperature-variation of χT is displayed in the main plot of Figure 2 (c) with the low-T portion of 

dχT/dT versus T highlighted in the inset. Upon cooling from room temperature, χT decreases smoothly 

until ~50 K where it decreases more quickly. An abrupt change in the curvature of χT occurs near 18 K 

which coincides with a peak in d(χT)/dT. We ascribe this anomaly to the transition to long-range 

antiferromagnetic order in Ni(NCS)2(pyzdo)2.   In the molecular field approximation, the Néel 

temperature TN = θCW, and the large discrepancy between the two supports the conjecture of 

Ni(NCS)2(pyzdo)2 as low-dimensional.  In general, deviations from TN = θCW can be assigned to 

fluctuations beyond the molecular field approximation, which may be due to low-dimensionality (as 

here) or magnetic frustration.  



 

 

Figure 2.  Magnetic susceptibility of 

Ni(NCS)2(pyzdo)2 measured in 0.1 T.  (a) Data 

and Lines model fit described in the text.  (b) 

Inverse susceptibility data and Curie-Weiss 

law fit described in the text.  (c) Product of 

susceptibility and temperature with derivative 

inset. 

 

 

C. Heat Capacity 

Measuring heat capacity (Cp) as a function of temperature provides direct insight into the 

thermodynamics of materials.  Here for Ni(NCS)2(pyzdo)2, Cp is a direct probe of the phase transition 

from a paramagnetic to long-range ordered magnetic state.  Application of external magnetic field 

further allows the discernment of magnetic interactions, e.g. the mean sign of the superexchanges.  

Polycrystalline measurements are presented as a function of magnetic field, Figure 3.  In zero-field, 

data were collected from 2 K to 100 K and a sharp peak is observed at TN = 18.5 K.  Field dependent 

data were collected from 2 K to 25 K and the peak shifts to lower temperatures and broadens with 

increasing applied magnetic field due to dominant antiferromagnetic interactions.  The broadening of 



the peak with increasing field is likely due to the polycrystalline sample having all orientations of 

applied field with respect to single-ion anisotropy. 

 

 

Figure 3.  Ni(NCS)2(pyzdo)2 heat capacity. 

Heat capacity divided by temperature with the 

magnetic field dependence inset. 

 

 

D. Muon Spin Relaxation 

Muon-spin relaxation (μ+SR) measurements are sensitive to local magnetic fields in a sample that 

provide information about magnetic correlations.  In the preceding text, the paramagnetic to 

antiferromagnetic phase transition in Ni(NCS)2(pyzdo)2 was identified, but muons probe the local 

correlations that are more directly connected to the sublattice magnetization and provide additional 

evidence to the evolving picture of the phase transition.  Zero field μ+SR data were measured for a 

Ni(NCS)2(pyzdo)2 polycrystalline sample.  Typical spectra measured above and below the transition 

temperature are shown in Figure 4 (a). Data measured at 18.5 K and below were fitted to an asymmetry 

function of the form 

𝐴(𝑡) = 𝐴1 cos(2𝜋𝜈𝑡 + 𝜙) 𝑒−𝜆1𝑡 + 𝐴2𝑒−𝜆2𝑡 (2) 

 

where the first and second terms represent a damped oscillation and a pure relaxation, respectively. [2] 

The oscillations reflect the coherent precession of muon spins about a local magnetic B-field, 

consistent with this field being similar at each muon stopping site, implying that the system is in an 

ordered magnetic state throughout the bulk.  The purely-relaxing component represents those muons 

whose spins are parallel to the local field and thus do not precess.  The exponential relaxation is caused 

by the muons’ gradual depolarization due to dynamic processes and field inhomogeneities. Data 

measured at 19 K and above is purely relaxing and displays no visible oscillation, such that it is not 

well described by (the first term of) equation 2. 

The precession frequencies ν and relaxation rates λ2 obtained from fitting are plotted against T, Figure 

4 (b).  The observed trends are consistent with the phase transition in Ni(NCS)2(pyzdo)2, with the 

relaxation rate diverging and the frequency acting as an effective order parameter.  To model the 



transition, the muon precession frequency was fitted to a simple phenomenological model 𝜈(𝑇) =

𝜈(0) (1 − (
𝑇

𝑇𝑁
)

𝑎1

)
𝑎2

  [30] giving a critical temperature TN = 18.6±0.1 K.  This critical temperature is 

identical, within uncertainty, to that determined by magnetic susceptibility and heat capacity.  

Insufficient data is available for the a1 and a2 parameters to provide quantitative information about the 

critical behavior. 

 

 

 

Figure 4.  Muon-spin relaxation of 

Ni(NCS)2(pyzdo)2.  (a) Example asymmetry 

spectra, A(t), measured at 9 K and 19 K. The 9 

K data are shown in percent; the 19 K data 

have been displaced upwards by 4% for clarity. 

(b) Temperature dependence of the muon 

precession frequency. (c) Relaxation rate as a 

 



function of temperature. In (c) the line is a 

guide to the eye. 

 

E. Neutron Diffraction 

Neutron scattering has different radiation interactions with materials than X-ray scattering, which 

provides greater sensitivity to lighter elements (e.g., H, N, O) and magnetic diffraction intensities are of 

a comparable order of magnitude to those from nuclear scattering.  Up to this point, Ni(NCS)2(pyzdo)2 

was shown to have antiferromagnetic correlations from the magnetic susceptibility and heat capacity.  

Magnetic neutron diffraction allows quantitative extraction of the magnetic structure, which is the first 

step in quantitatively modeling the underlying magnetic Hamiltonian.  Data collected at T = 25 K 

above the onset of long-range magnetic order were used to fit the nuclear crystal structure of 

Ni(NCS)2(pyzdo)2.  The T = 25 K diffractogram shows sharp Bragg peaks, Figure 5, which are 

modeled well by the X-ray crystal structure and allowed further refinement of the H and O positions, as 

well as the variation of the crystallographic unit cell parameters expected on cooling, Table I.  This 

nuclear structure is available as a CIF in the Supplementary Materials. [31] 

Deep within the magnetically ordered state at T = 1.5 K, new Bragg peaks appear that are due to the 

magnetic order, Figure 6.  Results of modeling the T = 1.5 K neutron diffraction are summarized in 

Table II.  The propagation vector k = (½, 0, ½) corresponds to a magnetic structure in which nearest-

neighbor nickel ions connected by O-pyz-O ligands form a distorted antiferromagnetic square-lattice 

(Figure 7) in a plane containing direct lattice vectors [1,-1,0] and [0,0,1].  Nearest neighbor magnetic 

moments along a (6.8527 Å) are antiparallel, and nearest neighbor magnetic moments along b (7.0164 

Å) are parallel.  By symmetry, the nickel moment for a given unit cell may point along any direction, 

and refines to be approximately perpendicular to the NiO4 plane, i.e. the moment direction is consistent 

with the NiN2O4 octahedra having an easy-axis anisotropy.  Quantitatively, the moment orientation 

reported in spherical coordinates is θ = −41(10)° and φ = 67(12)°, where x = sinθcosφ, y = sinθsinφ, 

and z = cosθ, defined with x parallel to a, y perpendicular to a and in the ab plane, and z = x × y.  The 

surface normal to NiO4 has θ = −43.5°, and φ = 81.9°, and the line parallel to the Ni-N bond has θ = 

−46.1°, and φ= 77.1°.  This magnetic structure is available as an mCIF in the Supplementary 

Materials. [32] 

The temperature dependence of the ordered moment is shown in Figure 8.  These data are fit to the 

equation 𝑚(𝑇) = 𝑚(0) (1 − (
𝑇

𝑇𝑁
))

𝛽

 with the β exponent fixed to the two-dimensional Ising value of 

1/8, [33] m(0) = 1.8(1) μB, and TN = 17.5 K that is where the magnetic diffraction intensities became 

zero.  The discrepancy between this transition temperature and that of the other probes may be due to 

thermal gradients between the thermometer and the sample.  So, while there is unquantifiable 

experimental uncertainty in this neutron diffraction determined transition temperature, it is still useful 

to show approximate agreement to the more finely-sampled-in-temperature measurements (e.g., the 

heat capacity). 



 

 

Figure 5.  Neutron diffraction of 

Ni(NCS)2(pyzdo)2 at T = 25 K in the 

paramagnetic state.  Data are red circles, the 

model is a black line, vertical marks are Bragg 

peak positions, and residuals are an off-set blue 

line.  

 

 

Table I.  Neutron diffraction model parameters for T = 25 K. 

Lattice 

Space group P-1 

a (Å) 6.8533(1) 

b (Å) 7.0173(2) 

c (Å) 8.0189(2) 

α (°) 82.720(3) 

β (°) 67.077(2) 

γ (°) 74.315(1) 

Atomic Fractional Coordinates 

H3 0.834(1), 0.329(1), 0.072(1) 

H4 0.176(1), 0.496(1), 0.217(1) 

H7 0.715(1), 0.088(2), 0.375(2) 

H8 1.136(2), 0.276(1), 0.553(1) 

O1 0.4622(9), 0.3244(9), 0.3224(9) 

O5 0.829(1), 0.3802(8), 0.4271(8) 

Refinement 

Rw (%) 1.06 

Rbragg (%) 1.92 

 



 

 

Figure 6.  Neutron diffraction of 

Ni(NCS)2(pyzdo)2 at T = 1.5 K in the 

magnetically ordered state.  Data are red circles, 

the model is a black line, vertical marks are 

Bragg peak positions, and residuals are an off-

set blue line.  Data are shown over (a) a region 

of interest that highlights the magnetic Bragg 

peaks and vertical marks for magnetic Bragg 

peak locations and (b) a large range of d-

spacing with upper vertical marks for structural 

Bragg peaks and lower vertical marks for 

magnetic Bragg peaks. 

 

 

Table II.  Neutron diffraction model parameters for T = 1.5 K. 

Lattice 

Space group P-1 

a (Å) 6.8527(1) 

b (Å) 7.0164(1) 

c (Å) 8.0183(2) 

α (°) 82.734(2) 

β (°) 67.078(2) 

γ (°) 74.318(1) 

Propagation vector 

k (½, 0, ½) 

Ni magnetic moment 

|M| (μB) 1.8(1) 

θ (°) −41(10) 

φ (°) 67(12) 

Refinement 



Rw (%) 1.03 

Rbragg (%) 2.11 

Rmag (%) 2.70 

 

 

 

Figure 7.  Visualization of magnetic structure 

from neutron diffraction of Ni(NCS)2(pyzdo)2.  

This image shows a section of one layer of nickel 

ions bridged by pyzdo ligands overlayed with 

magnetic moment vectors. 

 

 

 

 

 

Figure 8.  Ordered magnetic moment versus 

temperature from neutron diffraction for 

Ni(NCS)2(pyzdo)2.  Uncertainties are from 

counting statistics. 

 

 

F. Plane-wave DFT 

Plane-wave DFT was used to calculate the relative energies of different magnetic structures while using 

the experimentally determined nuclear crystal structure.  These DFT energies can then be used to 



calculate the Heisenberg model superexchanges.  For insulators like Ni(NCS)2(pyzdo)2, plane-wave 

DFT has been shown to capture the relative magnitude of superexchanges, and with appropriate 

parameterization can provide quantitative descriptions of the magnetism.  Looking forward to modeling 

the magnetic correlations with neutron spectroscopy, having a motivated starting point in the model 

optimization for the superexchanges is invaluable in achieving a good solution.  Upon initial inspection 

of the (magnetic) crystal structure, Ni(NCS)2(pyzdo)2 seems to be a realization of an antiferromagnetic 

square lattice, but these calculations provide the first illustration of the highly spatially anisotropic 

superexchanges present and the dominance of the in-plane superexchanges. 

While the primitive unit cell of Ni(NCS)2(pyzdo)2 has one nickel ion, doubling along each 

crystallographic direction gives a supercell with eight nickel ions, Figure 9 (a).  This larger unit cell is 

useful for calculating magnetic interactions.  The five nearest nickel-nickel distances were considered 

as potential superexchange pathways, Figure 9 (a).  These superexchange pathways were used to write 

down a Heisenberg superexchange Hamiltonian (𝐻 = ∑ 𝐽𝑖𝑗 𝑺𝑖 ⋅ 𝑺𝑗〈𝑖,𝑗〉 ) for nearest neighbors.  Eight 

different magnetic structures were considered, and the energies of the different configurations were fit 

to the nearest neighbor superexchange Hamiltonian model, Table III.  The EVASP parameters are taken 

directly from the VASP optimizer, with energies relative to the ↑↑↓↓↑↑↓↓ configuration.  Using the 

Heisenberg superexchange Hamiltonian, a configuration energy may be generated as a function of the 

considered superexchanges (J1, J2, J3, J4, J5), which numerically evaluates to Efit.  Then a least-squares 

optimization of the superexchanges is performed by comparing EVASP and Efit for all configurations 

calculated.  These superexchange energies associated with the plane-wave DFT Heisenberg model are 

shown in Table IV.  The two largest superexchange values (J3 and J5) are along the bridging pyzdo 

molecules, as illustrated in Figures 9 (b-d).  The J3 superexchange is more than five times greater than 

the J5 superexchange, and the strength of the interaction anticorrelates to the nickel-to-nickel distance 

of 8.08 Å versus 8.38 Å.  While the total distance for the J3 versus J5 pathway changes substantially by 

0.3 Å, the changes in interatomic distances for the bridge are one hundred times less (relatively almost 

no change).  Therefore, the constituent molecules are well approximated as rigid bodies and the bridge 

distance change is accommodated by the Ni-O-N angle that increases from 115.25° to 120.91°.  

Relating these calculations back to the spatially anisotropic square-lattice of equation 1, J3 = Jy and J5 = 

Jx.  While these calculations do not consider the on-site direction of the magnetic moments, the sign 

changes from site to site for the ground-state configuration are consistent with the experimentally 

determined magnetic structure from the neutron diffraction experiments.   

Table III.  DFT energies and nearest neighbor model energies for Ni(NCS)2(pyzdo)2.  The list of up and 

down arrows defines the relative magnetic configurations, with the ordered mapping as in Figure 9 (a). 

configuration Efit (meV) EVASP (meV) EVASP – Efit (meV) 

↑↑↓↓↑↑↓↓ - 0 - 

↑↑↑↑↑↑↑↑ 78.388 78.568 −0.180 

↑↓↑↓↑↓↑↓ 66.319 66.147 0.172 

↑↑↑↑↓↓↓↓ 78.028 78.199 −0.172 

↑↓↓↑↑↓↓↑ 11.934 11.755 0.179 

↑↓↓↑↓↑↑↓ 11.708 11.537 0.171 

↑↑↓↓↓↓↑↑ 0.606 0.785 −0.179 

↑↓↑↓↓↑↓↑ 67.060 66.880 0.180 



 

Table IV.  Model superexchange values and definitions from plane-wave DFT for Ni(NCS)2(pyzdo)2.  

(positive J is antiferromagnetic) 

index distance (Å) direction 

vector 

lattice 

direction 

orientation 

from 

magnetic 

structure 

JVASP 

(meV) 

J1  6.87 1,0,0 a antiferro 0.031 

J2  7.04 0,1,0 b ferro −0.013 

J3  8.08 0,0,1 c antiferro  4.150 

J4  8.29 –1,0,1 –a,c ferro  0.005 

J5  8.38 1, –1,0 a, –b antiferro  0.719 

 

 
Figure 9.  Superexchange pathways in Ni(NCS)2(pyzdo)2.  (a) the 2×2×2 unit cell containing 8 

nickel atoms as white circles with numbered labels for the DFT magnetic structure calculations.  

Views along (b) a-axis, (c) b-axis, and (d) c-axis are shown with only nickel atoms shown as white 

circles but with all atom-atom bonds shown.  The thick-blue-solid-line pyzdo connections are along 

the J5 superexchange, the medium-thickness-green-solid-line pyzdo connections are along the J3 

superexchange, and the NCS bonds are thin-gray-solid-lines.  For (b-d) individual unit cells within 

the 2×2×2 unit cell are shown. 

 

G. Neutron Spectroscopy 

The differential scattering cross-section of inelastic neutron scattering is directly related to time and 

space pair correlation functions, such as those due to magnons in a long-range ordered magnet.  

Practically, neutron spectroscopy allows for extraction of Hamiltonian parameters.  With the stage set 

for Ni(NCS)2(pyzdo)2 by the observations of the magnetic phase transition, knowledge of the magnetic 

structure, and DFT estimates of the superexchanges, the neutron spectroscopy problem is well-posed.  

The correlations in Ni(NCS)2(pyzdo)2 are compared for temperatures above and below the onset of 

long-range magnetic order.  Spectra at temperatures of T = 2 K (below TN) and T = 22 K (above TN) 

were measured with incident energies (Ei’s) of 1.55 meV, 3.32 meV, 6.59 meV, 12 meV, and 25 meV.  

The preponderance of magnetic scattering was found to be contained in the Ei = 12 meV data, as 

shown by subtracting the T = 22 K spectrum from the T = 2 K spectrum as in Figure 10.  The feature 

near 2 meV is an instrumental artifact from multiple scattering.  The other inflections in the T = 22 K 



data are associated with lattice vibrations in the sample.  The over-subtraction giving rise to negative 

intensity in the I(2 K) – I(22 K) data is due to (presumably short-range) magnetic correlations 

persisting above the Néel temperature. 

The Hamiltonian used to analyze these data is 

𝐻 = ∑ 𝐽𝑖𝑗 𝑺𝑖 ⋅ 𝑺𝑗

〈𝑖,𝑗〉

+ 𝐷 ∑ 𝑆𝑖𝑧
2

𝑖

 
(3) 

where the exchange energies (J) are positive for antiferromagnetism, the local easy-axis (z-coordinate) 

is along the direction determined from neutron diffraction, and the single-ion anisotropy energy (D) is 

negative for an easy-axis. 

Using LSWT, four models of the observed spin-waves in Ni(NCS)2(pyzdo)2 were refined, Figure 10.  

Although powder data, there are clear observables that may be related to a LSWT model.  For example, 

in a two-dimensional antiferromagnet with D/J2d small, the bandwidth is ≈2|J2d| and the gap in the 

excitation spectrum is ≈4√|J2d||D|.  Visually, the powder spectrum ranges from ≈4 meV to ≈6.5 meV, so 

quickly one may estimate |J2d| ≈ 1.25 meV and single-ion anisotropy must be easy-axis to create the 

large gap so |D| ≈ 0.9 meV.  The presented models have three extrinsic parameters, a constant 

background, a linear background, and an overall scale factor.  In model 1, there are two intrinsic 

parameters: the single-ion anisotropy (D), and a scaling factor of the superexchange values from DFT 

in Table IV.  The model 1 captures all of the qualitative features of the data, and the Hamiltonian 

parameters are shown in Table V.  However, the ratio of J3 to J5 seems off, as it dictates the distance 

between the peaks in the magnon density of states at ≈5 meV and ≈6 meV, which also looks to 

underestimate the gap and D due to most weight of the fit being to the ≈6 meV peak.  Therefore, a 

second model (model 2) was refined with three intrinsic parameters (D, J3, and J5) and with J1 = J2 = J4 

= 0, corresponding to the titular spatially-anisotropic square lattice (0<α<1) with single-ion anisotropy.  

This second model shows a 50% reduction in the residuals of the fit, with small modifications to the 

superexchange parameters.  A third model (model 3) with two intrinsic parameters (D and J) that 

forces J3=J5 as in a formally square lattice (α=1) was refined to give a poorer fit, due to a lack of the 

van Hove singularity to give a peak in the magnon density of states at ≈5 meV.  Finally, a fourth model 

(model 4) in which the inter-chain interactions are infinitesimally small (α=0, as a spin-chain) also has 

two intrinsic parameters (D and J), where J = J3, and all other exchanges are zero.  The spin-chain 

model 4 performs better than the square-lattice model, but not as well the spatially anisotropic square-

lattice model 2.  For LSWT, the single-ion-anisotropy acts identically to a staggered field, and 

comparing model 2 with model 4 shows how this spatially anisotropic square-lattice may be 

approximated by a spin-chain for the dominant exchange in a static mean field of the weaker exchange: 

|D(model 4)| ≈ |D(model 3)| + |J5(model 3)| and J3(model 4) ≈ J3(model 3).  The LSWT parameters of 

these models are shown in Table V. 



 

 

Figure 10.  Neutron spectroscopy of 

Ni(NCS)2(pyzdo)2.  These polycrystalline data are 

averaged from momentum transfers of 1 Å-1 to 3 

Å-1.  Models are as described in the text.  The 

model 1 dashed red line is barely visible above 

5.7 meV as it is nearly identical to model 2 and 

model 4 in that region.  

 

 

Table V.  Neutron scattering derived spin-wave parameters for Ni(NCS)2(pyzdo)2.  These values were 

used to generate the curves in Figure 10.  (negative D is easy-axis and positive J is antiferromagnetic) 

 model 1 model 2 model 3 model 4 

J1 (meV) 0.015 0 0 0 

J2 (meV) −0.006 0 0 0 

J3 (meV) 1.964 2.014 1.125 1.992 

J4 (meV) 0.002 0 0 0 

J5 (meV) 0.340 0.235 1.125 0 

D (meV) −0.737 −0.811 −0.811 -1.068 

To better illustrate the LSWT models, a plot without powder averaging is shown in Figure 11.  This 

plot uses the 2×2×2 unit cell of Figure 9 (a).  All models are gapped due to the single-ion anisotropy 

breaking the rotational symmetry of the ground-state.  For the isotropic square-lattice of model 3 with 

only one superexchange, there is intensity piling up at ≈6 meV when powder averaging due to many 

states being present at the top of the band.  For the spatially anisotropic square-lattices of model 1 and 

model 2 there is a second component causing the intensity to also pile up at ≈5 meV.  The additional 

exchanges of model 1 versus model 2 cause the additional inflections apparent in Figure 10 due to 

further mode modulation of the model magnons.  The spin-chain of model 4 only has a dispersion 

along the chain axis, and the minimum energy is seen to be an average of the dispersive mode of model 

2 for the interchain exchanges within the magnetic plane.  Then, these neutron spectroscopy models 

show Ni(NCS)2(pyzdo)2 to be well modeled by LSWT with model 2 to give J3 = Jy = 2.014 meV, J5 = 



Jx = 0.235 meV, and D = −0.811 meV, such that α = 0.12.  This neutron spectroscopy determined 

spatial anisotropy of exchange is highly similar to the α = 0.17 for the plane-wave DFT calculation. 

 
Figure 11.  Comparison of LSWT models for 

Ni(NCS)2(pyzdo)2.  The momentum dependence 

of (a) energy transfer and (b) intensity are shown 

for the models described in the text. 

 

H.  Beyond LSWT 

The neutron spectroscopy data were well-reproduced by a LSWT model, but there is one pitfall with 

that analysis we consider.  Moreover, there is the opportunity to compare the observed inelastic neutron 

scattering with a DMRG theory.  Aside from the magnons, there are other observables available from a 

LSWT framework.  Using the LSWT calculated ordered moment allows a cross-check of the model 

with the measured magnetic neutron diffraction ordered moment.  So, linear spin-wave theory here 

refers to the Taylor expansion of the operator containing square roots in the Holstein-Primakoff (HP) 

transformation, keeping only the leading terms in the 1/S Taylor expansion that are bi-linear in the HP 

boson ladder operators.  As such, LSWT is only exact for certain cases, such as simple ferromagnets at 

zero temperature and the limit of S → ∞.  Here, we consider two approximations beyond LSWT: (1) 

higher order in 1/S than LSWT and (2) DMRG theory of a spin-chain in a static mean field that 

accounts for interchain interactions. [34] 

The magnon dispersion of a spatially anisotropic square-lattice is 

 

ℏ𝜔 = 2𝑆(𝐽𝑥 + 𝐽𝑦 + |𝐷|)√1 −
(𝐽𝑥 cos(𝑞𝑥) + 𝐽𝑦 cos(𝑞𝑦))

2

(𝐽𝑥 + 𝐽𝑦 + |𝐷|)
2  

(4) 



Recalling that the HP transformation takes 𝑆𝑧 = 𝑆 − 𝑎†𝑎 (the “a” operator annihilates an HP 

boson), [35] the first correction to the ordered moment (order 1/S0) may be written as 

Δ𝑆 = −
1

2
+

1

𝑁
∑ (𝑛𝒒 +

1

2
)

𝒒∈BZ

1

√1 −
(𝐽𝑥 cos(𝑞𝑥) + 𝐽𝑦 cos(𝑞𝑦))

2

(𝐽𝑥 + 𝐽𝑦 + |𝐷|)
2

  
(5) 

where the summation of momentum (q) is over the Brillouin zone (BZ), N is the number of momenta 

used, and nq can be taken as a Bose population.  Here we consider the limit of temperature much less 

than the Hamiltonian parameter energies that is satisfied experimentally in the T = 2 K neutron 

spectroscopy data.  The summation of equation 5 was found to converge when Δq ≤ 3×10–3 r.l.u.  The 

limiting case of D ≪ Jx or Jy reproduces the known result that Δ𝑆 = 0.197, or for S = 1 that <Sz> = 

0.803. [36]  Conversely, as the anisotropy field (or a magnetic field) becomes much larger than Jx or Jy, 

Δ𝑆→0.  Using the neutron spectroscopy derived parameters of model 2, Δ𝑆 = 0.076 and <Sz> = 0.924 

or mz = 1.848 μB, which quantitatively reproduces the neutron diffraction value of mz = 1.8 μB.  Also, 

while an antiferromagnetic spin-chain without anisotropy does not support magnetic order even at zero 

temperature, the introduction of finite anisotropy quenches the fluctuations such that the neutron 

spectroscopy model 4 has Δ𝑆 = 0.071. 

Formally, there are an infinite number of terms to consider in the operator square root expansion, and 

the book-keeping of these terms is non-trivial.  The next order after LSWT contains four HP boson 

operator terms that include magnon-magnon interactions.  For the Hartree-Fock-like decoupling of the 

next order diagrams of the magnon-magnon interactions, the expectation value of the number of HP 

bosons (i.e. Δ𝑆) is an important quantity.  We simply note that 
Δ𝑆

2𝑆
 is ≈4% in the low-temperature limit 

for this material, so the real parameters of a renormalized spin-wave theory are to be similarly close to 

the reported LSWT parameters.  Historically, there are many renormalized parameter spin-wave 

theories, of which Oguchi’s work is an important early example. [37] 

Even in the absence of magnon-magnon interactions, LSWT single-ion anisotropy must be 

renormalized.  This point may be illustrated by considering a system without exchange where the exact 

HP transformed Hamiltonian is 

𝐻 = 𝐷 ∑(𝑆 − 𝑎𝑖
†𝑎𝑖)

2
=

𝑖

𝐷 ∑ 𝑆2 − 2S𝑎𝑖
†𝑎𝑖 + 𝑎𝑖

†𝑎𝑖𝑎𝑖
†𝑎𝑖

𝑖

 (6) 

The LSWT keeps only bi-linear operators (2S𝑎𝑖
†𝑎𝑖), the level spacing is D2S and independent of the 

number of magnons.  The exact solution has levels that are dependent on the number of magnons, and 

the spacing from the ground-state to the first excited state is correctly D(2S−1).  In the low-temperature 

limit, a renormalized spin-wave theory (RSWT) can be considered where the LSWT single-ion 

anisotropy is scaled by (1 −
1

2𝑆
), Table VI.  This rescaling of LSWT parameters is not specific to this 

system and should be included for any four HP term operators.  A more detailed discussion of this 

anisotropy rescaling for SU(2) models in the context of classical magnetization theories can be found in 

reference  [38]. 



The spin correlations of a spin-chain in a static mean-field may also be calculated with DMRG, and 

additional details are in the Appendix.  The weaker Jx term is accounted as a staggered field, with α = 

0.1 from the LSWT best fit of the neutron spectroscopy and α = 0 as for an isolated spin-chain.  

Reproducing a single mode with no dispersion between chains as in the LSWT model 2, the DMRG 

Hamiltonian parameters are shown in Table VI.  While similar, the DMRG has lesser values for 

exchange and greater values for anisotropy than LSWT, with differences of 10% and more.  The 

DMRG ordered moment of 0.933 is within a few percent of the spin-wave adjusted (equation 5) 

ordered moment. 

Table VI.  Hamiltonian parameters from fitting Ni(NCS)2(pyzdo)2 neutron spectra beyond LSWT. 

 DMRG RSWT model 4 DMRG RSWT model 2 

α 0 0 0.1 0.12 

Jx (meV) 0 0 0.18 0.235 

Jy (meV) 1.742 1.992 1.750 2.014 

D (meV) −3.011 −2.136 −2.415 −1.622 

D/Jy −1.729 −1.072 −1.380 −0.805 

<Sz> 0.947 0.929 0.933 0.924 

 

I. Isothermal magnetization 

The field dependence of magnetization gives further information about the Hamiltonian of the system.  

Here, experimental magnetization data are compared to calculated magnetizations for the best-fit 

results of the two frameworks for magnetic correlations: DMRG and LSWT.  For LSWT, the 

calculation of the magnetic structure is done with the mean-field approximation, and LSWT is the next 

order correction in the 1/S expansion of the Hamiltonian.  A mean-field model was generated using the 

anisotropy-renormalized best-fit parameters of model 2 in Table VI from the neutron spectroscopy 

along with the g-factor from the magnetic susceptibility.  The observation of finite single-ion 

anisotropy implies there is also g-factor anisotropy parallel and perpendicular to the unique axis as 𝐷 =
𝜆

2
(𝑔|| − 𝑔⊥), where the free ion spin orbit parameter for Ni(II) is λ = 906.4 K = 78.1 meV [39].  In the 

coordination polymer, λ will be decreased compared to the free ion value, so 𝑔|| − 𝑔⊥ = 0.02 is an 

upper limit and these negligible effects will not be included in magnetization models here.  

In the context of magnetization measurements, casting the interactions as field strengths provides some 

insight. [40]  It is typical to consider an exchange field, HE, and an anisotropy field, HA, and in 

definitions and comparisons the explicit form of the Hamiltonian is important as different conventions 

use different signs and different prefactors.  Here we use 𝐻𝐸 =
4𝐽2𝑑𝑆

𝑔𝜇𝐵
 and 𝐻𝐴 =

𝐷𝑆

𝑔𝜇𝐵
 to give the 

numerical values of HE = 37.2 T and HA = −13.4 T.  Applying a field along the easy axis B||D there will 

be a flop transition at HE and saturation at 2HE−HA = 61.0 T.  Along the hard axis B⊥D, saturation 

occurs at 2HE+HA = 87.8 T.  Lower symmetry directions of the applied field require a model. 

The mean-field model for Ni(NCS)2(pyzdo)2 uses the same Hamiltonian as equation 3 with the addition 

of a Zeeman energy (−𝑔𝜇𝐵 ∑ 𝑺𝒊 ⋅ 𝑩𝑖 ).  Expectation values of magnetization along the field direction 



were found by generating a two spin (S1 and S2) sub-lattice system and substituting expectation values 

(‹S1› and ‹S2›) for the effect of the neighboring lattice due to superexchange. 

𝐻1 = 𝐷𝑆1,𝑧
2 − 𝑔𝜇𝐵𝑺𝟏 ⋅ 𝑩 + 4𝐽2𝑑〈𝑺𝟐〉 ⋅ 𝑺𝟏  (7) 

𝐻2 = 𝐷𝑆2,𝑧
2 − 𝑔𝜇𝐵𝑺𝟐 ⋅ 𝑩 + 4𝐽2𝑑〈𝑺𝟏〉 ⋅ 𝑺𝟐 (8) 

These four equations (S1,x, S1,z, S2,x, S2,z) are self-consistently solved numerically using S = 1 quantum 

spins and statistical mechanics.  Ten field direction orientations in the x-z plane between B||D and B⊥D 

uniformly spaced in angle (𝐵̂ = [sin 𝜂 , cos 𝜂]) were calculated, Figure 12.  The spin-flop transition for 

B||D is seen to round out and go to zero as the orientation approaches B⊥D.  For the limit of B⊥D there 

is no remnant of the spin flop, and the magnetizing process is simply a continuous rotation towards the 

field direction with increasing field until saturation. 

 

 

Figure 12.  Mean-field model of magnetization 

versus field for T = 0.5 K using neutron 

spectroscopy and magnetic susceptibility 

derived parameters for Ni(NCS)2(pyzdo)2.  Ten 

different orientations of the applied field with 

respect to the anisotropy axis are shown.  

(inset) Directions of magnetic fields for 

magnetization calculations are shown.  The 

anisotropy axis is along the z-direction, and the 

dash spacings of the unit vectors correspond to 

the dash spacings of the lines for the 

expectation value of the magnetization along 

the field axis, ‹SNi∥B›, shown in the main plot.  

The solid line is nearly B||D, while the dashed 

line with the largest spacing is nearly B⊥D. 

 

 

The polycrystalline Ni(NCS)2(pyzdo)2 was measured in a pulsed field up to 90 T, with the 

measurement proportional to dM/dH and numerical integration performed to extract M(H), Figure 13.  

These data are compared to DMRG and a mean-field model with RSWT parameters of model 2, and 

semi-quantitative agreement is found in both cases.  Models and data show the characteristic ‘s’ shape 

for a powder averaged spin, with features lining up in field.  Powder averaging the model is done by 

weighting each configuration to be ∝ sin 𝜂.  Scaling of magnetization took the largest experimental 



value to be saturation, but the shape agreement illustrated by dM/dH shows better agreement at lower 

field with a different scaling. 

 

 

Figure 13.  Isothermal pulsed-field magnetization 

of Ni(NCS)2(pyzdo)2 at T = 0.5 K and models.  

Models are as described in the text.  The (a) 

derivative of magnetization with respect to field 

and (b) the magnetization normalized to the 

saturation magnetization are shown. 

 

 

J. Dimer Cluster DFT Calculations 

The exchange couplings along the bridging ligands were also investigated with a local basis set DFT 

calculation.  This local basis set allows for a natural visualization and understanding of the magnetic 

orbitals in Ni(NCS)2(pyzdo)2 and provides an independent calculation (to compare with the 

experimental observations and the plane-wave DFT) of the spatial anisotropy of the superexchanges in 

the plane.  This cluster approach approximates Ni(NCS)2(pyzdo)2 by the molecular building blocks for 

the superexchange constituents.  Two nickel dimer clusters [(pyzdo)3Ni(NCS)2(-

pyzdo)Ni(NCS)2(pyzdo)3] were considered to investigate J3 (Jy) interactions along the c direction and 

J5 (Jx) interactions along the a, –b direction.  Atomic positions were taken from the experimentally 

determined structure.  The aforementioned bond angle changes are accompanied by torsion angle 

differences of 47.55o (a, –b) versus 8.04o (c), which effectively decouples the pyzdo π-system along a, 

–b, Figure 14 (a-b).  The spin densities are larger for c direction dimers (J3) than a, –b dimers (J5), 

Figure 14 (c-d).  Spin densities on the oxygen ions that bridge between nickel and pyzdo are 0.025 

versus 0.044, for a, –b direction and c direction, respectively.  The superexchange energies for the 



dimers are listed in Table VII and are consistent with the plane-wave DFT and the neutron 

spectroscopy findings that the c direction interactions are significantly stronger than the a, –b direction.  

This calculation has α = 0.29. 

 

 

Figure 14.  Dimer models of Ni(NCS)2(pyzdo)2.  

(a) Along the J5 a, –b direction.  (b) Along the J3 c 

direction.  (c-d) Views of the spin density 

distribution for the broken symmetry state of the 

dimer models.  Isosurface value ± 0.001. 

 

 

Table VII.  Model superexchange values and definitions from DFT for Ni(NCS)2(pyzdo)2. 

index distance 

(Å) 

direction 

vector 

lattice 

direction 

orientation 

from 

magnetic 

structure 

JORCA 

(meV) 

J3  8.08 0,0,1 c antiferro 3.66 

J5  8.38 1, –1,0 a, –b antiferro 1.07 



III. Additional Considerations 

In the preceding section, the Ni(NCS)2(pyzdo)2 was shown to be well described as a spatially-

anisotropic S = 1 antiferromagnet with easy-axis single-ion anisotropy, spanning a variety of 

experimental and theoretical techniques.  In this section, we report energies in meV (typical for neutron 

scattering) and also report energies scaled by the Boltzmann constant to Kelvins (more common in 

some chemistry literature).  So, the neutron spectroscopy parameters of the best fit are Jx = 0.235 meV 

(2.727 K), Jy = 2.014 meV (23.372 K), and an easy-axis single-ion anisotropy D = −1.622 meV 

(−18.823 K) after renormalization.  The magnetic susceptibility data fit to the Lines model yielded a 

value for J2d = 1.15 meV (13.35 K), which is strikingly similar to the J2d value of 1.125 meV (13.06 K) 

from the neutron spectroscopy.  The antiferromagnetic ordering transition in zero magnetic field was 

similar in magnetic susceptibility (18 K), heat capacity (18.5 K), muon spin relaxation (18.6 K), and 

neutron diffraction (17.5 K).  The two different flavors of DFT calculations, cluster and plane-wave, 

were able to predict the spatial anisotropy of the magnetic interactions.  Both cluster and plane-wave 

DFT, as parameterized here, predict the correct order of magnitude for the magnetic interactions. While 

the DFT parameters could in principle be further refined against the neutron spectroscopy values for 

the magnetic interactions, this is beyond the scope of the present paper, the main point of which is to 

demonstrate the relative magnitudes of the exchanges that show a high degree of spatial anisotropy.  

The neutron spectroscopy experimentally shows the requirement of spatial anisotropy to reproduce the 

observed spin-spin correlations.  While five interactions were used in the plane-wave DFT model, only 

the dominant two were included in the neutron spectroscopy fits as the polycrystalline data contain 

insufficient features to constrain a more detailed model.  If sufficiently large single crystals of 

Ni(NCS)2(pyzdo)2 are made, the additional neutron spectroscopy of a single crystal (or oriented array) 

will allow for a more detailed model refinement.  The isothermal magnetization deep within the 

ordered state was modeled with a high degree of accuracy using neutron spectroscopy derived 

parameters, whether with RSWT connected to mean-field theory or with DMRG, although there are 

subtle disagreements between the models and the data.  The origin of the difference between DMRG 

and RSWT parameters is not totally clear, and merits further investigation.  For one-dimensional 

problems, DMRG has been shown to excellently reproduce experimental observations, and the LSWT 

is expected to perform well for magnetic systems deep in the ordered state with a small number of 

magnons.  For this Ni(NCS)2(pyzdo)2 system that is quasi-one-dimensional, both RSWT (plus mean-

field theory) and DMRG provide valuable information about the ground-state and it is not clear which 

is entirely better for the magnetic field dependent low-temperature data, but the neutron spectroscopy 

data is better reproduced by the two-dimensional model (not DMRG). 

Here, we further consider the thermal phase transition in zero magnetic field.  While mean-field theory 

of magnetization performs well for highly three-dimensional magnetically ordered systems in the low-

temperature limit, it fails at finite temperatures and lower dimensions.  Using the neutron spectroscopy 

derived parameters with a renormalized D, mean-field theory yields a phase transition in the sub-lattice 

magnetization at TN = 40 K, Figure 15, overestimating the TN = 18.5 K from heat capacity data by a 

factor of 2.2.  Note that in the mean-field theory the sublattice magnetization saturates to the full spin 

value.  In the low-temperature limit, quantum and thermal fluctuations can be included with LSWT by 

using the Bose factor for the magnon number, reproducing well the observed ordered moment at low 



temperature and zero magnetic field, but a quantitative prediction of the ordered temperature cannot be 

made, only that one-dimensional models fluctuate more than two-dimensional (Figure 15 inset) and the 

LSWT Taylor expansion of the operator square roots is violated before the system achieves the 

experimentally determined region of criticality.  Due to the abundant experimental characterization of 

Ni(NCS)2(pyzdo)2 here, it is edifying to consider a classical spin dynamics approach [41–43] of the 

thermal phase transition.  Using the same parameters as for the mean-field temperature scan, three 

simulations were performed with α = 0 (spin chain), α = 0.12 (spatially-anisotropic square lattice), and 

α = 1 (spatially isotropic square lattice), and details are in Appendix.  The temperature dependences of 

the sub-lattice magnetizations are shown in Figure 15.  These classical simulations are able to account 

for the spatial anisotropy of the interactions, and the quantitative agreement of the α = 0.12 result 

(Table VIII) to the experimental results suggests this approximation to extract TC will be of good 

quality for similar systems.  The classical simulations all saturate to the full S = 1 magnetization at low 

temperature, not capturing the quantum fluctuations.  Insofar as the neutron spectroscopy derived 

parameters quantitatively reproduce the observed magnetic ordering temperature in the classical 

simulation, these data also illustrate the relative smallness of any interplane interactions and support the 

two-dimensional magnetism model of Ni(NCS)2(pyzdo)2. 

 

 

Figure 15.  Comparison of different models for 

the Ni(NCS)2(pyzdo)2 thermal phase transition, 

details described in the text.  (inset) Temperature 

dependence of the LSWT correction to the 

ordered moment. 

 

 

Table VIII.  Fits of Figure 15 data to 〈𝑆1,𝑍(𝑇)〉 = (1 − (
𝑇

𝑇𝑁
))

𝛽

. 

 TN β 

classical (α = 0) 15.0 0.13 

classical (α = 0.12) 18.0 0.16 



classical (α = 1) 21.6 0.19 

mean-field 38.5 0.18 

 

It is informative to consider the phase diagram in magnetic field and temperature of Ni(NCS)2(pyzdo)2 

as a spatially-anisotropy square-lattice antiferromagnet with single-ion anisotropy.  In Figure 16, the 

mean-field results for B⊥D and B||D are shown, with a temperature axis that was scaled linearly to 

overlay the experimental and mean-field TN.  For B⊥D, there is an arc that connects the zero-

temperature saturation critical field to the zero-field critical temperature.  For B||D, there are two lines: 

the saturation field and the flop field.  Plotting the heat capacity data points from Figure 3 for the 

polycrystalline sample, the trend of the phase line is reproduced but there is a quantitative disagreement 

with the scaled mean-field critical line.  There is scatter between the DMRG and mean-field models as 

compared to the experimental low-temperature (polycrystalline) saturating field.  For the isothermal 

magnetization, transitions were estimated from visual inflections in the data.  First, there is the steep 

rise seen around 24 T, then the field at which the gradient begins to decrease around 41 T, and finally 

the kink at 80 T.  Any further analysis of data in a magnetic field really needs single-crystalline 

samples. 

 

 

Figure 16.  Ni(NCS)2(pyzdo)2 phase diagram.  

 

IV. Summary and Conclusions 



In summary, we have thoroughly characterized the magnetic Hamiltonian of the Ni(NCS)2(pyzdo)2 

coordination polymer, which is found by X-ray diffraction to consist of Ni—pyzdo layers held apart by 

N-O∙∙∙H hydrogen bonds. The magnetometry, heat capacity and muon-spin relaxation data clearly show 

that the material orders antiferromagnetically below 18.5 K. Analysis of elastic and inelastic neutron 

scattering results provide estimates for the in-plane exchange and anisotropy energies and confirms that 

the material is a highly anisotropic square-lattice antiferromagnet with easy-axis single-ion anisotropy, 

in keeping with the DFT predictions. We also discuss the results of DMRG theory in light of the 

experimental findings.  The detection of a collinearly ordered magnet ground state is in-line with the 

phase diagram of anisotropy and inter-chain interactions for a quasi-1d system. [19]  From a materials 

discovery standpoint, the pyrazine dioxide ligand (pyzdo) shows a markedly greater superexchange 

than the pyrazine ligand, [5] lighting a pathway for further engineered magnetic interactions in these 

coordination polymers.  Mean-field theory using parameters from neutron spectroscopy modelling with 

RSWT semi-quantitatively reproduces the measured magnetization, as do DMRG parameters derived 

from neutron spectroscopy.  Looking forward to possible extensions of this work, synthesis of large 

single crystals or a ligand modification to reduce the saturation field will provide additional 

information on the present system.  In addition, the chosen combination of magnetic and structural 

probes has been shown here to provide a complete description of the magnetism in this class of highly-

tunable molecular system at the level of a low-energy Hamiltonian. This same approach will prove 

useful in the characterization of similar magnetic systems in terms of low-dimensional magnetic 

models. 
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Appendix A: Experimental and Numerical Details 

Synthesis.  In a typical synthesis, 0.2709 g of Ni(NO3)2‧ 6H2O (0.93 mmol) and 0.1489 g (1.96 mmol) 

of NH4NCS were dissolved separately in 10-mL of H2O and then slowly mixed. To this solution was 



added 0.2089 g (1.86 mmol) of pyrazine-N,N’-dioxide to give a green colored solution. The solution 

was covered with parafilm and perforated with a few holes to allow slow solvent evaporation. Upon 

standing at room temperature for about 1-week, brown colored crystals formed in the flask. After the 

second week, more crystals emerged from solution and the combined mass was collected by suction 

filtration, washed with 2x 5-mL aliquots of fresh H2O and dried in vacuo. The yield, though not 

optimized, was 76% (0.2820 g). A scaled-up synthesis was carried out to produce the neutron sample; 

3.0907 g of brown crystals were obtained (86% yield). 

X-ray diffraction.  A crystal of Ni(NCS)2(pyzdo)2 was removed from the flask, a suitable crystal was selected, 

attached to a glass fiber and data were collected at 90(2) K using a Bruker/Siemens SMART APEX instrument 

(Mo Kα radiation, λ = 0.71073 Å) equipped with a Cryocool NeverIce low temperature device. Data were 

measured using omega scans of 0.3 ° per frame for 10 seconds, and a partial sphere of data was collected. A total 

of 2100 frames were collected with a final resolution of 0.83 Å. Cell parameters were retrieved using 

SMART [44] software. The data were rotationally twinned and were deconvoluted using CELL_NOW [45] 

giving a two component twin relationship: 179.8° rotation about the reciprocal axis 1.000, 0.000, 0.002, with a 

refined twinning ratio of 0.277(5). The matrix used to relate the second orientation to the first domain is: 

[
−0.765 −0.231 −0.236
−0.824 −0.184 0.816
−0.953 0.950 −0.051

] 

Each cell component was refined using SAINTPlus [46] on all observed reflections. Data reduction and 

correction for Lp and decay were performed using the SAINTPlus software. Absorption corrections were applied 

using TWINABS. [47] The structure was solved by direct methods and refined by least squares method on F2 

using the SHELXTL program package. [48] The structure was solved in the space group P–1 (# 2) by analysis of 

systematic absences. All non-hydrogen atoms were refined anisotropically. No decomposition was observed 

during data collection. Details of the data collection and refinement are given in Table IX.  Atomic coordinates, 

select bond lengths and angles, and anisotropic displace parameters are given in Tables X, XI, and XII, 

respectively.  Further details are provided in the Supporting Information. 

Table IX.  Crystal data and structure refinement for Ni(NCS)2(pyzdo)2. 

 

Empirical formula  C10 H8 N6 Ni O4 S2 

Formula weight  399.05 

Temperature  90(2) K 

Wavelength  0.71073 Å 

Crystal system  Triclinic 

Space group  P–1 

Unit cell dimensions a = 6.8727(4) Å a= 82.7230(13)°. 

 b = 7.0431(4) Å b= 66.8030(12)°. 

 c = 8.0772(4) Å g = 74.0820(13)°. 

Volume 345.51(3) Å3 

Z 1 

Density (calculated) 1.918 Mg/m3 

Absorption coefficient 1.737 mm–1 

F(000) 202 

Crystal size 0.25 x 0.20 x 0.04 mm3 

Crystal color and habit orange plate 

Diffractometer Bruker/Siemens SMART APEX 



Theta range for data collection 2.74 to 25.25°. 

Index ranges –7 ≤ h ≤ 8, –8 ≤ k ≤ 8, 0 ≤ l ≤ 9 

Reflections collected 9020 

Independent reflections 1251 [Rint = 0.0000] 

Completeness to theta = 25.25° 100.0 %  

Absorption correction Semi-empirical from equivalents 

Max. and min. transmission 0.9338 and 0.6706 

Solution method Bruker, 2003; XS, SHELXTL  v. 6.14 

Refinement method Full-matrix least-squares on F2 

Data / restraints / parameters 1251 / 0 / 107 

Goodness-of-fit on F2 1.088 

Final R indices [I>2sigma(I)] R1 = 0.0227, wR2 = 0.0621 

R indices (all data) R1 = 0.0242, wR2 = 0.0629 

Largest diff. peak and hole 0.367 and –0.271 e.Å–3 

 

Table X.  Atomic coordinates (× 104) and equivalent isotropic displacement parameters (Å2 × 103) 

for Ni(NCS)2(pyzdo)2.  U(eq) is defined as one third of the trace of the orthogonalized Uij tensor. 

________________________________________________________________________________ 

 x y z U(eq) 

________________________________________________________________________________ 

C(3) 6830(3) 4093(3) 336(3) 13(1) 

C(4) 3027(3) 4978(3) 1295(2) 12(1) 

C(7) 8415(3) 445(3) 4297(2) 13(1) 

C(8) 10739(3) 1471(3) 5302(2) 13(1) 

C(10) 6580(3) 7967(3) 1831(3) 12(1) 

N(2) 4851(3) 4095(2) 1626(2) 11(1) 

N(6) 9156(3) 1917(2) 4600(2) 12(1) 

N(9) 5718(3) 7133(2) 3144(2) 14(1) 

Ni(1) 5000 5000 5000 11(1) 

O(1) 4706(2) 3262(2) 3221(2) 13(1) 

O(5) 8383(2) 3777(2) 4207(2) 15(1) 

S(1) 7835(1) 9106(1) –5(1) 17(1) 

________________________________________________________________________________ 

 

  



Table XI.   Bond lengths [Å] and angles [°] for Ni(NCS)2(pyzdo)2. 

_____________________________________________________ 

C(3)-N(2)  1.349(2) 

C(3)-C(4)#1  1.374(3) 

C(3)-H(3)  0.9500 

C(4)-N(2)  1.351(3) 

C(4)-C(3)#1  1.374(3) 

C(4)-H(4)  0.9500 

C(7)-N(6)  1.359(2) 

C(7)-C(8)#2  1.368(3) 

C(7)-H(7)  0.9500 

C(8)-N(6)  1.362(3) 

C(8)-C(7)#2  1.368(3) 

C(8)-H(8)  0.9500 

C(10)-N(9)  1.166(3) 

C(10)-S(1)  1.630(2) 

N(2)-O(1)  1.3246(19) 

N(6)-O(5)  1.321(2) 

N(9)-Ni(1)  2.0004(16) 

Ni(1)-N(9)#3  2.0004(16) 

Ni(1)-O(1)  2.1006(12) 

Ni(1)-O(1)#3  2.1006(12) 

Ni(1)-O(5)  2.1038(13) 

Ni(1)-O(5)#3  2.1038(13) 

 

N(2)-C(3)-C(4)#1 119.65(18) 

N(2)-C(3)-H(3) 120.2 

C(4)#1-C(3)-H(3) 120.2 

N(2)-C(4)-C(3)#1 120.50(18) 

N(2)-C(4)-H(4) 119.7 

C(3)#1-C(4)-H(4) 119.7 

N(6)-C(7)-C(8)#2 119.87(18) 

N(6)-C(7)-H(7) 120.1 

C(8)#2-C(7)-H(7) 120.1 

N(6)-C(8)-C(7)#2 120.50(17) 

N(6)-C(8)-H(8) 119.8 

C(7)#2-C(8)-H(8) 119.8 

N(9)-C(10)-S(1) 178.79(19) 

O(1)-N(2)-C(3) 119.80(16) 

O(1)-N(2)-C(4) 120.36(15) 

C(3)-N(2)-C(4) 119.84(16) 

O(5)-N(6)-C(7) 121.07(16) 

O(5)-N(6)-C(8) 119.30(15) 

C(7)-N(6)-C(8) 119.63(16) 

C(10)-N(9)-Ni(1) 162.12(15) 

N(9)#3-Ni(1)-N(9) 180.000(1) 

N(9)#3-Ni(1)-O(1) 86.81(6) 

N(9)-Ni(1)-O(1) 93.19(6) 

N(9)#3-Ni(1)-O(1)#3 93.19(6) 

N(9)-Ni(1)-O(1)#3 86.81(6) 

O(1)-Ni(1)-O(1)#3 180.00(4) 

N(9)#3-Ni(1)-O(5) 92.71(6) 

N(9)-Ni(1)-O(5) 87.29(6) 

O(1)-Ni(1)-O(5) 93.08(5) 

O(1)#3-Ni(1)-O(5) 86.92(5) 

N(9)#3-Ni(1)-O(5)#3 87.29(6) 

N(9)-Ni(1)-O(5)#3 92.71(6) 

O(1)-Ni(1)-O(5)#3 86.92(5) 

O(1)#3-Ni(1)-O(5)#3 93.08(5) 

O(5)-Ni(1)-O(5)#3 180.0 

N(2)-O(1)-Ni(1) 115.25(10) 

N(6)-O(5)-Ni(1) 120.93(11) 



_____________________________________________________________ 

Symmetry transformations used to generate equivalent atoms:  

#1 –x+1,–y+1,–z    #2 –x+2,–y,–z+1    #3 –x+1,–y+1,–z+1 

 

Table XII.   Anisotropic displacement parameters (Å2 × 103) for Ni(NCS)2(pyzdo)2. The anisotropic 

displacement factor exponent takes the form: –2π2[h2a*2U11 + ... + 2 h k a* b* U12] 

______________________________________________________________________________ 

 U11 U22 U33 U23 U13 U12 

______________________________________________________________________________ 

C(3) 13(1)  11(1) 15(1)  –3(1) –6(1)  –2(1) 

C(4) 12(1)  11(1) 13(1)  –3(1) –4(1)  –2(1) 

C(7) 12(1)  15(1) 12(1)  –1(1) –5(1)  –3(1) 

C(8) 12(1)  15(1) 12(1)  –2(1) –4(1)  –4(1) 

C(10) 12(1)  11(1) 17(1)  –5(1) –8(1)  0(1) 

N(2) 16(1)  9(1) 11(1)  –1(1) –6(1)  –4(1) 

N(6) 11(1)  11(1) 11(1)  0(1) –2(1)  –1(1) 

N(9) 16(1)  12(1) 13(1)  0(1) –6(1)  –3(1) 

Ni(1) 12(1)  10(1) 10(1)  1(1) –5(1)  –3(1) 

O(1) 19(1)  12(1) 8(1)  2(1) –7(1)  –5(1) 

O(5) 14(1)  9(1) 19(1)  3(1) –7(1)  –1(1) 

S(1) 17(1)  16(1) 17(1)  3(1) –3(1)  –6(1) 

______________________________________________________________________________ 

 

Magnetic susceptibility.  Magnetic susceptibility was performed with a vibrating sample 

magnetometer. 

Heat capacity.  Heat capacity (Cp) measurements were carried out using a 14 T Quantum Design 

PPMS, with a 2.1 mg polycrystalline sample secured to an alumina stage sample platform using 

a thin layer of Apiezon-N grease to ensure good thermal contact. This platform also houses a 

Cernox thermometer and an electric heater that is connected to the temperature-bath using gold 

wires. The sample was cooled in zero magnetic field under high vacuum to the base temperature 

of 1.8 K and the data collected upon heating up to 100 K. More scans were taken between 1.8 

and 25 K at zero field, as well as 4, 8 and 12 T. The Cp was measured using a standard thermal 

relaxation technique. [49] For this technique, a heat pulse (≈ 2 % of the thermal bath 

temperature) was applied to the stage and Cp evaluated by measuring the time constant of the 

thermal decay curve. The heat capacities of the Apiezon-N grease and sample platform were 

measured separately and subtracted from the total to obtain the heat capacity of the sample. 

Muon-spin relaxation.  Zero-field muon-spin relaxation (μ+SR) measurements were performed 

on Ni(NCS)2(pyzdo)2 using the GPS spectrometer at the Swiss Muon Source, Paul Scherrer 

Institut, Villigen, Switzerland. For the measurement, the sample was packed in an Ag foil packet 

and suspended in the muon beam inside a 4He cryostat. In the measurement spin-polarized 

positive muons are implanted into the sample.  The positive muons stop in the material, usually 



in sites with high electron density, and their polarized magnetic moments precess around the 

direction of the local magnetic field with frequency ν = γμB/2π, where the muon gyromagnetic 

ratio γμ = 135 MHz T−1.  Muons are unstable with mean lifetime 2.2 μs, and decay into a positron 

and two neutrinos, the former being preferentially emitted along the direction of muon spin.  

Detectors record the direction of positron emission, whose time dependence tracks the average 

spin polarization of the muon ensemble. The detectors are divided into forward (F) and backward 

(B) detector banks, and the direction of preferential positron emission is represented by the 

asymmetry between NF(t) and NB(t), the number of positrons detected in each detector bank as a 

function of time.  The asymmetry function, which is proportional to the average spin polarization 

of the muon ensemble, is defined as 𝐴(𝑡) =
𝑁𝐹(𝑡)−𝜖𝑁𝐵(𝑡)

𝑁𝐹(𝑡)+𝜖𝑁𝐵(𝑡)
 , where 𝜖 is an experimentally-

determined parameter dependent on apparatus geometry and detector efficiency. [30,50] 

Neutron diffraction.  Neutron diffraction was performed at the time-of-flight Wish diffractometer 

of the ISIS Neutron Source. [51]  Rietveld refinements were performed using the FULLPROF 

program. [52] 

Plane-wave DFT.  For plane-wave DFT, the VASP software [53,54] was used with the 

generalized gradient approximation (GGA) functional of Perdew-Burke-Erzenhof as PBE. [55]  

The projector augmented wave (PAW) method [56,57] was used for valence electrons with the 

included pseudo-potentials applied via the PBE.54 files.  The on-site coulomb interaction was 

included with the rotationally invariant approach having UNi = 5 eV and JNi = 1 eV.  A Γ-

centered mesh was generated with (4 × 2 × 4) k-points, and plane waves were cut above a kinetic 

energy of 500 eV. 

Neutron spectroscopy.  Inelastic neutron scattering of polycrystalline Ni(NCS)2(pyzdo)2 was 

performed on the cold chopper neutron spectrometer (CNCS) [58,59] using the high-flux mode 

at the Spallation Neutron Source of Oak Ridge National Laboratory.  Models were fit to 

integrations over momentum described in the main text, as no clear momentum dependent 

features were seen, Figure 17.  No magnetic inelastic scattering was observed below ≈ 4 meV. 

 



Figure 17.  Intensity maps of Ni(NCS)2(pyzdo)2 experimental neutron spectroscopy data.  (a) Ei = 12 

meV, T = 2 K minus T = 22 K data.  (b) Ei = 6.59 meV, T = 2 K minus T = 22 K data.  (c) Ei = 3.32 

meV, T = 2 K data.  (d) Ei = 1.55 meV, T = 2 K data.  White regions are where the scattering 

condition is not satisfied by the spectrometer. 

 

Linear spin-wave theory for neutron spectroscopy.  The LSWT SpinWaveGenie library was used 

to generate neutron scattering intensities from spin models. [60]  Powder averages in momentum 

were done by taking a set of momentum from 1 Å–1 to 3 Å–1 with 0.1 Å–1 steps, and for each 

momentum sampling all orientations equally by approximating the surface tiling of a sphere with 

a Golden Spiral.  The energy resolution of the spectrometer was used in generating model 

spectra. 

Density Matrix Renormalization Group Theory.  Calculations were performed for D/Jy = [–0.5, –

1.0, –1.5] using L = 64 sites on a one-dimensional system with open boundary conditions. The 

effect of coupling to z⊥ =2 nearest-neighbor chains is treated within self-consistent mean-field 

approximation [34,61] with interchain coupling α=Jx/Jy = z⊥ J5/J3 of model 2 in Table V (here, 

we have used the notation as in Ref.  [62]). The latter results in mz=[0.851, 0.909, 0.938] 

staggered magnetic moment, for D/Jy = [–0.5, –1.0, –1.5], respectively. Throughout the 

DMRG [63–66] procedure, up to M ≈ 2048 states are kept and ≈ 15 full sweeps are performed in 

the finite-size algorithm, maintaining the truncation error below 10–6. We have chosen δω/Jy = 

0.04 as the frequency resolution  [67] with broadening η = 2ω. 

The spin-spin correlation functions from DMRG are dominated by a single mode in the 〈𝑆+𝑆−〉 

channel, Figure 18.  The effect of changing D/Jy and the mean-field interactions is illustrated by 

the change in the energy of the mode position at the BZ center and edge, Figure 19.  The D/Jy 

dependence of the mode parameters were fit with a quadratic equation to interpolate and extract 

parameters from the experimental data.  The result of this extraction is in Table VI.  These 

DMRG spectra are well parameterized by fitting to an effective LSWT, also in Figure 18, which 

capture the dominant mode. 



 
Figure 18.  Spin-spin correlations from DMRG for (a-c) isolated chains and (g-i) chains 

interacting via a mean-field as described in the text.  For (a-c) the region above 4J was not 

calculated.  Fits of the DMRG to LSWT are shown to the right of the respective spectra, with 

the LSWT parameters plotted in Figure 20. 

 

 

 



Figure 19.  Comparison of the dominant 

transverse DMRG mode at (a) the BZ center, (b) 

the BZ edge, and (c) their ratio as a function of 

D/Jy. 

 

 

The dominant transverse mode of DMRG was fit using LSWT to compare the parameters from 

each model, Figure 20.  All three DDMRG/Jy,DMRG ratios are in a long-range magnetically ordered 

ground-state.  The effect of numerical values for single-ion anisotropy and exchange are 

consistently different between the DMRG and RSWT.  The RSWT parameters may be extracted 

by scaling these LSWT anisotropy values by a factor of 2. 

 

 

Figure 20.  Comparison of DMRG and LSWT 

parameterizations of a spin-chain mode. 

 

 

Pulse field magnetization.  Experimental data from the 60 T and 100 T magnets were stitched 

together at 45 T. Pulsed field measurements were made up to 60 T using a 1.5 mm bore, 1.5 mm 

long, 1500-turn compensated-coil susceptometer constructed from a 50-gauge high-purity copper 

wire. When the sample is within the coil, the signal voltage V is proportional to dM/dt, where t is 

time. Numerical integration of V is used to evaluate M. The sample is mounted within a 1.3 mm 

diameter ampoule that can be moved in and out of the coil. [68] Accurate values of M were 

obtained by subtracting empty-coil data from that measured under identical conditions with the 

sample present. The susceptometer was placed inside a 3He cryostat providing a base 

temperature of 0.5 K. The magnetic field was measured by integrating V-induced in a 10-turn 

coil calibrated by observing the de Haas-van Alphen oscillations of the belly orbits of the copper 

wires in the susceptometer coil. [69]  The dM/dH were generated by a numerical derivative 

followed by a 1 T FWHM Gaussian smoothing. 

Local basis-set DFT.  For evaluation of the exchange couplings along the bridging pyzdo 

ligands, the broken-symmetry (BS) approach of Noodleman [70] as implemented in the ORCA 

ver. 4.2 suite of programs [71–73] was employed.  The formalism of Yamaguchi, which employs 

calculated expectation values ‹S2› for both high-spin and BS states was used. [74,75]  



Calculations related to magnetic interactions have been performed using the PBE0 functional.  

The Ahlrichs-VTZ basis function set was used. [76]  Spin densities were visualized using the 

UCSF Chimera program ver. 1.8. 

Classical magnetization model.  These simulations used the Langevin method of the Sunny.jl 

package. [43]  The input parameters of nsamples=1×106, λ=0.1, thermdur=10, decorrdur=0.5, and 

Δt=5×10-3 were used.  Periodic boundary conditions and 64 sites were used, with 8×8 for the two-

dimensional models and 1×64 for the spin chain. 
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