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The antisymmetrized geminal power (AGP), a wave function equivalent to number-projected
Hartree-Fock-Bogoliubov (HFB), and number-projected Bardeen—Cooper—Schrieffer (BCS) when
working in the paired (natural orbitals) basis, has proven to be an excellent reference for strong
pairing interactions. Several correlation methods have also been applied on top of AGP. In this
work, we show how AGP can also be applied to spin systems by simply basing its formulation on a
spin su(2) algebra. We here implement spin AGP and spin AGP-based correlation techniques and
benchmark them on the XXZ and J; — J2 Heisenberg models, both in 1 and 2 dimensions. Our
results indicate that spin AGP is a promising starting point for modeling spin systems.

I. INTRODUCTION

Model spin Hamiltonians provide valuable insight into
magnetic materials, high-temperature superconductors,
and biochemical processes such as nitrogen fixation [1-
3]. They are also important for the study of quantum
sensors, cold atoms in optical lattices, and fault-tolerant
quantum computers [4-6]. These model Hamiltonians
capture diverse physical phenomena without the details
of a fully ab initio description. Nevertheless, with a few
exceptions [7], lattice models of spin systems beyond one
dimension are not exactly solvable, and we have to resort
to approximate numerical methods.

Here we focus on the ground states of spin lattice mod-
els, whose computation is already challenging due to var-
ious quantum phases that arise from different interaction
strengths [1, 8-12]. Particularly, analogous to Hartree—
Fock in electronic structure theory, spin wave functions
based on a single spin configuration are inadequate in the
strongly correlated regime [13, 14]. However, our recent
work suggests that methods in electronic structure the-
ory can be useful for studying spins if they are mapped
to fermions without constraints [15].

The antisymmetrized geminal power (AGP) wave func-
tion [16, 17] has been shown to be a good starting point
for certain strongly correlated problems. When corre-
lated with configuration interaction (CI) or coupled clus-
ter (CC) theory [18, 19], AGP yields quite accurate re-
sults for the reduced Bardeen—-Cooper—Schrieffer (BCS)
Hamiltonian, which models the kinds of strong correla-
tions seen in conventional superconductors [20, 21].

Though AGP was originally developed for paired
fermionic systems, the pairing algebra generators satisfy
the same su(2) algebra as spin operators. Inspired by
Anderson’s resonating valence bond theory which was
applied to study both the Heisenberg model and Hub-
bard model [22, 23], we propose to treat spin systems via
AGP. Our results suggest that spin AGP (sAGP) and cor-
related methods based on it are computationally afford-
able techniques that can accurately describe the ground
states of strongly correlated spin systems.

II. THEORY
A. Antisymmetrized Geminal Power

The central concept of AGP [16, 17] is the geminal, a
two-electron wave function created by a geminal creation
operator
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where 7 is antisymmetric, c; is the fermion creation op-
erator for spinorbital p, and indices p, ¢ run over all 2M
spinorbitals. An AGP state with 2N electrons is created
by occupying the same geminal IV times:
1 N
AGP) = & ()" =), (2)
where |—) is the physical vacuum.
In practice, it is more convenient to work in the natural
orbital basis of the geminal, where 7 is quasidiagonal [24],
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displaying a pairing scheme of the spin-orbitals [19]. On
this basis, we can write

M
I = Z 1 By, (4)
p=1
in which we have defined
_ i
P; = c;r) cp (5)

and have reindexed the fermion creation operators by p
and its paired companion p, where p enumerates all M
pairs. The AGP then assumes the form of an elementary
symmetric polynomial:

|AGP) = >
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Because AGP is equivalent to number-projected Hartree—
Fock-Bogoliubov (HFB) [25] or number-projected BCS
in the natural orbital basis, it can be optimized with
mean-field cost of O(M?3) [26-28], and its variationally
optimized result is guaranteed to be at least as good
as Hartree—Fock, which is just a special case of AGP in
which only N of the n values are non-zero.

In this work, we will not worry about the norm of the
AGP wave function, which can be normalized by multi-
plying all the n values by the same constant.

B. AGP for Spin Systems

The pair creation operator P; and its adjoint P, to-
gether with the number operator

N, = c;f, cp + c;r; s, (7)

close the the su(2) commutation algebra:
[Py, PI] = 6pq (1= N,,), (8a)
[Ny, i) =20y B}, (D)

Following Anderson [29], we can relate the AGP com-

mutation algebra to the spin-% su(2)
(S5, 5,1 =20, 5%, (9a)
[S2, 5] = 6pq S5 (9b)

Comparing with Eqns. (8), we see that by the bijective
mapping

S« P, (10a)

S, < P, (10b)
. N, —1

S, > p2 , (10c)

we can simply transcribe any expressions for standard

AGP matrix elements in the zero seniority [30] fermion
space, where all electrons are paired, to those for spin
AGP (sAGP for short), and can readily generalize any
of the techniques we have introduced for the correlation
of AGP to sAGP [18, 19, 27, 31, 32]. In the standard
pairing AGP case, we have

Pp‘_> =0, (11)

where |—) denotes the physical vacuum. The correspond-
ing spin “vacuum” state |{}) is the product state of |-spins
on all sites, and statisfies

S, [y = 0. (12)
The sAGP wave function is thus
[SAGP) = N, T 1), (13a)

(13b)
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P

where we have a total of N f-spins and (M — N) |-spins,
SO

M
=N 5 (14)
At half filling (N = M/2) the sAGP wave function is
magnetically neutral.

Incidentally, the inverse mapping of Eqns. (10) has
been used to implement quantum computing algorithms
for the standard pairing AGP state [33-35].

Let |p1pa---pn) be a spin product state (SPS) where
the spins are up on sites p1,p2,---py and down on the
others. Eqns. (13) implies that sAGP is a linear combi-
nation of all SPSs in the Hilbert space of the problem,
with coefficients

(sAGP|S*|sAGP)

(p1p2 - PNISAGP) = 1,1, = Ty - (15)

This means that SAGP is a particularly simple matrix
product state, whose matrix elements are straightforward
and inexpensive to compute [26-28].

We have noted that standard AGP is equivalent to
number-projected BCS, which suggests that there should
be an equivalent projected mean-field understanding of
sAGP. This is indeed the case: sAGP is simply the S?%-
projected spin BCS state, where spin BCS (sBCS) is de-
fined as

M
SBCS) :H (L +n,85) |4y, (16)

in analogy with the standard BCS given in terms of pair-
ing operators P;,f and the physical vacuum. When the
spin problem is mapped to fermions, spin BCS corre-
sponds to generalized Hartree-Fock (GHF) in which the
spin-orbitals break not only S? but also S* symmetry
[36-38].

In this work, in which we specialize to spin Hamilto-
nians, the GHF wave function has seniority symmetry
dictated by the spins, and one could think of sSAGP as
an S*-projected general spin product state.

III. APPLICATIONS

We benchmark sAGP on two families of spin lattice
systems, the XXZ and J; — J, Heisenberg models [1].
The former captures anisotropic interactions, while the
latter includes interactions beyond nearest neighbors.

We focus predominantly on the nearest-neighbor XXZ
model. We start with the one-dimensional (1D) case as a
prototypical example that illustrates the most important
features of SAGP and is exactly solvable via Bethe ansatz
[39]. We then discuss various two-dimensional (2D) XXZ
lattices as well as the J; — Jo square lattice, which are
not integrable in general.

We first explore SAGP on its own for these systems.
While sAGP itself is of modest accuracy in general, we
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FIG. 1. Energies in the 8-site 1D XXZ Hamiltonian for different S* sectors and open boundary conditions (left panel) or
periodic boundary conditions (right panel). We compare the exact results (lines) against the mean-field optimized sAGP
(points). Different colors correspond to different S* sectors. Spin AGP is very accurate for A < —1 and exact for all S* sectors
at A = —1. We note that SAGP is always exact for S = 3 and S* = 4 as explained in Sec. III A 1. The curves for S* = 0 and
5% =1 are hard to distinguish for A < 0 in this figure but they are not identical and S* = 0 has a higher energy.

want to understand its properties to provide context for
the correlated sAGP results, which we then compare with
conventional correlation methods to show that SAGP is a
better starting point for strongly correlated spin systems.

A. Spin AGP for the One-Dimensional XXZ Model

The XXZ Hamiltonian is

Hxxz =3 (S5 Sy+SYSy+AS:S;) (17a)
(pa)
1 — — z Qz
=7y {2 (S} S, +S, SH)+AS:Sz|,
(pa)
(17b)

where p and ¢ index lattice sites and the notation (pg)
restricts the summation over p and ¢ to nearest neigh-
bors. Generally speaking, we take J = 1 in this article
unless otherwise specified, so that the system is antifer-
romagnetic when A > 1.

In the 1D case, sites p and g are nearest neighbors if [p—
g| = 1. With J > 0, it exhibits a Néel antiferromagnetic
phase for A 2 1, and a ferromagnetic phase for A <
—1. In the interval region |A| < 1, the system is in
the XY phase characterized by gapless excitations and
long range correlations [1]. While the ferromagnetic and
antiferromagnetic phases are fairly simple to describe, the
XY phase is much more complicated, and methods based
on a single spin configuration struggle (see below and also
Ref. [13, 14]). Spin AGP, however, is exact at A = —1,
which gives us hope that it will be able to accurately
describe this challenging phase as A progresses from —1
to +1.

1. Energies for Different S* Sectors

Let us start with an overview of the exact and sAGP
ground state energies for different S* quantum numbers
and different values of A, as shown in Fig. 1. For A < —1,
the exact ground state occurs when all the spins are
aligned, i.e., at S = £M/2. For A > —1, the exact
ground state is instead S* = 0. At A = —1, the different
S% sectors are exactly degenerate. Spin AGP is exact
at A = —1 for all S% sectors and is highly accurate for
A < —1. For A > —1, sAGP is exact for S* = i%
and S* = +(4 — 1), but shows larger error as we ap-
proach half-filling (5% = 0). As a matter of fact, SAGP
is always exact at the % = :I:% and S% = :I:(% —1) sec-
tors as it has sufficient variational flexibility. S* = +24f
corresponds to the state where all the spins are aligned
up or down and sAGP naturally capture it by letting
N = 0 or M respectively. 5% = i(% — 1) means the
system has only one 1-spin (or }-spin), the exact ground
state takes the form:

W) = S, (18)

which is just the SAGP state with N = 1.

2. Bimodal Extreme sAGP

We now turn to the nature of the sAGP ground state.
We find that 7 values on adjacent sites have opposite
signs, for all values of A. When A is large and negative,
the n values on the left (or right) half of the lattice are
large in magnitude, and on the other half are small. For



FIG. 2. The sAGP geminal coefficient n as a function of A
for the 8-site XXZ Heisenberg model with open boundary
conditions and S* = 0. For —1 < A < 1 the n values are
independent of A, and —0.6 < A < 0.6 has been omitted
from the plot. We order the sites from left to right as n1 to

7s-

a site p, larger [n,| correspond to larger (S7); thus, the
fact that the large |n| values localize on the left (or right)
side of the lattice means that the 1 spins localize on this
side, i.e, we have a 2-block ferromagnetic solution. Due
to the breaking of inversion lattice symmetry, 1 spins can
either localize on the left half or right, corresponding to
two degenerate states. On the other hand, when A is
large and positive, alternating sites exhibit a pattern of
large and small ||, corresponding to a Néel arrangement
of spins. These observations are exemplified by the 8-site
XXZ chain with open boundary conditions and S* = 0,
whose 1 values are depicted in Fig. 2.

The more interesting region is of course when —1 <
A < 1, particularly at A = —1 where sAGP is ex-
act. In this region, the sSAGP wave function is what
we refer to as bimodal extreme, for which we can choose
n = (1,—-1,1,—1...), as can be seen from Fig. 2. An
sAGP is extreme when all 7 values are the same in mag-
nitude, which corresponds to each site having equal (S*).
We refer to the SAGP as bimodal when the 1 take on two
values, in this case, +1. This bimodal extreme sAGP is
the exact ground state wave function for A = —1 and is
the lowest energy sAGP state throughout this XY phase.
Note that extreme AGP also has a place in the reduced
BCS Hamiltonian H = > e,N, — G ngPq, where,
as the interaction strength G goes to infinity, the values
of all n approach the same [18], exhibiting a unimodal
extreme AGP that carries off-diagonal long-range order,
i.e., superconductivity without number-symmetry break-
ing [21].

We should emphasize again that we do not artifi-
cially choose n to have a bimodal extreme pattern. In-
stead, we variationally optimize the n values, and observe
that across a wide range of A values, for many differ-
ent lengths of the XXZ chain and for many different S*

(S8 p+571S" /2

05 . . . . . .
—A—130
\ A=0.00 |
04 P\—— A-130
03} |
02} 1
o1} 1
0 e
_0.1 L 4
02} |
~03 . . .
1 2 3 4 5 6 7 8

p

FIG. 3. Correlation function (S} S, + Sy S, )/2 for the 8-site
XXZ Heisenberg model with open boundary conditions and
S* =0 for A = —1.30,0.00 and 1.30, corresponding to the 3
phases of the XXZ model. We see that <Sf'S; + S7S55)/2
have alternating signs for even and odd p, which is a result of
the alternating signs of 7.

eigenvalues, and for both periodic boundary conditions
(PBC) and open boundary conditions (OBC), the varia-
tional optimization selects these 1 values. We also note
that bimodal extreme sAGP is always a stationary point
of the energy, and the points at which the values of 7
begin to change from extreme occur when it is no longer
the lowest energy solution.

Finally, we should say a few words about the physical
meaning of the n values. First, we note that the sign of
Np7g determines the sign of (S S~ 4 S, S;) [26]. This
can also be seen from Fig. 3. If two sites have oppositely-
signed 7 values, those sites tend to be antiferromagnet-
ically coupled. The alternating signs of the n values in
the bimodal extreme AGP therefore reflect the Marshall
sign rule [40]. The absolute value of 1) on a site, as we can
see from Eqn. (13), determines the chance that the spin
on that site is flipped to spin-up. Sites with very large
or very small relative n values are sites which are not
strongly entangled with the other sites. Sites for which
the absolute values of the 7 are similar are more strongly
entangled. The bimodal extreme AGP is actually the
maximally entangled state, and in this case each site has

(5 =0

3. Approaching the Thermodynamic Limit

Fig. 4 shows the energy error per site for the open
boundary XXZ chain with different lengths in the S* = 0
sector. The energy per site in the thermodynamic limit
(TDL), ey, is extrapolated by fitting

E(M 1 1
%:€0+€1M‘|‘62W4‘"'7 (19)



Energy error per site for XXZ chains
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FIG. 4. Energy error per site for 1D XXZ chains with different
lengths with open boundary conditions. The thermodynamic
limit result is obtained by fitting the SAGP energy result by
the inverse of the lattice length. We notice that the per-site
energy error grows as system size grows for A > —1. It is
also noticeable for A < —1, the per-site energy error reduces
as system size grows.

where we truncate the expansion at second order egﬁ.
We use the same extrapolation scheme for both the sAGP
and the exact energies, and display their differences in the
TDL in Fig. 4. We observe that for all lattice lengths,
sAGP reaches its maximum error around A = 1, and the
value of A at which the error is the largest grows with
the system size. The maximum sAGP error per site in
the TDL is around 0.18. We can also see that sAGP is
quite accurate in the ferromagnetic regime (A < —1) for
all system sizes; especially, as the system size grows, the
per-site error reduces.

4. The Ferromagnetic X XZ Model

So far we have focused on the antiferromagnetic XXZ
model, where J = 1. We now briefly discuss the ferro-
magnetic XXZ model, in which J = —1. Because of the
Hamiltonian’s overall sign change, the bimodal extreme
sAGP, which is the ground state for the antiferromag-
netic XXZ model at A = —1, becomes the highest energy
eigenstate at this point for the ferromagnetic XXZ model.
At the Heisenberg point A = 1, an extreme unimodal
SAGP where all the n values are the same becomes the
ground state for the ferromagnetic XXZ model for all 5*
sectors with an energy of E = —M or E = —1(M —1)
for periodic boundary conditions and open boundary con-
ditions, respectively.

B. Spin su(2) Algebras and Multimodal Extreme
sAGPs

The bimodal extreme sAGP for antiferromagnetic
XXZ model and the unimodal extreme sAGP for ferro-
magnetic XXZ model for the 1D mentioned above are

just two special cases of multimodal extreme sAGPs, all
of which can be formed from collective spin operators
which realize a collective su(2) algebra:

KE=) et K* =) 5 =5 (20)
p p

where k is the lattice momentum. In 1D k = 2”7” with
n being an integer restricted to —% <n < % These

three operators fulfill the su(2) commutation algebra
(K K, ] =2K7,
[K* K] = £Kf

(21a)
(21b)

Note that for momentum k = 0 the K-su(2) algebra
reduces to the spin su(2) algebra.

This K-su(2) algebra has been recently introduced in
the context of quantum many-body scars in spin lattice
systems [41, 42]. However, our goal here is to use it to
construct a reference ansatz to study many-body corre-
lations in spin lattice ground states.

The (unnormalized) K-spin extreme sAGP state is a
K k—spin—% multiplet,

NG = (K50 1), (22)

with K* = N — & and K? = &L (& +1). Note that
each site has the same (S*) in this wave function. The
special cases k = %’T for integer m constitute the m-modal

extreme AGP states. In these cases we have

N
|Ny) = (Z ei”ﬁfs;) R (23)

One can see that the 1 values are the m'* roots of unity.
For m = 1,2,3, the m-modal extreme AGP states are
specifically called unimodal, bimodal, trimodal extreme
AGP, respectively. These m-modal extreme AGP states
are a special class of AGP states, which, as we see here,
are the Koy /n,-spin eigenstates.

We can now ask under what conditions the m-modal
extreme AGP states |Nj) are eigenstates of the XXZ
Hamiltonian. As demonstrated in [37], it depends on the
geometry of the lattice. For the 1D XXZ Hamiltonian
with PBC, the condition is

A = cos(k) = cos (i@”) , (24)

as shown in Appendix B. In these cases, we have
M
Hxxz |Ny) = IA | Vi) - (25)

Moreover, the unimodal extreme sAGP is the highest en-
ergy state at the Heisenberg point A = 1, and the bi-
modal extreme sAGP is the ground state for A = —1.
The result can also be extended to OBC. In the interval
—1 < A =cos (2”7”) < 1, the multimodal extreme sAGP



are eigenstates of the Hamiltonian, known as scarred
states, and they describe non-thermal behavior [43, 44].

Reduced density matrices of extreme sAGP states are
trivial to compute because all elements are identical (ra-
tios of combinatorial numbers), making it possible to cor-
relate sSAGP with low computational cost.

Multimodal extreme sAGPs turn out to be the low-
est energy sAGP states not only for the XY phase
(=1 £ A £ 1) of the 1D XXZ model but also for the
2D XXZ and 2D J; — J5 models, which will be discussed
in Secs. IIID and IITE. As with the 1D XXZ model, a
multimodal extreme sAGP is the exact ground state in
the 2D XXZ Hamiltonian at a specific lattice-dependent
value of A.

It should be emphasized that not every sAGP is of ex-
treme multimodal form; for example, the SAGP ground
state in the 1D XXZ model for |A| 2 1 is usually not ex-
treme sAGP. We observe, however, that for the spin lat-
tice models that we have studied in this work, the lowest
energy sAGP state frequently has multimodal extreme
character as obtained from variational optimization.

C. Correlating Spin AGP in the One-Dimensional
XXZ Model

1. Incorporating Jastrow-Type Correlators

After studying the properties of SAGP solutions, we
can now look at improving them by adding correlation.
Correlating AGP with the equivalent of the AGP killing
operator presented in previous work [18],

qu:nﬁP,IPqun?PJPp (26)

1
+ 9 'l (Np Ng = Np — Ng)
is not helpful here. This is because whenever 7712J = 773,
as in the case of a bimodal extreme sAGP state, K, is
Hermitian and K;q also kills sAGP.

Fortunately, we can use Hilbert space Jastrow correla-
tors instead, which generate the same manifold as do the
killing operators in the 72 # 72 case [19] because both
ultimately correspond to a geminal replacement theory
[31].

By Jastrow-type correlators, we mean operators of the
form

1
T = > apg Np N, (27a)
p<q
=Y o (282 1) (282 —1). (27b)
p<q
Since the lower-order Jastrow operator J; = Y a, N,

already lurks inside Jo [32], we can define the J; operator
for sAGP as

1 z z
Ja= 7D 0S5 5, (28)

p<q
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FIG. 5. Energy errors for the 14-site 1D XXZ model with
open boundary conditions in the S* = 0 sector, on linear
scale (top panel) and logarithmic scale (bottom panel). The
J2-CI and J>-CC methods are based on sAGP. Spin product
state results are also included in the top panel for comparison.
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FIG. 6. Errors in the sAGP and J>-CC energies based on the
mean-field optimized sAGP and the bimodal extreme sAGP
in the 10-site XXZ Heisenberg chain with open boundary con-
ditions in the S* = 0 sector.

and will use this definition hereafter.
The simplest way to correlate SAGP using these oper-
ators is by what we refer to as Jo-CI, which writes

‘JQ—CI> = JQlSAGP>, (29)

where we generally use the mean-field optimized sAGP as
a reference. We then evaluate the energy via an expecta-
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tion value and minimize it with respect to the amplitudes
Qtpg.

Somewhat more sophisticated is J5-CC, where we use
an exponential ansatz instead:

|Jo-CC) = e”2|sAGP). (30)

Although intractable in its variational form, a similarity-
transformed approach is quite feasible [32, 45]. The en-
ergy and residual equations are

EJZ_CC = <SAGP|H‘SAGP>, (31&)
0= (sAGP|SZ S2 (H — Ey,.cc) [sAGP), (31b)

where
H=ec"72He'2 (32)

Although the commutator expansion of H does not trun-
cate, it can be analytically resummed to yield an expres-
sion in terms of exponentials of one-body operators Ji,
which act on one sAGP state to produce another [32].
Both J5-CI and J5-CC have computational costs propor-
tional to O(M*) for these lattice models.

Fig. 5 shows errors of J5-CI and Jo-CC for the 14-site
antiferromagnetic XXZ model with OBC. We see that
Jo-CI eliminates about half the error of sSAGP, while the
improvement given by Jo-CC is significantly larger, with

an error one order of magnitude smaller than the error
of sAGP itself. This is particularly true when Jo-CC
is based on the bimodal extreme sAGP everywhere, and
not just where this is the lowest energy sAGP (Fig. 6). A
particularly interesting feature is that Jo-CC is exact at
A = 0. This is true in 1D but not in higher dimensions.
In Appendix A, we prove this exactness for both open
and periodic boundary conditions.

2. Comparison with Conventional Correlation Methods

To demonstrate the advantage of sAGP-based cor-
related methods over conventional correlation methods
based on SPS, we compare their energies for the 12-site
antiferromagnetic XXZ model. Fig. 7 shows the energy
errors of sSAGP-based J5-CI and J5-CC along with SPS-
based configuration interaction doubles and quadruples
(CIDQ) and coupled cluster doubles to hextuples (CCD,
CCDQ, CCDQG6). The two sSAGP-based correlated meth-
ods have the same computational complexity as SPS-
based CIDQ and CCDQ, scaling as O(M*), while CCD
and CCDQ6 scale as O(M?) and O(M?Y), respectively.
We note in passing that odd CC excitations (singles,
triples, etc.) do not contribute because of S* symme-
try.

The results of sSAGP-based methods are generally su-
perior to those of SPS-based methods with equivalent
computational scaling for A < 1, which corresponds to
the ferromagnetic and XY phases. It is important to note
that sAGP is exact at A = —1, whereas conventional
coupled cluster calculations break down in this vicinity.
As noted above, J5-CC is also exact at A = 0, and it is
the most accurate low-scaling correlated method overall.
One may of course use an S?*-broken SPS reference to
obtain better CC energies [14], but at the cost of break-
ing physical symmetries of the Hamiltonian, which sAGP
and correlated sAGP conserve.

D. The Two-Dimensional XXZ Model

We next test our methods on several XXZ 2D lattices
including the square lattice, honeycomb lattice, triangu-
lar lattice, and kagome lattice (Fig. 8). In Appendix C,
we show analytically that for both PBC and OBC with
certain boundary shapes, the bimodal extreme sAGP is
the ground state of the square and honeycomb lattices
at A = —1, while the trimodal (m = 3) extreme sAGP
is the ground state of the triangular and kagome lattices
at A = —0.5. This trimodal extreme sAGP has three
distinct 7 values which we denote by 71,72, and n3. As
explained in Sec. III B, these three distinct n values are
the three cube roots of 1:
iZm

m=1, np =37, g =5 (33)

The arrangements of the 7 values in different lattices are
illustrated in Fig. 8. These analytical results are corrob-



FIG. 8. Assorted 2D lattices. From left to right, these are the square lattice, the honeycomb lattice, the kagome lattice, and
the triangular lattice. The purple dashed shape, wherever present, indicates the smallest rectangular cell for the honeycomb
lattice and the unit cell for the kagome lattice and triangular lattice. The red, blue and green open circles indicate the different
7 values for the SAGP ground state in the XXZ Hamiltonian, which is bimodal extreme for the square and honeycomb lattices,

but trimodal extreme for the kagome and triangular lattices.
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FIG. 9. Multimodal extreme sAGP and exact energies of the XXZ Hamiltonian for different lattices and S* sectors. The
lines correspond to the exact energies and the circles to the multimodal extreme sAGP results. Different colors correspond
to different S* sectors. Top left: square lattice. Top right: honeycomb lattice. Bottom left: kagome lattice. Bottom right:

triangular lattice. All exact and SAGP results have the same energy for all S* sectors at A = —1 (square or honeycomb lattice)

or at A = —1/2 (kagome or triangular lattice). We note sAGP is always exact for S = £5- and S* =

M +(& — 1) (not shown

in the fiugre) for these 2D lattices, for the same reason as in the 1D case discussed in Sec. IIT A 1.

orated by numerical calculations as shown in Fig. 9. The
ground states of the 2D XXZ models at these special A
values have been reported in Ref. [36-38], though they
are expressed in a form different from sAGP.

While we do not wish to dwell on these various lattices
in detail, we have a few things to point out.

First, as we can see in Fig. 10, SAGP is extreme over a
range of A for all of the lattices. As with the 1D case, the

sAGP ground state becomes non-extreme around A =1
for all of the 2D lattices considered here. It also becomes
non-extreme for some negative A, but the crossover point
is lattice-dependent. We notice that the crossover points
for different lattices are correlated with the A values at
which the extreme sAGP is exact as discussed above.

Second, as shown in Fig. 11, J5-CC is no longer exact
at A = 0 for 2D lattices, as opposed to the 1D case. This
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FIG. 10. Exact energies and those of the multimodal extreme sAGP and mean-field optimized sAGP for the XXZ Hamiltonian
with S# = 0. Top left: 16-site square lattice. Top right: 16-site honeycomb lattice. Bottom left: 18-site kagome lattice. Bottom

right: 18-site triangular lattice.

is reminiscent of Jordan—Wigner transformed Hartree—
Fock being exact at A = 0 for the 1D spin models but
not for their 2D counterparts [15, 46]. Although the re-
sults of J5-CC or J5-CI are not as good in 2D as they are
in 1D, they still capture more than half of the correla-
tion energy missing from the mean-field optimized sAGP
methods. They also outperform the conventional SPS-
based correlation method (CCDQ here) for A < 1. The
error of SPS-based CCDQ grows rapidly as A goes be-
low 1 until it eventually encounters convergence issues.
Conventional CCDQ fails to converge for triangular and
kagome lattices as well. While J,-CC also has difficulty
converging for the kagome lattice, it behaves reasonably
well for the triangular lattice.

We also test our sAGP-based methods on the 2D
square J; — Jo lattice with PBC:

HJl*J2:le(§1’O'§:1)+J2 Z (‘g;?'gq)’ (34)

(pq) {(pa))

where ((pq)) denotes sites p and ¢ being next-nearest
neighbors. We take J; = 1, and vary Jy. In thermody-
namic limit, for Jo < 0.45, the system is in a Néel order
where all spins are antiparallel to their nearest neighbors.
And for Jo 2 0.61, the system is in a well-established
striped order with spins parallel in the same column (or
row) but antiparallel between columns (or rows) [12]. For

Jo = 0.5, however, the system is in a highly frustrated
phase. The ground state is under debate and possible
candidates include the plaquette valence-bond state [47],
the stripe valence-bond state [48], or gapless spin liquid
state [49].

E. The J; —J; Model

We find that the optimized sAGP state for the J; — Jo
model shows a bimodal pattern over all interaction ranges
like the case of XXZ between —1 < A < 1 (Fig. 13). For
Jo < 1/2, the n values show a Néel pattern, while for Jo >
1/2, n values exhibit a striped pattern. The two patterns
are degenerate at Jo = 1/2. As is shown in Table I, for
small system sizes, the optimized sAGP is bimodal but
non-extreme (|n1]| # |n2|), though the bimodal extreme
state (n1 = 1,72 = —1) is still a local minimum. For
large system sizes, the bimodal extreme sAGP becomes
lower in energy than the non-extreme sAGP.

Fig. 12 shows the energies of the bimodal extreme
SAGP and its correlated methods for the 4 x 4 J; — Jq
model. The two branches of the sAGP curve corre-
spond to the two bimodal extreme patterns (Néel versus
striped).

The Jo-CC (Eqn. (30)) energy exhibits a discontinuity
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FIG. 11. Energy errors for the mean-field optimized sAGP and for J>-CI and J>-CC based on the multimodal extreme sAGP,
in various XXZ lattices with S* = 0. Top left: 16-site square lattice. Top right: 16-site honeycomb lattice. Bottom left:
18-site kagome lattice. Bottom right: 18-site triangular lattice. Conventional CCDQ results are also shown for the square and
honeycomb lattice as a comparison. Note CCDQ fails to converge for square and honeycomb lattice at A < 0.65 and A < 0.45
respectively. Also Note that J>-CC does not converge for the kagome lattice and has been omitted from the plot.

TABLE I. Energy of the J; — J2 model at Jo = 1/2 for dif-
ferent system sizes. We see the energy is only dependent on
the system size. For small system sizes, the optimized sAGP
is bimodal but non-extreme while for large system sizes, the
bimodal extreme sAGP becomes lower in energy than the non-
extreme sAGP.

System Size Extreme Non-extreme Energy Difference

4 x4 -5.0667 -5.2672 0.2005
4x8 -9.0323 -9.2417 0.2094
4 x 16 -17.0245 -17.2296 0.2050
8 x8 -17.0245 -17.2296 0.2050
8 x 12 -25.1109 -25.2256 0.1146
12 x 12 -37.4387 -37.2230 -0.2157
16 x 16 -66.4843 -65.2206 -1.2637

at Jo = 1/2 because of the two branches of the reference
sAGP. Moreover, for 0.43 < Jo < 0.5 (the tail of the left
branch in Fig. 12), the J5-CC residual equations fail to
converge.

In order to remove the discontinuity and produce well-
behaved curves, we consider a reference state that is a lin-
ear combination of the relevant sSAGPs (LC-sAGP). This
is simply an sAGP-based non-orthogonal CI [27]. We

find that at least 7 bimodal extreme sAGPs are needed
if we want to approximate the exact ground state (with
additional Jo-Cl-type correlation; vide infra). They in-
clude the bimodal extreme sAGP with the Néel pattern
and those with the column-wise and row-wise striped pat-
terns, as well as four additional intermediate bimodal ex-
treme sAGP states shown in Fig. 14. These intermediate
bimodal extreme sAGPs exhibit a pattern between Néel
and striped where each site has only one nearest neighbor
that shares its n value.

We see that the LC-AGP is well-behaved near Jo = 1/2
but offers little quantitative improvement over a single
SAGP elsewhere. In practice, this means that Jo-CC or
Jo-CI based on this LC-AGP looks little different from
the corresponding methods based on the mean-field opti-
mized sAGP, except for Jo = 1/2. Thus, we consider lin-
ear combinations of Jo-CI states as well, shown in Fig. 12
as LC-J5-CIL. This LC-J5-CI is roughly parallel to the ex-
act result, and is comparable to Jo-CC, but is correctly
smooth everywhere.

For comparison, conventional CCD(Q was also imple-
mented for the J; — Jo model with the Néel and striped
SPS as the reference state, denoted as Néel-CCDQ and
Stripe-CCDQ), respectively, in Fig. 12. In this case,
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FIG. 12. Energy error for the 4 x 4 J; — J2 model with
PBC. LC-sAGP is a linear combination of 7 bimodal extreme
sAGPs. J>-CC and LC-.J5-CI are correlated methods based on
sAGP and LC-sAGP. Néel-CCDQ and Stripe-CCDQ are con-
ventional CCDQ results based on different reference states,
which are included for comparison with sAGP-based meth-
ods.

FIG. 13. The sAGP 7 pattern for the 4 x4 J; — Jo model with
PBC. All sites with the same color have the same 1 value. The
left figure corresponds to J2 < 0.5, and the right Jo» > 0.5

Jo-CC and conventional CCDQ are of roughly similar
quality. Both behave poorly in the frustrated region
Jo =~ 1/2. One great advantage of Jastrow-type corre-
lators over conventional particle-hole-type correlators is
that the former, as a similarity transformation, can be
solved over any reference state. Future work will explore
the use of these Jy correlators on linear combinations
of AGPs which go beyond the simple extreme bimodal
AGPs used in Fig 11.

IV. CONCLUSIONS

In this article, we have studied sAGP and several
sAGP-based correlation methods for the 1D and 2D XXZ
models, and the 2D J; — J; model. With our O(M?3)
implementation of mean-field optimized sAGP, we find
that optimized sSAGP can capture the phase transitions
of the XXZ Heisenberg chain and 2D lattices. Further-
more, we show that the optimized sSAGP states turn out
to be multimodal extreme for the J; — Jo model and the

11

FIG. 14. The four intermediate bimodal extreme sAGP states
necessary for LC-sAGP and LC-J>-CI for the 4x J; —J2
model with PBC.

XY phase of the XXZ model, reflecting the translational
symmetry of these states. The fact that all n have the
same absolute value makes the calculation of correlation
methods based on SAGP even easier. These facts suggest
that sSAGP should be a good reference state for these spin
systems.

Though correlation methods based on killing operators
[18] are not feasible for SAGP, we show that Jastrow op-
erators can serve as good correlators for spin systems.
Both J5-CI and J5-CC yield a significant improvement
over mean-field optimized sAGP with reasonable compu-
tational cost; Jo-CC behaves especially well in the XY
phase —1 < A < 1 for the XXZ chain, and is exact at
A =0in 1D.

We have also shown that for the 2D J; — Jo model,
there are multiple important bimodal extreme sAGP
states. The LC-sAGP approach uses a linear combi-
nation of these important sAGP states and makes the
transition between the Néel pattern and striped pattern
smooth. The LC-J5-CI energy result on J; — Jo model is
almost parallel to the exact one.

Thus far, we have considered only energies. The behav-
ior of our techniques for correlation functions and other
properties will be reported in future work.

ACKNOWLEDGMENTS

This work was supported by the U.S. National
Science Foundation under Grant No. CHE-2153820.
G.E.S. is a Welch Foundation Chair (Grant No. C-
0036). J.D. acknowledges financial support from Projects
No. PGC2018-094180-B-100 and PID2022-136992NB-100



(MCIU/AEI/FEDER, EU).

Appendix A: Exactness of J>-CC for 1D XXZ at
A=0

A general wave function for an M-site 1D spin—% Sys-
tem can be written as

= >

1<p1<..pn<M

Y(p,...,on)SH . ST (Al

where ¥(p1,...,pn) is the amplitude for the N f-spins
at sites p1,...,pN-

Exact eigenvalues and eigenstates of the 1D XXZ
model with periodic boundary conditions can be found
by the Bethe ansatz, where the ground state amplitude
can be written as

Y(p1,...pN) = Z A(o)exp

gESN

N
iZkJ(j)pj . (AQ)
j=1

The summation runs over all N! permutations of
1,...,N. The amplitudes A relate to the scattering ma-
trix S through

A(v) = S(ki, kj)Alo), (A3)

where the permutation v is related to the permutation o
by swapping ¢ with j, and

eilkithi) _oAeki 41
eilkithy) —2Aeiki 41

S(ki, kj) = (A4)

det(C) =

1<i<j<N

This can be written as Jo-CC on sAGP with coefficients
. p
np = sin i)

oo 525) o a2)

(A13b)

(A13a)

These n values are not extreme. However, since the
Jo operator contains Jy, and J; transforms the 7 values
[32], this means J»-CC on bimodal extreme sAGP is also

N
P . TPi . ™1
|| 2(005( +1> cos( +1)>l|_llsm< +1>.
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For the case A = 0, S(ki,k;) = —1, and we can
choose A(c) = (—1)%¢"(®). The parameters ky,...,k, in
Eqn. (A2) can be solved by the Bethe ansatz equations:

e M =TT S(ki, ;). (A5)
J#i
For even N, the equations reduce to
emM — 1 (A6)
and k; are
ki —m={tm/M,+£3r/M,+57/M ...}. (A7)

The amplitude ¥ (p1, . ..

w(p17~-~

where the matrix C is defined by C; = e’*iPi and can be
recognized as a Vandermonde matrix. Therefore,

,pN) can thus be written as

,pN) = det(C) (A8)

N

: ™ T

det(C) = H sin (M(pj —pi)) He P (A9)
1<i<j<N 1=1

According to Eqns. (A8) and (A9), the wave function

can be written as Jo-CC on the bimodal extreme sAGP:

i) = e”2|sAGP) (A10)
with 1, = '™, and J» coefficients satisfying
. T
Qpg =1n (Sm (M(q - p))) (A11)

foralll<p<qg< M.

For open boundary conditions, the derivation is essen-
tially the same, and the ground state amplitude can still
be written as a determinant, but now

(A12)

exact.
Appendix B: Multimodal Extreme sAGP as the
Eigenstate of 1D XXZ with PBC

We want to show the multimodal extreme sAGP
Eqn. (23) generated by the K,j' operator Eqn. (20) is an
eigenstate of the 1D XXZ Hamiltonian with PBC when
A = cosk.

First we compute the commutators of Hxxz with K ,‘: .
Using
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M M
1 — % z i z
[Z 5 (S5 S +5, S) K ] = (eetrsrSy, + e St S (Bla)
p=1 p=1
M M ,
[Z SESE LK =D (RSt SE 4 eSSy ), (B1b)
p=1 p=1
we obtain
M
[Hxxz, K;f] = (A — &%) Z e rSESE |+ ( Z ST, 82, (B2)
[Hxxz, K] K] = (A= e®) ey " e?hrsish + ( Z sikp gt S (B3a)
M
= (28e™ — ¥k —1) Y " ePhrgrgh (B3b)
=1
We also have
1 oM _ M
[Hrxa KT 1) = ((A )Yt (ack - Yo s) ) (B1)
P_l p=1
1 M
_ _ = ( Z ezkpSJr 1) ek Zeik(p+l)5;+1> |ll> (B4b)
p=1
1 )
=—3 (2A ") Z e PSE L) (B4c)
p=1
When A = cosk, we have (QA — ek — e_““) =0, thus
[[Hxxz,K ] KJr] = 0 (B5a)
[Hxxz, K[| [4) =0. (B5b)
Then we can calculate Hxxz | N):
Hxxz |Nk) = Hxxz (KON 1) (B6a)
_ N(N -1 _
= N(EHN! [Hxxz, K1) + %(K;)N ?[[Hxxz, KT KF] V) + (KN Hexz [1) (B6b)
M
= SAKHY W) (B6c)
M
= IA | Nk) . (B6d)

We see that the multimodal extreme sAGP | Ny ) becomes
an eigenstate of the Hamiltonian Hxxyz in 1D, with PBC.

Appendix C: Multimodal Extreme sAGP as the
Ground State of Colorable XXZ for Certain A

The proof in the previous appendix relies on properties
of the K, operator to show that extreme multimodal
sAGP is an eigenstate of the 1D XXZ Hamiltonian with
PBC. In fact, as we have noted in the text, multimodal



extreme sAGP is the exact ground state at certain values
of A even in multiple dimensions. Here, we wish to sketch
a proof of this claim.

1. Bimodal Extreme sAGP for Bipartite Lattices

Bimodal extreme sAGP is the ground state for the 1D
XXZ chain and 2D square and honeycomb lattices at
A = —1. In fact, it is the ground state at this A for any
lattice so long as the lattice can be colored with only 2
colors so that each pair of neighboring sites has a different
color (i.e. for any bipartite lattice).

Say p, g are neighboring sites. Let

StSS+ 5,8+
Hpq _ ( P —q 5 P —q ) +AS;S§ (Cl)

The XXZ Hamiltonian can then be written as

Hxxz =Y Hpg. (C2)

(pq)

We will show that bimodal extreme sAGP is the ground
state not only of the whole Hamiltonian Hxxz, but also
for each bond H,,.

The sAGP is

1 M
(O S W)
D D

1<p1<-<pn<M

SAGP) = (C3a)

Mo S+~ Sy 1)
(C3b)

For a given pair of nearest neighbors p and ¢, SAGP can
be written as

ISAGP) (C4)
= Z crp(~)mpng [~TpTe~) + Z cp(~) [~dpdg™)
+) er () I~ ple~) + Z cpp(~)ng [~ dptg~) -

Here, ~ represents all possible situations of the sites other
than p and q. cpp(~), cp4(~), erp(~), ¢ (~) are the
products of the n values of spin-T sites in each respective
The two summations for |~|,T¢~) and |~1,l4~) are
the same, as there are M — 2 other sites, N — 1 of which
have 1 spin. For the same reason ¢y (~) = ¢j4+(~), so

+ ()

(77p |NTp¢qN> + g |N¢quN>)-

SAGP) = Z et (~)MpMg [~ TpTe™)

+ ) en(~)

(C5)

‘Nipiqw>
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For bimodal extreme sAGP, 7, =
e
+ Z on(~

Now note that

—1)g¢, S0 that

+yenl~)

[~dpTa~)). (C6)

SAGP) = |NTPTQN> |N¢p¢q’v>

77p ‘NTpiq ) —
A
0 |NTquN> (C7)

Hyq ‘NTPTQN> = A5§5§ ‘NTPTqN> =

A

Hpq ‘Ni/pifq’\’> = AS;S; ‘N\LpJ/qN> = Z I ‘I(p‘l(qN> ( )
(C9)
Hpq(|~Tpdg~) — [~dpTe™)) (C10a)

StS;+ S, S+
~5 55 | At ) — I ta)
(C10Db)

1 1
:(_§ - ZA)ONTPJAJN) = [~dpte™))- (C10c)
When A = —1, we obtain

H,, |sAGP) = —i |SAGP) . (C11)

This shows that the bimodal extreme sAGP is an eigen-
state of every bond Hp, in the lattice at A = —1.

Now we will show it is the ground state at this A.
Recall the Hamiltonian of the single bond, given in Eqn
(C1). For any states of the entire lattice, only the spin
configurations at site p and ¢ have an influence on the
single bond, so we can safely project the state to the sub-
space that only contains these 2 sites and diagonalize the
Hamiltonian of the bond in this subspace. The eigen-
values are f%, fi, f%,% The bimodal extreme sAGP
energy of _Z means that it is a ground state for this sin-
gle bond. Thus bimodal extreme sAGP is a ground state
for all bonds in the lattice at A = —1. This means it is
also a ground state of the entire Hamiltonian, and

Number of bonds
4

HXXZ |SAGP> = — |SAGP> . (012)
Note that this result relies only on the form of the Hamil-
tonian and on the lattice being bipartite. In particular,
it is true for any number of dimensions, for any boundary

conditions, and for any (integer) S* sector.

2. Trimodal Extreme sAGP for Tripartite Lattices

The kagome and triangular lattices cannot be colored
with only 2 colors due to the triangular shape (Fig.8).
These lattices are three-colorable (i.e. tripartite). We
will show that trimodal extreme sAGP is an eigenstate
of the triangular shapes in the three-colorable lattices.



Say p, q,r are 3 sites that form a triangle. In trimodal
extreme sAGP, n,,n,, 7, are correspondingly 1, et

|[sAGP)
= crrt ()M |~ 1T Te)

15

Let
HA = Hpg+ Hyr + Hyp. (C13)

The trimodal extreme sAGP, when focusing on these
three sites, is

+ Z et () (Mpg [~ TpTgdr~) + mpnr [~ Tpdgtr~) + 0 [~ dpTeTr~))

+ Z CTii(N)(nP ‘NTp\Lq\l/r"’> + Mg ‘N\Lqu\l/rN> + N ‘NJ/P\LQTTN»

D e () [~dplade~)

Following a similar procedure as we have outlined for
the two-colorable case, it can be shown that

Ha |sAGP) = —g |[sAGP) . (C15)

Thus the trimodal extreme sAGP is the ground of

(C14)

(

state of a triangle that contains the 3 different n val-
ues. In periodic boundary conditions, both kagome and
triangular lattices are composed purely of such triangles,
and trimodal extreme sAGP is the exact ground state at
A = —0.5. For open boundary conditions, trimodal ex-
treme sAGP is the exact ground state at A = —0.5 only
when the lattice breaks none of these triangles.
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