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Photonic crystals (PhCs) have emerged as a popular platform for realizing various topological phases due to
their flexibility and potential for device applications. In this article, we present a comprehensive classification
of topological bands in one- and two-dimensional photonic crystals, with and without time-reversal symmetry.
Our approach exploits the symmetry representations of field eigenmodes at high-symmetry points in momentum
space, allowing for the efficient design of a wide range of topological PhCs. In particular, we show that the
complete classification provided here is useful for diagnosing photonic crystal analogs of obstructed atomic limits,
fragile phases, and stable topological phases that include bands with Dirac points and Chern numbers.

I. INTRODUCTION

Photonic crystals (PhCs) are periodically patterned dielec-
tric media that can be described by a Maxwell eigenvalue
problem [1, 2]. The periodicity of the dielectric medium acts
analogously to a potential for electromagnetic waves and the
solutions take the form of Bloch functions that are distributed
into photonic bands. Similar to electronic states in conventional
solids, PhC eigenmodes can be characterized by topological
indices that are global properties across momentum space [3–
5]. An important physical manifestation of these topological
indices is the existence of states that reside on the boundaries of
the system - this is known as the bulk-boundary correspondence.

A wide variety of topological phases have been realized
using PhC-based platforms (as distinct from waveguide ar-
rays [6, 7], coupled ring resonators [8, 9], microwave res-
onators [10] or electrical circuit [11–13] realizations). In one
and two dimensions, this includes analogs of the SSH model
with quantized polarization [14–16], Chern insulators [17–22],
quantum spin-Hall-like phases [23–27], Dirac semi-metals [28–
34], valley-Hall phases [35–38], bulk-obstructed higher-order
topological insulators (HOTIs) [39–44], including quadrupolar
HOTIs [45–47], and fragile phases [48]. Several of these
have also been proposed for photonic device applications such
as for lasing [16, 49–51], harmonic generation [52, 53] and
light transport [54]. Moreover, the flexibility of the PhC-
based platform has made it possible to explore the effects
of non-linearity [55, 56] and non-Hermiticity [57, 58] along-
side topology – novel physics that is difficult to realize in
conventional electronic solids.

Topological systems can be classified in the tenfold way [59–
61] by the presence or absence of the three fundamental symme-
tries: time-reversal, chiral, and particle-hole symmetries. PhCs
generally do not possess chiral and particle-hole symmetries
and therefore belong in either class A (TR-broken) or class
AI (TR-symmetric) of the tenfold way. However, crystalline
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symmetries enrich this classification and can help identify finer
topological distinctions within these classes.

There are three kinds of topological bands: (i) Obstructed
“atomic limit” (OAL) bands [62], that admit exponentially-
localized Wannier functions [63] (such bands are referred to
as “Wannierizable”) (ii) fragile bands [48, 64–66] that are
non-Wannierizable but become Wannierizable when combined
with other atomic limit bands and (iii) stable topological bands
that are not Wannierizable. In all cases, topology can be
generally identified by computing Berry phases (or, more
generally, Wilson loops) over the entire Brillouin zone. In the
presence of crystalline symmetries, it is possible to identify
and distinguish a subset of them by constructing symmetry-
indicator invariants [67–70]. Compared to Berry phases, this
symmetry-based approach can be substantially less intensive for
computation since it only requires looking at the eigenmodes
at high-symmetry points of the Brillouin zone (BZ).

In this article, we build on previous works in electronic
systems [67, 69] and comprehensively develop a complete
classification for topological bands in one- and two-dimensional
PhCs under crystalline symmetries both with and without
time-reversal symmetry. For each point-group symmetry, we
exhaustively calculate the topological indices, defined using
symmetry-indicator invariants, for the basis set of atomic limits
that span the space of all possible atomic limit bands via the
procedure of induction of band representations [62, 71, 72].
This allows us to establish a bulk-boundary correspondence for
OAL bands in PhCs where we show that despite the absence of a
Fermi level, the notion of a filling anomaly [67, 73–75] remains
meaningful and can be used to infer the topological origin of
boundary states directly from the frequency spectrum of the
PhCs. This approach also allows us to diagnose topological
bands that are not OALs, namely fragile phases and bands with
Dirac points and Chern numbers, which is made possible by
exploiting the linear structure of the classification. Based on
our classification, we propose a strategy to diagnose and design
topological PhCs. Finally, for completeness, we discuss the
PhC-based implementations of a few other topological systems
that lie outside of this framework but where symmetry plays
an important role.

The rest of the paper is organized as follows: In section II, we
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review the concepts of Berry phases, symmetry-indicator invari-
ants, and filling anomaly for 1D PhCs. In section III, we extend
these ideas to 2D PhCs by developing the classification due to
rotational symmetries, both with and without TR-symmetry. In
section IV, we discuss design and characterization strategies
for various topological PhCs using our classification, along
with appropriate examples. In section V, we discuss PhC-based
implementations of the quantum spin-Hall phases, valley-Hall
phases and analogs of insulators with quantized multipole
moments, all of which lie outside of this framework.

II. 1D PHOTONIC CRYSTALS

Maxwell’s equations with no sources and for a medium that
is linear, isotropic, and lossless are [1, 2]

∇ · H(r, 𝑡) = 0,
∇ × E(r, 𝑡) + 𝜇0𝜕𝑡H(r, 𝑡) = 0,

∇ · [𝜖 (r)E(r, 𝑡)] = 0,
∇ × H(r, 𝑡) − 𝜖0𝜖 (r)𝜕𝑡E(r, 𝑡) = 0, (1)

where E and H are the electric and magnetic fields respectively,
𝜖 (r) is the dielectric function, and 𝜖0 and 𝜇0 are the vacuum
permitivity and permeability respectively. Expanding the
temporal component of the electric and magnetic fields into
harmonics as H(r, 𝑡) = H(r)e−i𝜔𝑡 , E(r, 𝑡) = E(r)e−i𝜔𝑡 ,
these equations reduce to

∇ ×
(

1
𝜖 (r) ∇ × H(r)

)
=

(𝜔
𝑐

)2
H(r),

∇ × ∇ × E(r) =
(𝜔
𝑐

)2
𝜖 (r)E(r). (2)

Due to the absence of magneto-electric coupling, we can
choose to solve only the equation for H(r) in Eq. (2) since E(r)
can be found from H(r) using the last equation in Eq. (1).

A 1D PhC, shown schematically in Fig. 1(a), is a 3D material
characterized by a refractive index that is periodic along one
direction (𝑥) and is uniform along the other two directions
(𝑦 and 𝑧). The magnetic field eigenmode can therefore be
written as a plane wave solution in the 𝑦, 𝑧 plane multiplied
by an 𝑥-dependent vector field, H = 𝑒ik∥ ·𝝆h(𝑥), where k∥ is
the momentum along the uniform directions and 𝝆 = 𝑦ŷ + 𝑧ẑ.
However, we are only concerned with propagation along the
periodic direction, which implies that k∥ = 0. Moreover, since
the fields must be perpendicular to the propagation direction, we
can define two orthogonal polarizations where the vector fields
lie in the 𝑦, 𝑧 plane. Assuming isotropy, we can take these
polarized fields to be h𝑧 (𝑥) = ℎ𝑧 (𝑥)ẑ and h𝑦 (𝑥) = ℎ𝑦 (𝑥)ŷ.
This leads to the following eigenvalue problem for the scalar
fields ℎ𝜉 (𝑥) for 𝜉 ∈ {𝑦, 𝑧},

Θ̂ℎ𝜉 (𝑥) =
(𝜔
𝑐

)2
ℎ𝜉 (𝑥), Θ̂ ≡ −𝜕𝑥

(
1
𝜖 (𝑥) 𝜕𝑥

)
, (3)

where Θ̂ is the 1D Maxwell operator that plays a role analogous
to the Hamiltonian in quantum mechanics. By exploiting

the periodicity of the dielectric function, the above equation
can be solved using Bloch’s theorem. Specifically, the ansatz
ℎ𝜉𝑛𝑘𝑥 (𝑥) = 𝑒i𝑘𝑥 𝑥𝑢 𝜉𝑛𝑘𝑥 (𝑥), can be used to solve Eq. (3), where
𝑢 𝜉𝑛𝑘𝑥 (𝑥) is the periodic part of the field defined over a unit
cell. With this, Eq. (3) can be written as

Θ̂𝑘𝑥𝑢 𝜉𝑛𝑘𝑥 (𝑥) =
(𝜔𝑛

𝑐

)2
𝑢 𝜉𝑛𝑘𝑥 (𝑥), (4)

where

Θ̂𝑘𝑥 ≡ −(𝜕𝑥 + i𝑘𝑥)
(

1
𝜖 (𝑥) (𝜕𝑥 + i𝑘𝑥)

)
. (5)

This yields field solutions distributed across discrete fre-
quency bands labeled by the index 𝑛 and with their momentum,
𝑘𝑥 , restricted to lie within the first BZ, as shown in Fig. 1(b).
It is also useful to define the inner product between two fields
over a unit cell (UC) as

⟨𝑢 𝜉𝑛1𝑘𝑥1
|𝑢 𝜉𝑛2𝑘𝑥2

⟩ =
∫

UC
𝑢∗𝜉𝑛1𝑘𝑥1

(𝑥)𝑢 𝜉𝑛2𝑘𝑥2
(𝑥) d𝑥. (6)

Like electronic energy bands in conventional solids, the
introduction of frequency gaps allows for a topological charac-
terization of isolated individual photonic bands or a group of
bands, as discussed in the following section.

A. Classification due to inversion symmetry

1D PhCs fall into class A or AI of the tenfold way, depending
on whether they break or preserve time-reversal symmetry
(TRS), respectively. In either case, 1D PhCs are topologically
trivial in the absence of other symmetries. However, the
presence of inversion symmetry protects two topological phases
in both A and AI. The invariant for a single band in these phases
is the Berry phase

𝜃 =

∫
BZ

A𝑛𝑘𝑥 d𝑘𝑥 (7)

where A𝑛𝑘𝑥 = −i
〈
𝑢 𝜉𝑛𝑘𝑥

��𝜕𝑘𝑥 �� 𝑢 𝜉𝑛𝑘𝑥 〉 is the Berry connection.
Under an inversion-symmetric choice of unit cell, the Berry
phase is quantized to 0 or 𝜋. This quantization has an intuitive
interpretation: in 1D, all photonic bands admit maximally
localized Wannier functions whose centers are gauge invariant
quantities [76–82]. Due to inversion symmetry, a single Wan-
nier center (per unit cell) can only be located in two distinct
positions in the unit cell, as shown in Fig. 1(c). These positions
are called maximal Wyckoff positions and are labeled by 1𝑎
and 1𝑏. The Berry phase in Eq. (7) of a single non-degenerate
band indicates the location of the (one) Wannier center within
each unit cell, where 𝜃 = 0 and 𝜋 correspond to the Wannier
center being located at the position 1𝑎 (middle of the unit cell)
and 1𝑏 (edge of the unit cell), respectively.

The calculation of Eq. (7) involves an integral over the
entire BZ, but it can be greatly simplified by looking at the
representations of the H or E fields at the high-symmetry
points (HSPs) of the BZ [83], which are 𝚪 (𝑘𝑥 = 0) and X
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FIG. 1. (a) Schematic of a 1D PhC made out of alternating layers
of dielectric materials of dielectric constants 𝜀ℎ and 𝜀𝑙 with lattice
constant 𝑎. (b) Schematic of the dispersion of light in a 1D PhC. (c)
Wannier centers (solid circles) are located at the two possible maximal
Wyckoff positions in the inversion-symmetric unit cells (squares). (d)
Filling anomaly due to inversion symmetry. The finite trivial system
(with [𝑋1] = 0) has a number of states equal to the number of unit
cells and is inversion symmetric. The topological system requires at
least one more or one fewer state to maintain inversion symmetry.

(𝑘𝑥 = 𝜋/𝑎). Under inversion symmetry I : r → −r, the 1D
Maxwell operator obeys

ÎΘ̂𝑘𝑥 Î−1 = Θ̂−𝑘𝑥 , (8)

where Î is the inversion operator. Equation (8) implies that
Θ̂𝑘𝑥 commutes with Î at 𝚪 and X, i.e., [Θ̂𝚪, Î] = [Θ̂X, Î] = 0,
since these HSPs map to themselves under a negative sign,
modulo a reciprocal lattice vector. Thus, the eigenmodes at
these HSPs can be labeled by the eigenvalues of Î, which are
±1 since Î2 = 1. To aid with generalization to 2D later, we
denote these eigenvalues at the HSP with label 𝚷 (where 𝚷 is
either 𝚪 or X in this case) as 𝚷1 = +1 and 𝚷2 = −1. We can
now define the symmetry-indicator invariant for a set of bands
as

[𝑋1] ≡ #X1 − #𝚪1 ∈ Z, (9)

where #𝚷1 is the number of states at the HSP 𝚷 with I
eigenvalue +1 For example, if a single band has theI eigenvalue
of +1 at 𝚪 and −1 at X, #𝚪1 = 1 and #X1 = 0, which implies
that the invariant [𝑋1] = −1. The invariant in Eq. (9) then
encodes the value of the Berry phase as [83, 84]

𝜃

2𝜋
=

1
2
[𝑋1] mod 1, (10)

which provides a Z2 classification of dipole moments in
inversion-symmetric 1D crystals. We note that the Berry
phase and the invariant in Eq. (9) depend on the choice of unit
cell.

The bands that originate from localized and symmetric Wan-
nier functions form a representation of the crystal’s symmetry
group, called a band representation [71, 72]. The values of [𝑋1]
for all possible single and isolated bands can be enumerated ex-
haustively by working out the inverse problem, i.e., given some
Wannier function, we can calculate the band representation that
it leads to. A group of bands can then be expressed as a linear
combination of these “elementary band representations”. This
inverse problem of band topology has been used to classify
topological phases in insulators [62, 71, 72]. We review this
procedure for 1D bands in Appendix C.

In the next section, we explore the physical consequence of
a non-trivial value of the invariant in Eq. (9): the presence of
boundary states. However, as we shall describe shortly, due to
the lack of additional symmetries that impose constraints on the
frequency spectrum (such as chiral or particle-hole symmetries),
these boundary states need not lie within bandgaps, and the
issue of bulk-boundary correspondence is somewhat more
subtle in PhCs.

B. Filling anomaly, counting mismatch, and boundary states

The existence of boundary states can be heuristically un-
derstood by considering the effect of a boundary between two
distinct topological phases. Since the invariants are quantized
and can only change at gap closings, a gap-closing point at
the boundary is required, resulting in boundary states. For 1D
systems with inversion symmetry, such topological boundary
states are associated with a filling anomaly [67, 73–75], which
we describe now.

Consider a finite tiling of 𝑁 inversion-symmetric 1D unit
cells which creates two halves or “sectors” in real space, related
by inversion-symmetry, with two boundaries as shown in
Fig. 1(d). A single isolated band in the bulk gives rise to
𝑁 states in this finite system. For a trivial bulk band with
[𝑋1] = 0, the Wannier centers in the finite tiling must be placed
at the 1𝑎 position of the unit cell, and the number of states
that correspond to this bulk band is equal to 𝑁 . However, for
a topological bulk band with [𝑋1] = ±1, the Wannier centers
in the finite tiling must be placed at the 1𝑏 position of the
unit cell, which leads to a difficulty: 𝑁 states cannot maintain
inversion symmetry due to the shifted position of the Wannier
centers. Instead, either 𝑁−1 or 𝑁 +1 (or more generally, 𝑁−12
where 12 is any integer congruent to 1 mod 2) Wannier centers
are necessary to be consistent with inversion symmetry as
shown in Fig. 1(d). This inability to maintain both the expected
number of states and inversion symmetry simultaneously is
know as filling anomaly [67], and leads to the quantization
of fractional charge at boundaries in electronic systems and
fractional electromagnetic energy density in PhCs.

Since each Wannier center corresponds to a single state,
the filling anomaly also presents a practical way to diagnose
non-trivial topology by counting states in the spectrum of
a finite system [45, 85]. The spectral consequence of the
filling anomaly is that the states in the finite system within the
frequency range of a single topological bulk band must have an
odd (12) number of missing or additional states as compared to
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FIG. 2. (a) The photonic band structure of a 1D PhC with 𝜀ℎ = 6.25, 𝜀𝑙 = 1 and 𝑑 = 0.6𝑎. The two possible types of inversion-symmetric unit
cells are shown in the inset. Eigenvalues of I at the HSPs for both types of unit cells are labeled with +/− signs. The Berry phases for both
types of unit cells are shown in blue boxes. (b) The dielectric profile of a finite system of size 61 unit cells with interfaces between the two types
of unit cells. The inset highlights the switch between the unit cell types across the boundary (c) The frequency spectrum for the finite system
shown in (b). An odd-integer counting mismatch per band leads to the presence of topological boundary states in the first and third bandgaps.
The photonic DoS is also shown in the same figure, labeled with the number of states. (d) The 𝐸𝑧 mode profiles of one of the two topological
boundary states in the first and third gaps.

the number of unit cells.
The missing states are paired up with missing states from a

different topological band in a way that preserves the inversion
symmetry of the system and these typically reside inside the
bandgap as boundary states. However, due to a lack of additional
symmetries that pin these boundary states to the middle of
the gap, they could be pushed into a bulk band by inversion-
symmetry preserving perturbations to the boundaries. Since
such perturbations act identically on both boundaries of the
system, the bulk band would gain an odd number of additional
states.

Crucially, regardless of the details of the perturbation, the
number of expected states and the actual states within the
frequency range of a single topological band will differ by 12;
we refer to this as a “counting mismatch”. In contrast, trivial
boundary states, such as defect states, originate from a single
band and would give rise to a counting mismatch of an even
(= 02) number of states for that band in a finite system with
two boundaries related by inversion symmetry. Therefore, the
counting mismatch is a Z2 invariant that can be determined
from the frequency spectrum of the PhC and thus can directly
reveal the topological nature of bulk bands. We provide a more
detailed discussion of the origin of this counting mismatch in
Appendix A.

To summarize this argument, in the absence of chiral or
particle-hole symmetry, the bulk-boundary correspondence of
topological 1D PhCs with inversion symmetry is subtle in that
the boundary states may or may not appear within a bandgap.
However, regardless of their location in the frequency spectrum,

the states within the frequency range of a topological band in a
finite system must exhibit an odd-integer counting mismatch.

We now consider an explicit example of a 1D PhC consisting
of alternating layers of TiO2 (𝜀 = 6.25) and air (𝜀 = 1). The
TiO2 layer occupies a filling fraction 𝑑/𝑎 = 0.6 in the unit cell
with lattice constant 𝑎. The first six bands of this 1D PhC are
shown in Fig. 2(a). Two distinct types of inversion-symmetric
unit cells are possible for this PhC, as shown in the inset of
Fig. 2(a). The two types of unit cells are re-definitions of
each other, related by a shift of 𝑎/2 along the 𝑥 direction. The
eigenvalues of I at the HSPs 𝚪 and X for both types of unit
cells, as well as the Berry phase calculated using Eq. (7), are
shown in the same plot. They show that while the band structure
is identical for the two types of unit cells, the Berry phases
and, correspondingly, the symmetry-indicator invariants are
different. This can be easily understood as follows: due to
inversion symmetry, the Wannier center of a particular band
can only be located either at the center of each unit cell (1𝑎
position) or in-between two unit cells (1𝑏 position). A shift of
the unit cell by a translation of 𝑎/2 switches between these two
cases and, consequently, changes the Berry phase from 0 to 𝜋
and vice-versa. This implies that if a band in one of the unit
cell types is trivial, the corresponding band in the other type is
topological.

Next, we simulate a large inversion-symmetric supercell with
interfaces between the two types of unit cells in a strip geometry
as shown in Fig. 2(b). This supercell has two inversion-
symmetry-related sectors with two boundaries and consists of
a total of 61 unit cells. Therefore we expect to find 61 states
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per band in the spectrum of this supercell which is shown in
Fig. 2(c). However, due to the distinct topology of the bands in
the two unit cell types, each band in the finite structure exhibits
a counting mismatch of 12 states. For bands 1 to 4, we find
the counting mismatch to be one missing state each and that
these mismatched states reside in the bandgaps as boundary
states whose field profiles are shown in Fig. 2(d). For band 5,
we find a counting mismatch of three missing states, two of
which reside in the fourth gap and are trivial states since they
originate from the same band. The remaining missing state is
paired with another state from band 6. However, we can see
that this pair of mismatched states does not lie deep inside the
fifth bandgap but is instead very close to the band-edge of band
6. Including these states as part of band 6, we find a counting
mismatch of one additional state for band 6.

The in-gap topological boundary states discussed above have
been directly observed in experiments in 1D PhCs and 1D
periodic-dielectric waveguides [14–16].

Having introduced the notion of topological bands in the
presence of crystalline symmetries in 1D, we now extend
the topological classification and characterization of photonic
bands to 2D.

III. 2D PHOTONIC CRYSTALS

Two-dimensional PhCs consist of a periodic patterning of
the dielectric along two directions (e.g., 𝑥 and 𝑦) and a uni-
form dielectric profile along the third direction (e.g., 𝑧), with
wave propagation restricted to lie in the 𝑥, 𝑦 plane. In this
setting, the equations in (2) can be simplified by exploiting the
mirror symmetry through the 𝑥, 𝑦 plane that sends 𝑧 → −𝑧.
This separates the states into two orthogonal polarizations:
transverse electric (TE) with E(r) = 𝐸𝑥 (𝑥, 𝑦)x̂ + 𝐸𝑦 (𝑥, 𝑦)ŷ,
H(r) = 𝐻𝑧 (𝑥, 𝑦)ẑ, which is even under the mirror symme-
try, and transverse magnetic (TM) with E(r) = 𝐸𝑧 (𝑥, 𝑦)ẑ,
H(r) = 𝐻𝑥 (𝑥, 𝑦)x̂ + 𝐻𝑦 (𝑥, 𝑦)ŷ, which is odd under the mirror
symmetry. For these generally non-degenerate TE and TM
polarizations, the eigenvalue problem is most easily solved for
the scalar fields 𝐻𝑧 (𝑥, 𝑦) and 𝐸𝑧 (𝑥, 𝑦) respectively, via [2]

−
[
𝜕𝑥

1
𝜀(𝑥, 𝑦) 𝜕𝑥 + 𝜕𝑦

1
𝜀(𝑥, 𝑦) 𝜕𝑦

]
𝐻𝑧 (𝑥, 𝑦) =

𝜔2

𝑐2 𝐻𝑧 (𝑥, 𝑦),

− 1
𝜀(𝑥, 𝑦)

(
𝜕2
𝑥 + 𝜕2

𝑦

)
𝐸𝑧 (𝑥, 𝑦) =

𝜔2

𝑐2 𝐸𝑧 (𝑥, 𝑦).

(11)

As in the 1D case, these eigenvalue problems can be solved
using Bloch’s theorem, and the solutions are distributed into fre-
quency bands with their momenta restricted to the 2D BZ. Since
TE and TM polarizations are orthogonal, we restrict the discus-
sion to a single polarization of choice. We now characterize the
topological phases of 2D PhCs by first constructing the topo-
logical invariants that classify them under different point group
symmetries and then deriving bulk-boundary correspondences
and their associated index theorems.

The classification of PhCs can be divided into whether they
obey time-reversal symmetry (TRS) (class AI) or not (class

A). In 2D, without additional symmetries, class AI does not
host topological phases. In contrast, class A hosts topological
phases characterized by the Chern number (𝐶 ∈ Z) that encodes
the number of chiral edge states at the boundaries of a finite
system. The Chern number also presents an obstruction to the
construction of exponentially localized Wannier functions, and
hence such bands are referred to as non-Wannierizable [86, 87].

When the Chern number vanishes, and in the presence of
crystalline symmetries, photonic bands may be associated with
Wannier centers fixed at maximal Wyckoff positions of the
2D unit cells (Fig. 3). As mentioned previously, such bands
are collectively called atomic limits; in particular, we use the
term ‘obstructed atomic limits (OAL)’ to refer to cases where
the Wannier centers are displaced away from the center of the
unit cell. Under some circumstances, a symmetry-preserving
Wannier representation of bands may not be possible despite
their vanishing Chern number. Such bands are termed fragile
and have the property of admitting a Wannier representation
when considered as a set that includes additional specific atomic
limit bands [48, 64, 65].

Similar to 1D, the topology of bands in 2D PhCs can be
characterized using Berry phases. However, when bands are
degenerate, they must be treated collectively, which requires
the use of Wilson loops [88, 89]. The Wilson loop is defined as

W(C) = P exp
[(

i
∫
C
A(k) · dk

)]
, (12)

where C is a closed contour in k-space, P denotes a path
ordering of the exponential and A(k) is the multi-band Berry
connection, a vector-valued matrix with elements

A𝑛𝑚 (k) = −i ⟨𝑢𝑛k |∇k | 𝑢𝑚k⟩ , (13)

where 𝑛 and 𝑚 label the band-indices in the considered set
of, usually connected, bands. When C is taken to be a non-
contractible loop in the Brillouin zone, the Wilson loop eigen-
values are proportional to the expectation values of the position
operator of the hybrid Wannier functions in the same direction.
Therefore, these eigenvalues can indicate the Wannierizable
nature of bands in atomic limit phases or indicate the non-
Wannierizable nature of fragile bands or Chern bands by their
non-trivial winding numbers [63, 86]. Similar to the Berry
phase in 1D, the calculations of these Wilson loops can also be
simplified by looking at the representations of the eigenmodes
at the HSPs of the BZ.

A. Classification due to rotational symmetries

Consider a projector into a set of bands { 𝑗} at a particular
k-point, defined by 𝑃k =

∑
𝑗 |𝑢 𝑗k⟩ ⟨𝑢 𝑗k |. The possible eigen-

values of the 𝑛-fold rotation operator �̂�𝑛 (i.e., rotation by an
angle 2𝜋/𝑛), projected into the bands of interest at the HSP 𝚷,
𝑃𝚷 �̂�𝑛𝑃𝚷, are

𝚷(𝑛)
𝑝 = 𝑒2𝜋i(𝑝−1)/𝑛, for 𝑝 = 1, 2, . . . 𝑛. (14)

Following previous studies on the characterization of the topol-
ogy of energy bands in condensed matter systems [67], we
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FIG. 3. Maximal Wyckoff positions for (a) 𝐶2 (b) 𝐶4 (c) 𝐶6 and (d)
𝐶3 symmetric unit cells. (e) BZ of a square lattice with possible HSPs.
(f) BZ of a triangular lattice with possible HSPs.

define the integer invariants

[Π ( 𝑗 )
𝑝 ] ≡ #𝚷( 𝑗 )

𝑝 − #𝚪( 𝑗 )
𝑝 ∈ Z, (15)

where #𝚷( 𝑗 )
𝑝 is the number of states in the frequency band(s)

in question with rotation eigenvalue 𝚷( 𝑗 )
𝑝 . The practical eval-

uation of the rotation eigenvalues in Eq. (14) for a set of
(possibly degenerate) bands { 𝑗} at k proceeds straightfor-
wardly [2, 90, 91]: given a set of eigensolutions E 𝑗k (in-
cluding Bloch phases) with associated displacement fields
D 𝑗k (r) ≡ 𝜀(r)E 𝑗k (r) (with normalization ⟨E 𝑗k |D 𝑗k⟩ = 1), we
construct the matrix M whose elements are the overlap inte-
grals 𝑀𝑖 𝑗 ≡ ⟨E𝑖k |�̂�𝑛 |D 𝑗k⟩ (or, equivalently, in a magnetic-field
formulation, 𝑀𝑖 𝑗 ≡ ⟨H𝑖k |�̂�𝑛 |B 𝑗k⟩). The eigenvalues of M then
the give the rotation eigenvalues of the bands { 𝑗}. The evalua-
tion of the overlap integrals involve the transformation of the
D- or B-eigenfields under �̂�𝑛, which transform either vectori-
ally or pseudovectorially, i.e., as �̂�𝑛D 𝑗k (r) = (�̂�𝑛D 𝑗𝑘) (�̂�−1

𝑛 r)
or �̂�𝑛B 𝑗k (r) = det(�̂�𝑛) (�̂�𝑛B 𝑗𝑘) (�̂�−1

𝑛 r), respectively. For di-
electrics with 𝜇 = 1, the magnetic-field formulation reduces to
𝑀𝑖 𝑗 ≡ ⟨H𝑖k |�̂�𝑛H 𝑗k⟩, which can be simpler in implementation.

Using the rotation eigenvalues, the symmetry-indicator in-
variants can be constructed for 2D lattices with𝐶𝑛 symmetry at
all high symmetry points shown in Fig. 3(e) and (f). However,
some of the invariants in Eq. (15) are redundant for three rea-
sons: (i) Rotation symmetry forces representations at certain
HSPs to be the same. Particularly, 𝐶4 symmetry forces equal
representations at X and Y, while𝐶6 symmetry forces equal rep-
resentations at M, M′, and M′′, as well as at K and K′; (ii) the
fact that the number of bands in consideration is constant across
the BZ, from which it follows that

∑
𝑝 #𝚷(𝑛)

𝑝 =
∑

𝑝 #𝚪(𝑛)
𝑝 , or∑

𝑝 [Π
(𝑛)
𝑝 ] = 0; and (iii) the existence of TRS, which implies

that the Chern number vanishes and that rotation eigenval-

ues at 𝚷(𝑛) and −𝚷(𝑛) are related by complex conjugation.
This leads to [𝑀 (4)

2 ] = [𝑀 (4)
4 ] (for 𝐶4), [𝐾 (3)

2 ] = [𝐾 ′(3)
3 ]

(for 𝐶3), [𝐾 (3)
3 ] = [𝐾 ′(3)

2 ] (for 𝐶3), [𝐾 (3)
1 ] = [𝐾 ′(3)

1 ] (for 𝐶3)
and [𝐾 (3)

2 ] = [𝐾 (3)
3 ] (for 𝐶6).

Therefore, in the presence of TRS (class AI), the classification
for 𝑁 bands is given by the indices [67]

𝜒
(2)
T =

(
[𝑋 (2)

1 ], [𝑌 (2)
1 ], [𝑀 (2)

1 ]; 𝑁
)
,

𝜒
(3)
T =

(
[𝐾 (3)

1 ], [𝐾 (3)
2 ]; 𝑁

)
,

𝜒
(4)
T =

(
[𝑋 (2)

1 ], [𝑀 (4)
1 ], [𝑀 (4)

2 ]; 𝑁
)
,

𝜒
(6)
T =

(
[𝑀 (2)

1 ], [𝐾 (3)
1 ]; 𝑁

)
. (16)

On breaking TRS, the classification of 2D 𝐶𝑛-symmetric PhCs
must include the Chern number since it can now admit non-zero
values. Furthermore, breaking TRS reduces the number of
constraints on the invariants (i.e., condition (iii) above is relaxed)
and therefore increases the number of invariants required to
identify distinct topological phases uniquely. Taking into
account these considerations, the most general classification
(class A) of 2D 𝐶𝑛-symmetric PhCs is given by the indices

𝜒 (2) =
(
𝐶

��� 𝜌 (2) ) = (
𝐶

��� [𝑋 (2)
1 ], [𝑌 (2)

1 ], [𝑀 (2)
1 ]; 𝑁

)
,

𝜒 (3) =
(
𝐶

��� 𝜌 (3) ) = (
𝐶

��� [𝐾 (3)
1 ], [𝐾 (3)

2 ], [𝐾 ′(3)
1 ], [𝐾 ′(3)

2 ]; 𝑁
)
,

𝜒 (4) =
(
𝐶

��� 𝜌 (4) ) = (
𝐶

��� [𝑋 (2)
1 ], [𝑀 (4)

1 ], [𝑀 (4)
2 ], [𝑀 (4)

4 ]; 𝑁
)
,

𝜒 (6) =
(
𝐶

��� 𝜌 (6) ) = (
𝐶

��� [𝑀 (2)
1 ], [𝐾 (3)

1 ], [𝐾 (3)
2 ]; 𝑁

)
, (17)

where 𝐶 is the Chern number given by

𝐶 =
1

2𝜋

∫
BZ

Tr[∇k × A(k)] d2k. (18)

Similar to the 1D case, we can exhaustively calculate the values
of 𝜒 (𝑛) (in the case when 𝐶 = 0) or 𝜒 (𝑛)

T by induction of
band representations. To perform this, we require knowledge
about the Wannier functions’ internal symmetry representation,
known as “site symmetry representation”, 𝜌(𝐶𝑛), as well
as the location of their gauge-invariant centers, the Wannier
centers. We provide a detailed derivation of the symmetry-
indicator invariants at HSPs and the corresponding indices for
all 2D atomic limits, with and without TRS, in Appendix D
and show the final results in Tables I-IV. Each row of these
tables uniquely identifies an atomic limit protected by the
corresponding rotational symmetry.

B. Relation between symmetry-indicator invariants and Chern
number

The Chern number mod 𝑛 can be inferred from the rotation
eigenvalues at HSPs of systems with 𝐶𝑛 symmetry [92]. Using
this, relations between the Chern numbers, Eq. (18), and
the symmetry indicator invariants can be derived, as done
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in Appendix B. These relations take the form of equivalence
relations modulo the rotation order of the considered group:

𝐶 (2) = −[𝑋 (2)
1 ] − [𝑌 (2)

1 ] − [𝑀 (2)
1 ] (mod 2),

𝐶 (3) = −[𝐾 (3)
1 ] − 2[𝐾 (3)

2 ] + 2[𝐾 ′(3)
1 ] + [𝐾 ′(3)

2 ] (mod 3),

𝐶 (4) = 2[𝑀 (4)
1 ] + [𝑀 (4)

2 ] − [𝑀 (4)
4 ] − 2[𝑋 (2)

1 ] (mod 4),

𝐶 (6) = −8[𝐾 (3)
1 ] − 4[𝐾 (3)

2 ] + 3[𝑀 (2)
1 ] (mod 6),

(19)

Compared to the direct evaluation of Eq. (18), these relations
provide a fast and simple way to calculate the Chern number
mod 𝑛 for 𝐶𝑛-symmetric PhCs with broken TRS.

C. Index theorems

WP Site symm. 𝜒
(2)
T 𝜒 (2)

1𝑎 𝜌(𝐶2) = any (0, 0, 0; 1) (0 | 0, 0, 0; 1)

1𝑐 𝜌(𝐶2) = +1 (−1, 0,−1; 1) (0 | − 1, 0,−1; 1)
1𝑐 𝜌(𝐶2) = −1 (1, 0, 1; 1) (0 | 1, 0, 1; 1)

1𝑑 𝜌(𝐶2) = +1 (0,−1,−1; 1) (0 | 0,−1,−1; 1)
1𝑑 𝜌(𝐶2) = −1 (0, 1, 1; 1) (0 | 0, 1, 1; 1)

1𝑏 𝜌(𝐶2) = +1 (−1,−1, 0; 1) (0 | − 1,−1, 0; 1)
1𝑏 𝜌(𝐶2) = −1 (1, 1, 0; 1) (0 | 1, 1, 0; 1)

TABLE I.𝐶2 symmetry: Indices induced from every maximal Wyckoff
position (WP).

WP Site symm. 𝜒
(3)
T 𝜒 (3)

1𝑎 𝜌(𝐶3) = any (0, 0; 1) (0 | 0, 0, 0, 0; 1)

1𝑏 𝜌(𝐶3) = +1 (−1, 1; 1) (0 | − 1, 1,−1, 0; 1)
1𝑏 𝜌(𝐶3) = 𝑒i 2𝜋

3 𝜎𝑧 (1,−1; 2) (0 | 1,−1, 1, 0; 2)
1𝑏 𝜌(𝐶3) = 𝑒i 2𝜋

3 − (0 | 0,−1, 1,−1; 1)
1𝑏 𝜌(𝐶3) = 𝑒i 4𝜋

3 − (0 | 1, 0, 0, 1; 1)

1𝑐 𝜌(𝐶3) = +1 (−1, 0; 1) (0 | − 1, 0,−1, 1; 1)
1𝑐 𝜌(𝐶3) = 𝑒i 2𝜋

3 𝜎𝑧 (1, 0; 2) (0 | 1, 0, 1,−1; 2)
1𝑐 𝜌(𝐶3) = 𝑒i 2𝜋

3 − (0 | 1,−1, 0,−1; 1)
1𝑐 𝜌(𝐶3) = 𝑒i 4𝜋

3 − (0 | 0, 1, 1, 0; 1)

TABLE II. 𝐶3 symmetry: Indices induced from every maximal
Wyckoff position.

𝐶𝑛-symmetric PhCs with different 𝜒 (𝑛) or 𝜒 (𝑛)
T belong to

different topological phases, as they cannot be deformed into
one another without closing the bulk energy gap or breaking

WP Site symm. 𝜒
(4)
T 𝜒 (4)

1𝑎 𝜌(𝐶4) = any (0, 0, 0; 1) (0 | 0, 0, 0, 0; 1)

2𝑐 𝜌(𝐶2) = +1 (−1,−1, 1; 2) (0 | − 1,−1, 1, 1; 2)
2𝑐 𝜌(𝐶2) = −1 (1, 1,−1; 2) (0 | 1, 1,−1,−; 2)

1𝑏 𝜌(𝐶4) = +1 (−1,−1, 0; 1) (0 | − 1,−1, 0, 0; 1)
1𝑏 𝜌(𝐶4) = −1 (−1, 1, 0; 1) (0 | − 1, 1, 0, 0; 1)
1𝑏 𝜌(𝐶4) = i𝜎𝑧 (2, 0, 0; 2) (0 | 2, 0, 0, 0; 2)
1𝑏 𝜌(𝐶4) = +i − (0 | 1, 0,−1, 1; 1)
1𝑏 𝜌(𝐶4) = −i − (0 | 1, 0, 1,−1; 1)

TABLE III. 𝐶4 symmetry: Indices induced from every maximal
Wyckoff position.

WP Site symm. 𝜒
(6)
T 𝜒 (6)

1𝑎 𝜌(𝐶6) = any (0, 0; 1) (0 | 0, 0, 0; 1)

2𝑏 𝜌(𝐶3) = +1 (0,−2; 2) (0 | 0,−2, 1; 2)
2𝑏 𝜌(𝐶3) = 𝑒i 2𝜋

3 𝜎𝑧 (0, 2; 4) (0 | 0, 2,−1; 4)
2𝑏 𝜌(𝐶3) = 𝑒i 2𝜋

3 − (0 | 0, 1,−2; 2)
2𝑏 𝜌(𝐶3) = 𝑒i 4𝜋

3 − (0 | 0, 1, 1; 2)

3𝑐 𝜌(𝐶2) = +1 (−2, 0; 3) (0 | − 2, 0, 0; 3)
3𝑐 𝜌(𝐶2) = −1 (2, 0; 3) (0 | 2, 0, 0; 3)

TABLE IV. 𝐶6 symmetry: Indices induced from every maximal
Wyckoff position.

the symmetry [69, 93, 94]1. Furthermore, for Wannierizable
bands, the Wannier center configuration directly determines
the existence of a filling anomaly and consequently the possible
existence of in-gap edge and corner states. Therefore, finding
the symmetry-indicator invariants is useful in establishing a
bulk-boundary correspondence for such bands. The presence
of edge states is directly related to the dipole moment of the
Wannier centers. In 1D, this takes the form of Eq. (10) whereas
in 2D, Ref. [67] showed that the bands have dipole moments
indicated by

P(2) =
1
2

(
[𝑌 (2)

1 ] + [𝑀 (2)
1 ]

)
a1 +

1
2

(
[𝑋 (2)

1 ] + [𝑀 (2)
1 ]

)
a2,

P(4) =
1
2
[𝑋 (2)

1 ] (a1 + a2),

P(6) = 0, (20)

where the superscript 𝑛 in P(𝑛) labels the 𝐶𝑛 symmetry. The
dipole moments in Eq. (20) are defined modulo 1 and are valid

1 These are weak invariants that depend on the particular choice of a 𝐶𝑛-
symmetric unit cell. However, once such a choice is made, these invariants
can only change discretely at gap-closing points when the system undergoes
a symmetry-preserving adiabatic deformation.
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for both TR-symmetric and TR-broken PhCs, as long as the
Chern number vanishes in the latter case. P(2) is a Z2 × Z2
index and P(4) is a Z2 index. In the case of 𝐶3 symmetry, the
dipole moment is given by

P(3) =
2
3

(
[𝐾 (3)

1 ] + 2[𝐾 (3)
2 ]

)
(a1 + a2) (TRS), (21)

P(3) =
(
[𝐾 (3)

1 ] + [𝐾 (3)
2 ] − 2

3
[𝐾 ′(3)

1 ] − 1
3
[𝐾 ′(3)

2 ]
)
(a1 + a2)

(broken TRS),

where P(3) is a Z3 index for 𝐶3 symmetry.
In all cases, non-trivial P is associated with an edge-induced

filling anomaly. For 2D spinless systems, such as the PhCs
considered here, I and 𝐶2 have identical transformation prop-
erties and are isomorphic operations that send 𝑥, 𝑦 → −𝑥,−𝑦.
Therefore, for 𝐶2, 𝐶4, and 𝐶6 symmetries, a non-trivial P is
associated with a counting mismatch of 12 in the edge spectrum
since inversion symmetry (I) is a subgroup of these rotations
and an edge supercell (with one periodic direction) can always
be chosen such that I is maintained. In the case of 𝐶2 sym-
metry, the counting mismatch is a Z2 × Z2 invariant as edge
supercells in both directions must be independently considered
(i.e., finite-in-𝑥, periodic-in-𝑦 or finite-in-𝑦, periodic-in-𝑥). In
the case of 𝐶4 symmetry, the edge spectrum is identical in both
directions, and therefore the counting mismatch is a Z2 invari-
ant. In the case of 𝐶6 symmetry, both P(6) and the counting
mismatch in the edge spectrum are always trivial. Since I is
not a subgroup of 𝐶3 symmetry, an edge supercell can never
be chosen such that I is maintained. Therefore, the counting
mismatch cannot distinguish between different values of P(3) .
Instead, in this case, the fractionalization of energy density at
the edges must be directly calculated using the eigenmodes of
a 𝐶3-symmetric finite system.

Additionally, some Wannier center configurations can lead
to higher-order topological states. In class AI, these phases are
determined by the corner “charges”2

𝑄
(2)
corner,T =

1
4

(
− [𝑋 (2)

1 ] − [𝑌 (2)
1 ] + [𝑀 (2)

1 ]
)
,

𝑄
(3)
corner,T =

1
3
[𝐾 (3)

2 ],

𝑄
(4)
corner,T =

1
4

(
[𝑋 (2)

1 ] + 2[𝑀 (4)
1 ] + 3[𝑀 (4)

2 ]
)
,

𝑄
(6)
corner,T =

1
4
[𝑀 (2)

1 ] + 1
6
[𝐾 (3)

1 ], (22)

as shown initially in Ref. [67]. We extend this to class A, where

2 In PhCs, the electromagnetic energy density is analogous to electronic
charge density fractionally quantized at corners.

they are

𝑄
(2)
corner =

1
4

(
− [𝑋 (2)

1 ] − [𝑌 (2)
1 ] + [𝑀 (2)

1 ]
)
,

𝑄
(3)
corner =

1
3

(
[𝐾 (3)

1 ] + [𝐾 (3)
2 ] − [𝐾 ′(3)

1 ]
)
,

𝑄
(4)
corner =

1
4

(
[𝑋 (2)

1 ] + 2[𝑀 (4)
1 ] + 3

2
[𝑀 (4)

2 ] + 3
2
[𝑀 (4)

4 ]
)
,

𝑄
(6)
corner =

1
4
[𝑀 (2)

1 ] + 2
3
[𝐾 (3)

1 ], (23)

𝑄
(𝑛)
corner,T (for TR-symmetric) or 𝑄 (𝑛)

corner (for TR-broken), are
Z𝑛 topological quantities and are associated with a corner-
induced filling anomaly, a counting mismatch of states ∈
{0𝑛, . . . 𝑛 − 1𝑛} in a finite system with 𝑛 symmetry-related
sectors and possibly the presence of in-gap corner-localized
states. The derivation of these formulae and other details
concerning the finite systems where these formulae are valid
are given in Appendix E.

For the formulae in Eq. (23), we have assumed that the Chern
number vanishes in the TR-broken case and that the bands are
OALs with well-defined Wannier centers. However, it is also
possible for fractional charges to localize at disclinations [69,
95, 96] and dislocations [97] in 𝐶𝑛-symmetric systems with
non-Wannierizable Chern bands. In the case of disclinations,
the formulae for fractional charges contain a Chern number
contribution and contributions from the symmetry-indicator
invariants [95]. We note that our formulae in Eq. (23) are
consistent with the disclination charges given in Ref. [95] with
a vanishing Chern number contribution as is expected.

Finally, we note that in fermionic systems, where insulating
states rely on completely filled bands, a quantization of corner
charge requires P(𝑛) = 0. In photonic systems, however, we
are only concerned with the existence of localized states, and
the P(𝑛) = 0 constraint can be relaxed. Therefore, we also
consider cases where P(𝑛) and 𝑄 can simultaneously admit
non-trivial values, leading to both edge and corner states that
may be degenerate with each other and/or with the bulk bands.
However, their associated counting mismatch remains robust.

IV. DESIGN AND CHARACTERIZATION OF 2D
TOPOLOGICAL PHOTONIC CRYSTALS

In the previous sections, we exhaustively built the topolog-
ical classifications in class A and AI. We also identified the
indices that correspond to OAL phases via the induction of the
band representations from the symmetry representation of the
Wannier functions and the Wyckoff positions of their Wannier
centers. This classification forms a linear algebraic structure,
such that when two sets of bands of a 𝐶𝑛-symmetric system, in
phases 𝜒1 and 𝜒2 respectively, are combined, they are in phase
𝜒1 + 𝜒2. This observation forms the basis of a strategy we now
propose to diagnose and design topological PhCs.

Given a PhC, our starting point is the calculation of the 𝐶𝑛

symmetry representations at HSPs for 𝑁 bands to determine
𝜌 (𝑛) (here, 𝜌 (𝑛) = 𝜒 (𝑛)

T for TR-symmetric systems). 𝜌 (𝑛) can
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always be expressed as the following linear combination

𝜌 (𝑛) =
∑︁
𝑝

𝛼𝑝 𝜌
(𝑛)
𝑝 , (24)

where 𝜌 (𝑛)𝑝 correspond to the indices of atomic limits in Tables I–
IV. Since the 𝜌 (𝑛)𝑝 for different site symmetry representations for
the same Wannier center configuration are linearly dependent,
the linear combination in Eq. (24) is non-unique, and all
possible linear combinations must be examined to obtain the
correct topological characterization.

The topology of this set of 𝑁 bands can then be determined
by the following set of rules [64, 98]: (i) If the bands are in
an OAL phase, there exists a linear combination such that the
coefficients {𝛼𝑝} are all positive integers (the converse is not
true). (ii) If a linear combination with positive integer {𝛼𝑝}
is impossible and at least one negative integer coefficient is
required, the bands are in a fragile topological phase. (iii) If a
linear combination with integer {𝛼𝑝} is not possible, the bands
are either gapless under TRS, in which case we have a Dirac
semi-metal phase, or are gapped and have a non-vanishing
Chern number under broken TRS.

In the following sections, we provide examples that illustrate
these cases.

A. Example 1: OAL phases with four-fold rotation in class AI

We now show an example of an OAL phase and its associated
boundary signatures in a 2D PhC. Similar OAL phases have
been widely implemented in PhCs [39–44, 49, 50]. Consider
two PhCs with unit cells shown in the inset of Fig. 4(a), which
consist of four dielectric square pillars in a 𝐶4𝑣-symmetric
configuration with 𝜀 = 12. These two unit cell choices, referred
to as “expanded” and “contracted”, are related by a half-lattice-
constant shift along the 𝑥 and 𝑦 directions. We will consider
the first four TM bands for the following analysis.

The symmetry-indicator invariants can be computed using
the relevant rotation eigenvalues of the electromagnetic eigen-
modes at the HSPs 𝚪, X and M for both unit cell types; the
rotation eigenvalues are shown in Fig. 4(a). For the expanded
unit cell type, band 1 has the following rotation eigenvalues:
𝚪(𝐶4 : +1, 𝐶2 : +1), X(𝐶2 : −1), M(𝐶4 : −1, 𝐶2 : +1). From
this, we calculate the symmetry-indicator invariants, [𝑋 (2)

1 ] =
#X(2)

1 −#𝚪(2)
1 = 0−1 = −1, [𝑀 (4)

1 ] = #M(4)
1 −#𝚪(4)

1 = 0−1 =

−1 and [𝑀 (4)
2 ] = #M(4)

2 − #𝚪(4)
2 = 0 − 0 = 0. Thus, the

index for band 1 is 𝜒 (4)
T = (−1,−1, 0; 1). Similarly, the index

for the pair of degenerate bands 2 + 3 is 𝜒 (4)
T = (2, 0, 0; 2)

and the index for band 4 is 𝜒 (4)
T = (−1, +1, 0; 1). Examining

these indices in Table III, we see that they each correspond
to Wannier centers at the 1𝑏 Wyckoff position in the 2D unit
cell [Fig. 3(b)]. From Eq. (20) and Eq. (22), we find that
these indices lead to P(4) = (1/2, 1/2) and 𝑄 (4)

corner,T = 1/4
for bands 1 and 4 and P(4) = 0 and 𝑄 (4)

corner,T = 1/2 for bands
2+3. In contrast, for the contracted unit cell, bands 1 and 4
have the index 𝜒

(4)
T = (0, 0, 0; 1) and bands 2 + 3 have the

index 𝜒 (4)
T = (0, 0, 0; 2). These indices correspond to Wannier

centers located at the 1𝑎 Wyckoff position with vanishing P(4)

and 𝑄 (4)
corner,T .

The Wannierizable nature of these atomic limit bands can
also be established by examining the Wilson loops as shown
in Fig. 4(b). Here, the Wilson loop eigenvalues for each band
are calculated by integrating the Berry connection along one
momentum direction and plotting it as a function of the other
momentum. This indicates the locations of the hybrid Wannier
centers that are exponentially localized in one spatial direction
but delocalized in another. The observed shifts in the Wilson
loop eigenvalues between the contracted and expanded unit
cells are consistent with the real space shifts that relate the two
unit cell types where the Wannier centers reside at the 1𝑎 and
1𝑏 positions, respectively.

To illustrate that the non-zero dipole moments, P(4) , lead
to edge states, we simulate a finite system consisting of the
expanded and contracted unit cells in a strip geometry. The strip
geometry is a large supercell along one direction, consisting
of an inner domain with the expanded unit cell and an outer
domain with the contracted unit cell with periodic boundaries
along both directions, as shown in Fig. 4(c). Here, the outer
domain simply serves as a trivial cladding material that provides
an overlapping bandgap with the inner non-trivial domain. We
consider a supercell of size 25 × 1 unit cells, and therefore
expect the spectrum to contain 25 states per band. However,
due to the non-zero dipole moments, bands 1 and 4 have a
counting mismatch of one missing state (= 12) each. In contrast,
bands 2+3, which have a vanishing dipole moment, exhibit a
counting mismatch of two missing states (= 02) as shown in the
edge spectrum in Fig. 4(c). These missing states reside in the
bandgap as edge states that are confined to the two interfaces
between the domains.

To examine the corner states in this system due to non-zero
𝑄

(4)
corner,T , we next simulate a finite 𝐶4-symmetric system in a

core-cladding configuration as shown in Fig. 4(d). This finite
system has four symmetry-related sectors with four corners
and has a size of 15 × 15 = 225 unit cells. Therefore, each
band is expected to contribute 225 states to the spectrum of the
finite system. However, the non-zero dipole moment of bands
of the inner core region leads to edge states on all edges, as we
have discussed previously and shown in Fig. 4(c). In the finite
system, these edge states now have a size-dependent counting
mismatch. If we consider a finite tiling of size 7 × 7 unit cells
that represent the inner core in Fig. 4(d), each with a Wannier
center at 1𝑏, we observe that additional Wannier centers from
other bands are required to maintain 𝐶4 symmetry, as shown in
Fig. 4(e). Counting the Wannier centers that live on the entire
boundary between the core and cladding, we can predict the
appearance of 24 edge states and 4 corner states.

In Fig. 4(f), we show a schematic of the calculated DoS of
the full 15 × 15 finite system, up to the frequency range of
the first four TM bands and identify the number of bulk, edge,
and corner states from their localization and mode profiles.
The state counting in Fig. 4(f) confirms the predicted 24 edge
states and 4 corner states. The counting mismatch due to the
corners is size-independent and is identified in Fig. 4(f) as
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FIG. 4. (a) TM-polarized band structure of a 𝐶4𝑣 symmetric PhC with 𝜀 = 12. The two possible types of 𝐶4-symmetric unit cells are shown in
the insets along with the 2D BZ. 𝐶4 eigenvalues at 𝚪 and M, 𝐶2 eigenvalues at X are shown for the first four bands. (b) Wilson loop eigenvalues
W𝑦 (W𝑥) for bands 1, 2 + 3 and 4 along 𝑘𝑥 (𝑘𝑦) for both types of unit cells. (c) Edge spectrum consisting of a total of 25 unit cells of the two
types in a strip configuration (shown on the right). An odd-integer counting mismatch per band leads to the presence of edge states in the first
and second TM bandgaps. (d) The dielectric and 𝐸𝑧 mode profile of one of the four corner modes in a finite system of size 15 × 15 unit cells
consisting of the two types of unit cells in a core-cladding configuration. (e) A tiling of the unit cells with Wannier centers (solid circles) for
one band of the inner core of size 7 × 7. Additional Wannier centers from other bands (hollow circles) are required to maintain 𝐶4 symmetry.
Counting the Wannier centers along the boundary sites, we see that 24 edge and four corner states are expected in this finite configuration. (f) A
schematic of the DoS for the structure in (d). A counting mismatch of states for bands 1 to 4 leads to four degenerate corner states in the first TM
bandgap. The counting mismatch for the edge states depends on the system size for such a finite configuration.

equal to one missing state (= 14) each for bands 1 and 4 and
two missing states for bands 2+3 (= 24), accounting for the
expected number of corner states and consistent with the corner
charges of the bands. We point out that even if a 𝐶4-preserving
perturbation to the corners pushes the four corner states into
any of the bulk bands, the counting mismatch remains. For
example, if the four corner states were pushed into band 1, the
counting mismatch for this band would go from one missing
state to three additional states, both of which are equal modulo
4 (−34 = 14).

B. Example 2: Dirac semi-metal in class AI

Next, we show the topological characterization of a PhC
with Dirac points in class AI. We do this via three distinct
perspectives: (1) Examining the symmetry-indicator invariants
of 1D subsystems, (2) computing the Wilson loops, and (3)
constructing the indices of the 2D bands of the system.

Consider the 𝐶2-symmetric PhC in the inset of Fig. 5(a),
which consists of an elliptical disc (𝜀 = 12) with its semi-major
and semi-minor axes oriented along the diagonals of a square
unit cell. This PhC’s TM spectrum exhibits two sets of Dirac
points along the 𝚪 − M direction, one between bands 2 and 3,
and one between bands 3 and 4, as shown in Fig. 5(a).

We first examine the topology of the gapped phases of 1D
subsystems that are obtained by fixing one of the momenta, say
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FIG. 5. (a) TM-polarized band structure of a 𝐶2𝑣-symmetric PhC
whose unit cell is shown in the inset. 𝐶2 eigenvalues at 𝚪, X, Y and M
are shown for the first four bands. (b) Wilson loop eigenvalues W𝑦 for
the bands 2, 3, and 4 plotted as a function of 𝑘𝑥 . The discontinuities
indicate the presence of Dirac points. (c) Edge spectrum of this PhC
showing edge states (marked with arrows) whose dispersion terminates
at Dirac points (marked with circles) on the left (red) and right (light
red) edges. (d) Dirac points are gap-closing points that separate 1D
topological phases with different Berry phases. They can also be
thought of as sources of 𝜋 Berry phase.

𝑘𝑦 . In this example, bands 2 and 4 have different𝐶2 eigenvalues
(and hence I eigenvalues in the 1D subsystem) at the 𝚪 and X
points, corresponding to a 1D topological phase at the 𝑘𝑦 = 0
cut with [𝑋1] = 1 (or equivalently, 𝜃 = 𝜋 from Eq.(7)). On the
other hand, these bands have the same 𝐶2 eigenvalues at the Y
and M points, corresponding to a trivial phase at the 𝑘𝑦 = 𝜋/𝑎
cut with [𝑋1] = 0 (or equivalently, 𝜃 = 0). These Dirac points
are thus the required transition points that separate trivial and
topological gapped phases of the 1D subsystems.

This change in the topology of the one-dimensional subsys-
tem at the Dirac points can also be seen from the Wilson loop
spectrum. The Wilson loop eigenvalues plotted in Fig. 5(b)
exhibit jump discontinuities from 0 to 𝜋 at the momenta of
the Dirac points, which correspond to a switch in the value of
[𝑋1] from 0 to 1. Consequently, edge states only appear in
the portion of the 1D edge Brillouin zone that is topologically
non-trivial. Fig. 5(c) shows the edge spectrum for the PhC with
open boundaries along 𝑥 and periodic boundaries along 𝑦.

The Wilson loop can also help diagnose generic Dirac points
that may be present in the interior of the Brillouin zone. In
the current example, there are two additional pairs of jump
discontinuities in the Wilson loop spectrum for band 4 which
are due to such generic Dirac points between bands 4 and 5.

Since the bands 2, 3, and 4 are non-degenerate at all HSPs,

FIG. 6. (a) TM-polarized band structure of a 𝐶2-symmetric gyromag-
netic PhC whose unit cell is shown in the inset. The Chern numbers
for the first four bands are also shown. (b) Wilson loop eigenvalues
W𝑦 for the bands 2, 3, and 4 plotted as a function of 𝑘𝑥 . The winding
of the eigenvalues indicates the non-Wannierizablility of the bands,
and the winding number is equal to the Chern number of the band. (c)
Edge spectrum showing projected bulk bands (blue) and chiral edge
states (red).

we can classify them by constructing the 2D indices under TRS
from Table I, which are respectively 𝜒

(2)
T = (−1,−1,−1; 1),

𝜒
(2)
T = (0, 0, 0; 1) and 𝜒

(2)
T = (1, 1, 1; 1). The indices for

bands 2 and 4 are not found in Table I, and expanding these in
a linear combination of OALs results in fractional coefficients
{𝛼𝑝}. Therefore, these are stable topological bands and must
contain a gapless point somewhere in the BZ under TRS. In
this example, the PhC has Dirac points on high-symmetry lines
as seen in Fig. 5(a). Band 3 is an example of a situation where
stable topological bands could have the same indices as atomic
limit bands.

Relevant to PhC design, these invariants can be useful for
finding spectrally-isolated Dirac points for applications such
as creating cavity states that are algebraically localized to
embedded point defects [31–34, 99] or enabling large-area
single-mode lasing [100, 101].

C. Example 3: Chern insulator in class A

Consider the PhC introduced in the previous section. We
break TRS for this PhC by introducing non-diagonal terms in
the permeability tensor, which correspond to a response of a
gyromagnetic material under a magnetic field applied in the
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𝑧-direction. Specifically, we set the permeability tensor to

𝜇 =


𝜇 i𝜅 0
−i𝜅 𝜇 0
0 0 𝜇0

 , (25)

where 𝜇 = 𝜇0 is the vacuum permeability and 𝜅 = 0.25𝜇0. The
Dirac points that were previously protected by a combination of
inversion and TRS are now gapped, and bands 2, 3 and 4 are non-
degenerate and have the invariants 𝜒 (2) = (−1 | −1,−1,−1; 1),
𝜒 (2) = (+2 | 0, 0, 0; 1) and 𝜒 (2) = (+1 | 1, 1, 1; 1), respectively.
The first invariant of the listed tuples is the Chern number,
obtained as the winding number of the Wilson loop spectrum
in Fig. 6(b). The winding numbers agree with the symmetry-
imposed constraints in Eq. (19).

The Chern number leads to chiral edge states at the boundary
of a finite system as shown in Fig. 6(c). These edge states
exhibit unidirectional transport and have been observed in gy-
romagnetic PhCs at microwave frequencies [19, 22]. Proposed
applications for these edge states include optical isolators and
slow-light devices that could significantly outperform their
conventional counterparts [102–104].

D. Example 4: Fragile phase in class AI

Fragile phases have bands that exhibit a symmetry-protected
winding in their Wilson loop spectrum, indicating that the bands
cannot form a symmetry-preserving Wannier representation.
However, when considered as a set along with additional
atomic limit bands, the full set becomes Wannierizable, and
accordingly, the Wilson loop winding is lost [48, 64–66]. They
are characterized by indices that must be written as a linear
combination of the invariants in Tables I-IV with at least one
negative integer coefficient.

We now present a novel PhC design with fragile bands in
a 𝐶4𝑣 symmetry setting whose unit cell is shown in the inset
of Fig. 7(a). The PhC is composed of three materials, 𝜀1 = 1
(white), 𝜀2 = 16 (black) and 𝜀3 = 4 (gray). We consider
the two isolated and degenerate bands, bands 8 + 9 in the
TE-polarized band structure of this PhC shown in Fig. 7(a).
Using the relevant rotation eigenvalues of the electromagnetic
eigenmodes at the HSPs, we compute the invariant for these
bands to be 𝜒 (4)

T = (0, 2,−1; 2). Since this invariant is not found
in Table III, we express it as the following linear combination of
OALs from Table III: 𝜒 (4)

T = (0, 0,−1; 2) = 1 × (1, 1,−1; 2) +
1 × (−1,−1, 0; 1) + (−1) × (0, 0, 0; 1). The requirement of a
negative integer coefficient in this expansion indicates that this
set of two bands is fragile. The non-Wannierizable nature of
these bands is also evident from the Wilson loop spectrum in
Fig. 7(b) which shows opposite winding of the two eigenvalues.

A different PhC realization of a fragile phase with𝐶6 symme-
try was previously reported in [48]. Like OAL phases, fragile
PhCs may host corner states resulting from the total corner
charge of all Wannierizable components in their decomposi-
tion [67, 105].

FIG. 7. (a) TE-polarized band structure of a 𝐶4𝑣 symmetric PhC with
lattice constant, 𝑎, whose unit cell is shown in the inset. This unit
cell consists of dielectric discs of 𝜀1 = 1 (white) with 𝑟1 = 0.2𝑎 and
𝜀2 = 16 (black) with 𝑟2 = 0.225𝑎 in a background material of 𝜀3 = 4
(gray). 𝐶4 eigenvalues at 𝚪 and M, 𝐶2 eigenvalues at X are shown for
bands 8 and 9. (b) Wilson loop eigenvalues W𝑦 for the bands 8+9,
plotted as a function of 𝑘𝑥 . The opposite winding of the eigenvalues
indicates the non-Wannierizablility of the bands, particularly that the
bands are fragile.

V. OTHER TOPOLOGICAL PHASES

Finally, we discuss a selection of other topological phases
where crystalline symmetries play a crucial role, but whose
realization may not be directly inferred from the topological
indices presented so far.

A. Quantum spin-Hall analogs

The electronic quantum spin-Hall effect (QSHE) can be
thought of as being deformable to two Chern insulators with
opposite Chern numbers stacked on top of each other, one for
each spin degree of freedom [106–108]. This creates spin-
polarized “helical” edge states on the boundary of a finite
sample which are protected against back-scattering due to the
Kramers’ degeneracy at time-reversal invariant momenta.

Since the bosonic TR operator squares to +1, photons lack the
Kramers degeneracy enjoyed by their fermionic counterparts
(whose TR operator squares to −1). A photonic counterpart to
the QSHE consequently necessitates a replacement for Kramers
degeneracy. This can be achieved by incorporating spatial sym-
metries, particularly 𝐶6𝑣 symmetry, to construct a pseudo-TR
operator [23]. It can be shown that the bulk topology of such a
PhC is identical to that of the QSHE by explicit calculation of
the pseudo-spin polarized Wilson loop spectrum [109], where
an opposite winding of the two eigenvalues is observed. How-
ever, since this winding is enforced by a crystalline symmetry, it
is more appropriate to classify these PhCs as fragile phases than
as true QSH systems [109, 110]. Nevertheless, such PhCs have
bulk states with a well-defined pseudo-spin, analogous to the
spin of electrons [23–27] and exhibit helical edge states, similar
to the QSHE, as shown in Fig. 8(a). The presence of an edge
necessarily breaks the 𝐶6𝑣 symmetry of the bulk and therefore
also the pseudo-TR symmetry allowing for the hybridization
of the edge states. This opens a gap in the edge spectrum as
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shown in Fig. 8(a) and allows for the back-scattering of the
edge states in the vicinity of the gap.

B. Valley-Hall phases

As shown previously, Dirac points can be gapped by breaking
TRS, thereby creating bands with a non-zero Chern number.
Breaking inversion symmetry (i.e., two-fold rotation in a 2D
system) can also gap Dirac points and introduce local Berry
curvature with boundary manifestations. For example, reducing
𝐶6 symmetry to 𝐶3 gaps the Dirac points that generically exist
at the K (K′) points of the BZ. This causes the Berry curvature
to peak at the “valleys” formed at the K (K′) points [35–37].
Due to TRS, the total Berry curvature and the Chern number are
identically zero. However, the non-zero local Berry curvature at
the K (K′) valleys can be used to define valley Chern numbers
such that 𝐶K = −𝐶K′ .

In this case, the bulk-boundary correspondence is only well-
defined at the boundary between two such systems, one spatially
inverted with respect to the other. The edge states that thus
emerge have a dispersion as shown in Fig. 8(b) and can generally
backscatter, unlike the chiral edge states of a Chern insulator.
Certain types of edge geometries and symmetry-preserving
perturbations are known to suppress inter-valley scattering,
leading to nearly perfect (but incidental) backscatter-free trans-
port in the absence of structural imperfections [36]. However,
in the presence of random disorder, typically introduced by
fabrication imperfections, it was recently shown that these
valley-Hall edge states may not perform better than conven-
tional edge states for practical light transport [38]. Valley-Hall
edge states have been observed in PhC designs spanning orders
of magnitude in frequency [35–38].

C. Quadrupole and octupole topological insulators

Quadrupole and octupole topological insulators (QTIs and
OTIs, respectively) are a final example of crystalline symmetry-
protected topological phases which host fractional corner
charges, similar to, but ultimately distinct from, OAL insula-
tors [111] [Fig. 8(c)]. They are Z2 classified, with fractional
corner charges quantized to {0, 1/2} mod 1. The prototypical
model is 𝐶4𝑣 symmetric [112]. Under 𝐶4 symmetry, the QTI
phase is bulk-obstructed and therefore an atomic limit. However,
relaxing 𝐶4𝑣 down to only reflection symmetries also protects
the quantization of corner charge, although their symmetry-
indicator invariants due to reflection symmetry vanish. Thus,
the protection due to reflection symmetries is more subtle than
for OALs; they exhibit a gapped Wilson loop spectrum, not
pinned by symmetries, and the change in topology here is
accompanied by a gap closing in the Wilson loop spectrum,
which implies a gap closing in the edge spectrum, instead of in
the bulk spectrum.

QTI and OTI phases require a set of anti-commuting spatial
symmetries that can be achieved by threading a 𝜋-flux in simple
tight-binding models. However, PhCs cannot be accurately
described by such models. Instead, a quadrupole phase can be

FIG. 8. (a) Pseudo-spin polarized helical edge states of a quantum
spin-Hall analog PhC. Note the gap at the crossing point of the edge
states. This gap opens as a result of pseudo-TR breaking due to the
edge. (b) Edge states of a valley-Hall PhC. (c) Schematic of a PhC
quadrupole insulator with vanishing bulk dipole moment and non-zero
bulk quadrupole moment.

achieved by breaking time-reversal symmetry while preserv-
ing the product of mirror and time-reversal symmetries [45].
Alternatively, QTI phases can also be realized in PhCs with
anti-commuting glide symmetries [46]. Topological indices
that diagnose the QTI and OTI topologies have been recently
demonstrated [113, 114], and follow the natural extension of
the index for dipole moments [115]. Such indices have also
recently been used to show that QTIs can also be protected
solely by chiral symmetry [116–118], which has allowed the
introduction of a Z classification of higher-order topological
insulators in 2D and 3D [119].

VI. DISCUSSION

The past decade has seen the uncovering of a wide range
of topological phenomena in PhCs [3–5, 17–19], validating
the notion that topological band theory is a wave phenomenon,
transcending the existence of bound orbital states present in
electronic systems. Motivated by these recent developments,
we have here extended the use of symmetry-indicator invariants
to classify one- and two- dimensional PhCs with crystalline sym-
metries, with and without time-reversal symmetry. Through
various examples, we have also demonstrated that the bulk-
boundary correspondence of topological band theory carries
over to these systems as well.

In solids, the atomic ions form potentials that bind electronic
orbitals. The electrons in the crystal hop between these orbitals,
giving rise to Bloch energy bands that can often be described
by simplified tight-binding models, where the hopping terms
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in the Hamiltonian are given by the overlap integrals between
different orbitals. Photonic analogs of solid-state lattices have
been achieved in periodic arrays of coupled waveguides, where
each waveguide supports a guided mode so that the extended
array can be thought of as having inter-orbital hoppings that
also lead to tight-binding descriptions [120]. As a result, the
electronic theory of non-interacting topological phases carries
over directly to this case. In contrast, the PhCs studied in this
work are not well-described by simple tight-binding models;
instead, they necessarily require a continuum description based
on the full-wave solution of Maxwell’s equations.

A further crucial difference between PhCs and solids is that
PhCs host bosonic waves unlike electrons, which are fermionic
and described by a quantum wave function. For topological
band theory, this has two consequences. First, there is no
Kramers’ degeneracy for electromagnetic waves, and thus
there is no protection of helical edge states as in the QSHE
phase of electronic systems. As discussed in Section V, the
edge states in the PhC versions of the QSHE phase are not
rigorously protected, in contrast to their electronic counterpart.
Second, PhCs lack a notion of band filling and consequently
require a subtler interpretation of the filling anomaly, involving
instead the fractional quantization of electromagnetic mode
density instead of charges [74]. We have demonstrated that
this fractionalization comes from a counting mismatch of states
and that the boundary-localized states associated with it are the
consequence of the conservation of the number of degrees of
freedom in the system, and do not require a fixed band-filling
(i.e., Fermi level). We have further demonstrated how the
topological invariants based on symmetry indicators relate to
the presence of counting mismatches and their boundary states.

Finally, we have presented a novel 𝐶4𝑣-symmetric PhC design
hosting fragile bands.

The framework presented here is readily generalizable to
three-dimensional PhCs under crystalline symmetries [90, 121].
Such three-dimensional PhCs, now a subject of active exper-
imental exploration [122–126], exhibit several unique topo-
logical phases with associated bulk and boundary signatures.
Beyond its appeal as a platform for exploring the new, funda-
mental physics of topology in a controllable setting, the merger
of topology and PhCs hold substantial promise for the devel-
opment of new technologies and device design strategies. We
expect that the algebraic structure of the presented classification
will be useful in this pursuit.
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Location and topology of the fundamental gap in photonic
crystals, Physical Review X 12, 021066 (2022).

[91] T. Christensen and G. Ali, MPBUtils.jl (2023).
[92] C. Fang, M. J. Gilbert, and B. A. Bernevig, Bulk topological

invariants in noninteracting point group symmetric insulators,
Physical Review B 86, 115112 (2012).

[93] J. C. Y. Teo and C. L. Kane, Topological defects and gapless
modes in insulators and superconductors, Phys. Rev. B 82,
115120 (2010).

[94] J. C. Y. Teo and T. L. Hughes, Existence of majorana-fermion
bound states on disclinations and the classification of topological
crystalline superconductors in two dimensions, Phys. Rev. Lett.
111, 047006 (2013).

[95] T. Li, P. Zhu, W. A. Benalcazar, and T. L. Hughes, Fractional
disclination charge in two-dimensional 𝐶𝑛-symmetric topo-
logical crystalline insulators, Physical Review B 101, 115115
(2020).

https://doi.org/10.1063/1.3149495
https://doi.org/10.1038/nature23268
https://doi.org/10.1103/PhysRevB.89.224503
https://doi.org/10.1103/PhysRevB.89.224503
https://doi.org/10.1103/PhysRevX.7.041069
https://doi.org/10.48550/arXiv.1810.02373
https://doi.org/10.1103/PhysRevB.83.245132
https://doi.org/10.1103/PhysRevB.83.245132
https://doi.org/10.1103/PhysRevX.12.021066
https://github.com/thchr/MPBUtils.jl
https://doi.org/10.1103/PhysRevB.82.115120
https://doi.org/10.1103/PhysRevB.82.115120
https://doi.org/10.1103/PhysRevLett.111.047006
https://doi.org/10.1103/PhysRevLett.111.047006


17

[96] Y. Zhang, N. Manjunath, G. Nambiar, and M. Barkeshli, Frac-
tional disclination charge and discrete shift in the Hofstadter
butterfly, Physical Review Letters 129, 275301 (2022).

[97] Y. Zhang, N. Manjunath, G. Nambiar, and M. Barkeshli,
Quantized charge polarization as a many-body invariant in
(2+1)D crystalline topological states and Hofstadter butterflies,
arXiv:2211.09127 (2022).

[98] Z. Song, T. Zhang, and C. Fang, Diagnosis for nonmagnetic
topological semimetals in the absence of spin-orbital coupling,
Physical Review X 8, 031069 (2018).

[99] S. Vaidya, W. A. Benalcazar, A. Cerjan, and M. C. Rechtsman,
Point-defect-localized bound states in the continuum in photonic
crystals and structured fibers, Physical Review Letters 127,
023605 (2021).

[100] S.-L. Chua, L. Lu, J. Bravo-Abad, J. D. Joannopoulos, and
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[116] A. Agarwala, V. Juričić, and B. Roy, Higher-order topological
insulators in amorphous solids, Phys. Rev. Research 2, 012067
(2020).

[117] C.-A. Li, B. Fu, Z.-A. Hu, J. Li, and S.-Q. Shen, Topological
phase transitions in disordered electric quadrupole insulators,
Phys. Rev. Lett. 125, 166801 (2020).

[118] Y.-B. Yang, K. Li, L.-M. Duan, and Y. Xu, Higher-order
topological Anderson insulators, Phys. Rev. B 103, 085408
(2021).

[119] W. A. Benalcazar and A. Cerjan, Chiral-symmetric higher-
order topological phases of matter, Physical Review Letters
128, 127601 (2022).

[120] A. Yariv, Optical electronics (Saunders College Publishing,
1991).

[121] S. Kim, T. Christensen, S. G. Johnson, and M. Soljačić, Auto-
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Appendix A: State counting mismatch

Consider a 1D lattice under periodic boundary conditions.
The lattice is gapped and the lowest band can exist in two
phases, a trivial phase and an OAL phase, both protected by
inversion symmetry (I). In Fig. 9(a), the Wannier centers
are at the middle of their unit cells (Wyckoff position 1𝑎).
In this case, irrespective of the site symmetry representation,
all Wannier states except the one that lies at the inversion
center can be paired around the inversion center to span both
representations, {+1,−1}, of I. The Wannier state that lies
at the inversion center simply transforms according to its site
symmetry representation. If we open a boundary at the location
indicated by the dotted line in Fig. 9(a), the Wannier states
remain consistently paired about the inversion center.

✄ ✄

✄ ✄
FIG. 9. Two Wannier center configurations in a finite 1D lattice with
no boundaries. Blue rectangles represent unit cells, black circles
represent Wannier centers. (a) Wannier centers in the 1𝑎 trivial phase.
(b) Wannier centers in the 1𝑏 OAL phase. In both cases, the boundary
is opened at the dotted line.

Now consider the situation shown in Fig. 9(b), where the
Wannier centers are located between unit cells (Wyckoff position
1𝑏). All but one Wannier states can be paired around the
inversion center to span both representations, {+1,−1}, of
I. However, we are faced with a conundrum when we open
a boundary at the location indicated by the dotted line in
Fig. 9(b): since the boundary passes through a Wannier center,
the corresponding state must be relocated to either the newly
formed left edge or the right edge of the system. However, it
cannot be moved to either edge since doing so would break
inversion symmetry. The only possible resolution of this
scenario comes about when the Wannier centers of a different
band are in a similar (obstructed) situation. In this case, the
two leftover Wannier states, one from each band, can reside at
the two boundaries of the system and form a pair to span both
representations of I.

The crucial observation here is that since I maps the bound-
ary states to each other, any perturbation to the boundary that
preserves I must affect both states similarly. This implies that

counting states in the spectrum within the frequency range (or
bandwidth) of a single band will always lead to either at least
one missing state or one additional state. In general, for an
OAL band with inversion symmetry, this counting mismatch is
equal to 12 states (where 12 is any integer congruent to 1 mod
2). For 𝐶𝑛-symmetric systems in 2D, this counting mismatch
is defined modulo 𝑛. If these 𝑛 states lie within a bandgap, they
are localized to the 𝑛 corners of the finite system.

Appendix B: Relation between Chern number and rotation
invariants

In this section, we derive relations between the Chern number
and the rotation invariants at high-symmetry points of the BZ
of 𝐶𝑛 symmetric crystals. We provide the guidelines for such
derivations; more detailed accounts of these calculations can
be found in Ref. [92].

FIG. 10. The Brillouin zones of crystals with (a) 𝐶2, (b) 𝐶3, (c) 𝐶4
and (d) 𝐶6 symmetries. Each Brillouin zone is divided into copies of
a fundamental domain over which an integral of the Berry connection
is considered. The dark yellow loops indicate the reduced integral
paths of Eq. (B2).

Consider the BZs of 𝐶𝑛 symmetric crystals shown in Fig. 10.
A nonzero Chern number represents an obstruction to choosing
a smooth gauge for the electronic wave functions across the
entire BZ. However, the BZs have a fundamental domain,𝑈0,
over which a smooth gauge will be chosen; any discontinuities in
the gauge are thus pushed to the boundaries between symmetry-
related fundamental domains. The entire Berry flux that gives
rise to the Chern invariant can then be broken into 𝑛 identical
contributions,

𝐶 =
i

2𝜋

∫
BZ

Tr(F ) = i
2𝜋

∑︁
𝑖

∫
𝑈𝑖

Tr(F )

=
i

2𝜋

∑︁
𝑖

∫
𝜕𝑈𝑖

Tr(A𝑖). (B1)

That is, the Chern number can be calculated by computing the
line integrals of the Berry connection along the boundaries,
𝜕𝑈𝑖 , of each domain𝑈𝑖 . Since the Chern number implies an
obstruction to choosing a smooth gauge over the entire BZ,
the line integrals along each domain do not cancel each other,
instead, they are related by a gauge transformation. Using the
fact that the contribution to the Chern number of each domain
is equal, we have
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𝐶 (2) = 2
i

2𝜋

∫
−→
X𝚪∪−−→YM

(Tr(A0) − Tr(A1)) dk (𝐶2 symmetry),

𝐶 (3) = 3
i

2𝜋

∫
−→
K𝚪∪−−→KK′

(Tr(A0) − Tr(A1)) dk (𝐶3 symmetry),

𝐶 (4) = 4
i

2𝜋

∫
−→
X𝚪∪−−−→X′M

(Tr(A0) − Tr(A1)) dk (𝐶4 symmetry),

𝐶 (6) = 6
i

2𝜋

[∫
−−→
K′𝚪

(Tr(A0) − Tr(A1)) dk +
∫
−−→KM

(Tr(A0) − Tr(A3)) dk
]

(𝐶6 symmetry). (B2)

The line integral paths in Eq. (B2) are shown in red in Fig. 10.
Notice that these line integrals contain the difference between

two Berry connections at different domains, which results in
the term∫ 𝚷1

𝚷0

(
Tr(A𝑖) − Tr(A 𝑗 )

)
=

∫ 𝚷1

𝚷0

Tr(𝑔†
𝑖 𝑗
)𝑑𝑔𝑖 𝑗 = ln det 𝑔𝑖 𝑗

��𝚷1
𝚷0
,

(B3)

where 𝑔𝑖 𝑗 is the gauge transformation matrix between Berry
connections at domains 𝑈𝑖 and 𝑈 𝑗 . When evaluated at a
high-symmetry point 𝚷, they are equal to the rotation operator
projected into the subspace of bands of interest:

[𝑔𝑖 𝑗 (𝚷)]𝛼𝛽 =
〈
𝑢𝛼 (𝚷)

��𝑟𝑛�� 𝑢𝛽 (𝚷)
〉
≡ [𝑟𝑛 (𝚷)]𝛼𝛽 . (B4)

At these HSPs, the projected rotation operator can be diagonal-
ized into

𝑟𝑛 (𝚷) =
𝑛⊕

𝑝=1
Π𝑝 𝐼#Π𝑝×#Π𝑝

, (B5)

where #Π𝑝 indicates the number of states at HSP 𝚷 with
rotation eigenvalue Π𝑝 .

It will be useful to define the quantity

𝛿𝑛 (𝚷) = 𝑛

2𝜋i
ln det 𝑟𝑛 (𝚷) =

𝑛∑︁
𝑝=1

(𝑝 − 1)#Π𝑝 . (B6)

The integrals in Eq. (B2) then imply the following relations

𝐶 (2) = −𝛿2 (𝚪) + 𝛿2 (X) − 𝛿2 (M) + 𝛿2 (Y) (mod 2),
𝐶 (3) = −𝛿3 (𝚪) + 2𝛿3 (K) − 𝛿3 (K′) (mod 3),
𝐶 (4) = −𝛿4 (𝚪) − 𝛿4 (M) + 2𝛿2 (X) (mod 4),
𝐶 (6) = −𝛿6 (𝚪) + 4𝛿3 (K) − 3𝛿2 (M) (mod 6), (B7)

or, in terms of the invariants in Eq (17),

𝐶 (2) = −[𝑋 (2)
1 ] − [𝑌 (2)

1 ] − [𝑀 (2)
1 ] (mod 2),

𝐶 (3) = −[𝐾1] − 2[𝐾2] + 2[𝐾 ′
1] + [𝐾 ′

2] (mod 3),
𝐶 (4) = 2[𝑀 (4)

1 ] + [𝑀 (4)
2 ] − [𝑀 (4)

4 ] − 2[𝑋 (2)
1 ] (mod 4),

𝐶 (6) = −8[𝐾1] − 4[𝐾2] + 3[𝑀1] (mod 6).
(B8)

Appendix C: Invariants from induction of representations in 1D

The maximal Wyckoff positions in a 1D I-symmetric unit
cell are 1𝑎 and 1𝑏, as shown in Fig. 1(c) of the main text. The
classification is given by the invariant [𝑋1].

The values of this invariant can be enumerated exhaustively
by working out the inverse problem, i.e., we start from the
set of Wannier functions and derive the band representations
at HSPs that such a set leads to. This inverse problem of
band topology has been used to classify topological phases
in insulators and is known variously as topological quantum
chemistry [62] or symmetry indicators [68, 70]. To induce
band representations, it is necessary to specify: (i) a Wannier
center configuration and (ii) the symmetry representations
of the Wannier functions, otherwise referred to as the “site
symmetry representations” [71]. For a 1D system with inversion
symmetry, the band representations at momentum 𝑘𝑥 with
Wannier centers at Wyckoff positions 1𝑎 and 1𝑏 are respectively

𝜌
𝑘𝑥
𝐺
(I) = 𝜌(I) (from 1𝑎),

𝜌
𝑘𝑥
𝐺
(I) = 𝑒i𝑘𝑥𝑎𝜌(I) (from 1𝑏), (C1)

where 𝑎 is the lattice constant and 𝜌(I) is the site symmetry
representation, which under I, admits the values ±1. The
Wyckoff position 1𝑏 is invariant not under I but under I
followed by a full lattice constant translation. This translation
results in a phase factor of 𝑒i𝑘𝑥𝑎 for the band representation in
momentum space in Eq. (C1).

For 𝜌(I) = +1 and at the HSPs 𝚪 (𝑘𝑥 = 0) and X (𝑘𝑥 =

𝜋/𝑎), the band representations are

𝜌𝚪𝐺 (I) = +1, 𝜌X
𝐺 (I) = +1 (from 1𝑎),

𝜌𝚪𝐺 (I) = +1, 𝜌X
𝐺 (I) = −1 (from 1𝑏). (C2)

As a result of this the trivial phase (1𝑎) has [𝑋1] = 0 and the
topological phase (1𝑏) has [𝑋1] = −1.

Similarly, for 𝜌(I) = −1 and at the HSPs 𝚪 and X, the band
representations are

𝜌𝚪𝐺 (I) = −1, 𝜌X
𝐺 (I) = −1 (from 1𝑎),

𝜌𝚪𝐺 (I) = −1, 𝜌X
𝐺 (I) = +1 (from 1𝑏). (C3)

As before, we note that the trivial phase associated with the 1𝑎-
induced band representation has [𝑋1] = 0 while the topological
phase associated with 1𝑏 has [𝑋1] = +1.
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The results are tabulated in Table V. Since all possible
combinations of +1/−1 are exhausted in Table V, all bands in
1D are atomic limits.

Wannier center Site symm. 𝜌𝚪
𝐺
(I) 𝜌X

𝐺
(I) [𝑋1]

1𝑎 𝜌(I) = +1 +1 +1 0
1𝑎 𝜌(I) = −1 −1 −1 0

1𝑏 𝜌(I) = +1 +1 −1 −1
1𝑏 𝜌(I) = −1 −1 +1 +1

TABLE V. Inversion symmetry: Invariants induced from Wyckoff
positions for different site symmetry representations

A single band in the trivial phase (1𝑎) has [𝑋1] = 0, while
in the topological phase (1𝑏), has [𝑋1] = +1 or −1. A group
of bands can also be characterized by [𝑋1] since this invariant
is linear under the composition of bands, i.e., the indices [𝑋1]1
and [𝑋1]2 of bands 1 and 2 result in the index [𝑋1]1 + [𝑋1]2
for the composed system of bands 1 and 2 taken together. This
linear property of [𝑋1] allows for the following possibility:
Consider a set of two bands that are independently non-trivial
with their individual Wannier centers at position 1𝑏 having
[𝑋1] = +1 and −1 respectively. Taken together, these bands
result in a trivial phase with [𝑋1] = 0. In such a case, the
Wannier centers of the combined system of two bands are
not each fixed to the maximal Wyckoff position, 1𝑏, but are
generally separated away from 1𝑏, consistent with inversion
symmetry. This separation can smoothly interpolate between
the two maximal Wyckoff positions, 1𝑎 and 1𝑏, without closing
a bandgap anywhere in the system or breaking the symmetry,
and thus such a configuration of two bands is topologically
identical to a trivial system. In contrast, consider two bands
with Wannier centers located at 1𝑏 and [𝑋1]1 = [𝑋1]2 = 1.
The combined system has [𝑋1]1 + [𝑋1]2 = 2, and the two
Wannier centers remain pinned to 1𝑏.

In general, we refer to bands that have Wannier centers fixed
to positions away from the 1𝑎 position as obstructed atomic
limits (OALs) and bands that have Wannier centers at the 1𝑎
position or movable Wannier centers that can be adiabatically
brought to the 1𝑎 position as trivial atomic limits.

Appendix D: Invariants from induction of representations in 2D

In this section, we use the procedure developed in [71]
to determine the band representations induced from Wannier
centers located at all possible Wyckoff positions and all site
symmetry representations in 2D for class AI and class A. From
them, we determine the classification indices 𝜒 (𝑛)

T and 𝜒 (𝑛)

specified in Tables I-IV of the main text. Since all such bands,
even in class A, are Wannierizable by definition, their Chern
number is 0.

When the Chern number vanishes, the topological class
given by 𝜒 (𝑛)

T or 𝜒 (𝑛) indicates both the Wyckoff position of
the Wannier centers and the 𝐶𝑛 symmetry representation of the
Wannier function itself (i.e., the site symmetry representation).

The converse is also true. Therefore, the tables below and tables
I-IV in the main text show the correspondence between Wannier
centers, site symmetry representations, and topological indices.

1. 𝐶2 symmetry

The maximal Wyckoff positions in a 𝐶2-symmetric unit cell
are 1𝑎, 1𝑏, 1𝑐 and 1𝑑 as shown in Fig. 3 of the main text. The
classification is given by 𝜒

(2)
T =

(
[𝑋 (2)

1 ], [𝑌 (2)
1 ], [𝑀 (2)

1 ]; 𝑁
)

(for TR-symmetric) and 𝜒 (2) =
(
𝐶

�� [𝑋 (2)
1 ], [𝑌 (2)

1 ], [𝑀 (2)
1 ]; 𝑁

)
(for TR-broken).

The band representations induced from all maximal Wyckoff
positions are given by

𝜌k
𝐺 (𝐶2) = 𝑒ik·a1𝜌(𝐶2) (from 1𝑐),
𝜌k
𝐺 (𝐶2) = 𝑒ik·a2𝜌(𝐶2) (from 1𝑑),

𝜌k
𝐺 (𝐶2) = 𝑒ik· (a1+a2 ) 𝜌(𝐶2) (from 1𝑏). (D1)

Using Eqs. (D1), we calculate the rotation eigenvalues for all
site symmetries when the Wannier centers are at 1𝑏, 1𝑐 and 1𝑑
in Table VI.

2. 𝐶3 symmetry

The maximal Wyckoff positions in a 𝐶3-symmetric
unit cell are 1𝑎, 1𝑏, and 1𝑐 as shown in Fig. 3
of the main text. The classification is given by
𝜒
(3)
T =

(
[𝐾 (3)

1 ], [𝐾 (3)
2 ]; 𝑁

)
(for TR-symmetric) and 𝜒 (3) =(

𝐶
�� [𝐾 (3)

1 ], [𝐾 (3)
2 ], [𝐾 ′(3)

1 ], [𝐾 ′(3)
2 ]; 𝑁

)
(for TR-broken). For

both 𝐶6 and 𝐶3 symmetries, we use the following primitive
vectors a1 = (1, 0), a2,3 = (± 1

2 ,
√

3
2 ).

The band representations for Wannier centers at Wyckoff
position 1𝑏 are given by

𝜌k
𝐺 (𝐶3) = 𝑒ik·a2𝜌(𝐶3). (D2)

Using Eq. (D2), we calculate the rotation eigenvalues for all site
symmetries when the Wannier centers are at 1𝑏 in Table VII.

The band representations for Wannier centers at Wyckoff
position 1𝑐 are given by

𝜌k
𝐺 (𝐶3) = 𝑒ik·a1𝜌(𝐶3). (D3)

Using Eq. (D3), we calculate the rotation eigenvalues for all site
symmetries when the Wannier centers are at 1𝑐 in Table VIII.

3. 𝐶4 symmetry

The maximal Wyckoff positions in a 𝐶4-symmetric
unit cell are 1𝑎, 1𝑏, and 2𝑐, as shown in Fig. 3 of
the main text. The classification is given by 𝜒

(4)
T =(

[𝑋 (2)
1 ], [𝑀 (4)

1 ], [𝑀 (4)
2 ]; 𝑁

)
(for TR-symmetric) and 𝜒 (4) =(

𝐶
�� [𝑋 (2)

1 ], [𝑀 (4)
1 ], [𝑀 (4)

2 ], [𝑀 (4)
4 ]; 𝑁

)
(for TR-broken).
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The band representations for Wannier centers at Wyckoff
position 2𝑐 are given by

𝜌k
𝐺 (𝐶4) =

(
0 𝑒ik·a1𝜌(𝐶2)
1 0

)
,

𝜌k
𝐺 (𝐶2) =

(
𝑒ik·a1 0

0 𝑒ik·a2

)
𝜌(𝐶2). (D4)

Using Eq. (D4), we calculate the rotation eigenvalues for all
site symmetries when the Wannier centers are at 2𝑐 in Table IX.

The band representations for Wannier centers at Wyckoff
position 1𝑏 are given by

𝜌k
𝐺 (𝐶4) = 𝑒ik·a1𝜌(𝐶4), 𝜌k

𝐺 (𝐶2) = 𝑒ik· (a1+a2 ) 𝜌(𝐶2). (D5)

Using Eq. (D5), we calculate the rotation eigenvalues for all
site symmetries when the Wannier centers are at 1𝑏 in Table X.

4. 𝐶6 symmetry

The maximal Wyckoff positions in a 𝐶6-symmetric unit cell
are 1𝑎, 2𝑏, and 3𝑐 as shown in Fig. 3 of the main text. The
classification is given by 𝜒 (6)

T =
(
[𝑀 (2)

1 ], [𝐾 (3)
1 ]; 𝑁

)
(for TR-

symmetric) and 𝜒 (6) =
(
𝐶

�� [𝑀 (2)
1 ], [𝐾 (3)

1 ], [𝐾 (3)
2 ]; 𝑁

)
(for

TR-broken). For both 𝐶6 and 𝐶3 symmetries, we use the
following primitive vectors a1 = (1, 0), a2,3 = (± 1

2 ,
√

3
2 ).

The band representations for Wannier centers at Wyckoff
position 2𝑏 are given by

𝜌k
𝐺 (𝐶3) =

(
𝑒ik·a1 0

0 𝑒−ik·a1

)
𝜌(𝐶3),

𝜌k
𝐺 (𝐶2) =

(
0 −1
1 0

)
. (D6)

Since the 𝐶2 band representation, 𝜌k
𝐺
(𝐶2), is independent of k,

the invariant [𝑀 (2)
1 ] vanishes. Using Eq. (D6), we calculate the

rotation eigenvalues for all site symmetries when the Wannier
centers are at 2𝑏 in Table XI.

The band representations for Wannier centers at Wyckoff
position 3𝑐 are given by

𝜌k
𝐺 (𝐶3) =

©«
0 0 1
1 0 0
0 1 0

ª®®®¬ ,
𝜌k
𝐺 (𝐶2) =

©«
𝑒ik·a2 0

0 𝑒−ik·a1 0
0 0 𝑒−ik·a3

ª®®®¬ 𝜌(𝐶2). (D7)

Since the 𝐶3 band representation, 𝜌k
𝐺
(𝐶3), is independent of k,

the invariants [𝐾 (3)
1 ] and [𝐾 (3)

2 ] vanish. Using Eq. (D7), we
calculate the rotation eigenvalues for all site symmetries when
the Wannier centers are at 2𝑏 in Table XII.

Wyckoff pos. Site symm. 𝜌(𝐶2) 𝜌𝚪
𝐺
(𝐶2) 𝜌X

𝐺
(𝐶2) 𝜌Y

𝐺
(𝐶2) 𝜌M

𝐺
(𝐶2) 𝜒

(2)
T 𝜒 (2)

1𝑐 +1 #Γ (2)
1 = 1 #𝑋 (2)

1 = 0 #𝑌 (2)
1 = 1 #𝑀 (2)

1 = 0 (−1, 0,−1; 1) (0 | − 1, 0,−1; 1)
#Γ (2)

2 = 0 #𝑋 (2)
2 = 1 #𝑌 (2)

2 = 0 #𝑀 (2)
1 = 1

−1 #Γ (2)
1 = 0 #𝑋 (2)

1 = 1 #𝑌 (2)
1 = 0 #𝑀 (2)

1 = 1 (1, 0, 1; 1) (0 | 1, 0, 1; 1)
#Γ (2)

2 = 1 #𝑋 (2)
2 = 0 #𝑌 (2)

2 = 1 #𝑀 (2)
1 = 0

1𝑑 +1 #Γ (2)
1 = 1 #𝑋 (2)

1 = 1 #𝑌 (2)
1 = 0 #𝑀 (2)

1 = 0 (0,−1,−1; 1) (0 | 0,−1,−1; 1)
#Γ (2)

2 = 0 #𝑋 (2)
2 = 0 #𝑌 (2)

2 = 1 #𝑀 (2)
1 = 1

−1 #Γ (2)
1 = 0 #𝑋 (2)

1 = 0 #𝑌 (2)
1 = 1 #𝑀 (2)

1 = 1 (0, 1, 1; 1) (0 | 0, 1, 1; 1)
#Γ (2)

2 = 1 #𝑋 (2)
2 = 1 #𝑌 (2)

2 = 0 #𝑀 (2)
1 = 0

1𝑏 +1 #Γ (2)
1 = 1 #𝑋 (2)

1 = 0 #𝑌 (2)
1 = 0 #𝑀 (2)

1 = 1 (−1,−1, 0; 1) (0 | − 1,−1, 0; 1)
#Γ (2)

2 = 0 #𝑋 (2)
2 = 1 #𝑌 (2)

2 = 1 #𝑀 (2)
1 = 0

−1 #Γ (2)
1 = 0 #𝑋 (2)

1 = 1 #𝑌 (2)
1 = 1 #𝑀 (2)

1 = 0 (1, 1, 0; 1) (0 | 1, 1, 0; 1)
#Γ (2)

2 = 1 #𝑋 (2)
2 = 0 #𝑌 (2)

2 = 0 #𝑀 (2)
1 = 1

TABLE VI. 𝐶2 symmetry: Invariants induced from the maximal Wyckoff positions for different site symmetry representations
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Site symm. 𝜌(𝐶3) 𝜌𝚪
𝐺
(𝐶3) 𝜌K

𝐺
(𝐶3) 𝜌K′

𝐺
(𝐶3) 𝜒

(3)
T 𝜒 (3)

#Γ (3)
1 = 1 #𝐾 (3)

1 = 0 #𝐾′(3)
1 = 0

1 #Γ (3)
2 = 0 #𝐾 (3)

2 = 1 #𝐾′(3)
2 = 0 (−1, 1; 1) (0 | − 1, 1,−1, 0; 1)

#Γ (3)
3 = 0 #𝐾 (3)

3 = 0 #𝐾′(3)
3 = 1

#Γ (3)
1 = 0 #𝐾 (3)

1 = 1 #𝐾′(3)
1 = 1

𝑒i 2𝜋
3 𝜎𝑧 #Γ (3)

2 = 1 #𝐾 (3)
2 = 0 #𝐾′(3)

2 = 1 (1,−1; 2) (0 | 1,−1, 1, 0; 2)
#Γ (3)

3 = 1 #𝐾 (3)
3 = 1 #𝐾′(3)

3 = 0

#Γ (3)
1 = 0 #𝐾 (3)

1 = 0 #𝐾′(3)
1 = 1

𝑒i 2𝜋
3 #Γ (3)

2 = 1 #𝐾 (3)
2 = 0 #𝐾′(3)

2 = 0 − (0 | 0,−1, 1,−1; 1)
#Γ (3)

3 = 0 #𝐾 (3)
3 = 1 #𝐾′(3)

3 = 0

#Γ (3)
1 = 0 #𝐾 (3)

1 = 1 #𝐾′(3)
1 = 0

𝑒i 4𝜋
3 #Γ (3)

2 = 0 #𝐾 (3)
2 = 0 #𝐾′(3)

2 = 1 − (0 | 1, 0, 0, 1; 1)
#Γ (3)

3 = 1 #𝐾 (3)
3 = 0 #𝐾′(3)

3 = 0

TABLE VII. 𝐶3 symmetry: Invariants induced from Wyckoff position 1𝑏 with different site symmetry representations

Site symm. 𝜌(𝐶3) 𝜌𝚪
𝐺
(𝐶3) 𝜌K

𝐺
(𝐶3) 𝜌K′

𝐺
(𝐶3) 𝜒

(3)
T 𝜒 (3)

#Γ (3)
1 = 1 #𝐾 (3)

1 = 0 #𝐾′(3)
1 = 0

1 #Γ (3)
2 = 0 #𝐾 (3)

2 = 0 #𝐾′(3)
2 = 1 (−1, 0; 1) (0 | − 1, 0,−1, 1; 1)

#Γ (3)
3 = 0 #𝐾 (3)

3 = 1 #𝐾′(3)
3 = 0

#Γ (3)
1 = 0 #𝐾 (3)

1 = 1 #𝐾′(3)
1 = 1

𝑒i 2𝜋
3 𝜎𝑧 #Γ (3)

2 = 1 #𝐾 (3)
2 = 1 #𝐾′(3)

2 = 0 (1, 0; 2) (0 | 1, 0, 1,−1; 2)
#Γ (3)

3 = 1 #𝐾 (3)
3 = 0 #𝐾′(3)

3 = 1

#Γ (3)
1 = 0 #𝐾 (3)

1 = 1 #𝐾′(3)
1 = 0

𝑒i 2𝜋
3 #Γ (3)

2 = 1 #𝐾 (3)
2 = 0 #𝐾′(3)

2 = 0 − (0 | 1,−1, 0,−1; 1)
#Γ (3)

3 = 0 #𝐾 (3)
3 = 0 #𝐾′(3)

3 = 1

#Γ (3)
1 = 0 #𝐾 (3)

1 = 0 #𝐾′(3)
1 = 1

𝑒i 4𝜋
3 #Γ (3)

2 = 0 #𝐾 (3)
2 = 1 #𝐾′(3)

2 = 0 − (0 | 0, 1, 1, 0; 1)
#Γ (3)

3 = 1 #𝐾 (3)
3 = 0 #𝐾′(3)

3 = 0

TABLE VIII. 𝐶3 symmetry: Invariants induced from Wyckoff position 1𝑐 with different site symmetry representations

Site symm. 𝜌(𝐶2) 𝜌𝚪
𝐺
(𝐶4) 𝜌X

𝐺
(𝐶2) 𝜌M

𝐺
(𝐶4) 𝜒

(4)
T 𝜒 (4)

#Γ (4)
1 = 1 #𝑋 (2)

1 = 1 #𝑀 (4)
1 = 0

+1 #Γ (4)
2 = 0 #𝑋 (2)

2 = 1 #𝑀 (4)
2 = 1 (−1,−1, 1; 2) (0 | − 1,−1, 1, 1; 2)

#Γ (4)
3 = 1 #𝑀 (4)

3 = 0
#Γ (4)

4 = 0 #𝑀 (4)
4 = 1

#Γ (4)
1 = 0 #𝑋 (2)

1 = 1 #𝑀 (4)
1 = 1

−1 #Γ (4)
2 = 1 #𝑋 (2)

2 = 1 #𝑀 (4)
2 = 0 (1, 1,−1; 2) (0 | 1, 1,−1,−1; 2)

#Γ (4)
3 = 0 #𝑀 (4)

3 = 1
#Γ (4)

4 = 1 #𝑀 (4)
4 = 0

TABLE IX. 𝐶4 symmetry: Invariants induced from Wyckoff position 2𝑐 for different site symmetry representations
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Site symm. 𝜌(𝐶4) 𝜌𝚪
𝐺
(𝐶4) 𝜌X

𝐺
(𝐶2) 𝜌M

𝐺
(𝐶4) 𝜒

(4)
T 𝜒 (4)

#Γ (4)
1 = 1 #𝑋 (2)

1 = 0 #𝑀 (4)
1 = 0

1 #Γ (4)
2 = 0 #𝑋 (2)

2 = 1 #𝑀 (4)
2 = 0 (−1,−1, 0; 1) (0 | − 1,−1, 0, 0; 1)

#Γ (4)
3 = 0 #𝑀 (4)

3 = 1
#Γ (4)

4 = 0 #𝑀 (4)
4 = 0

#Γ (4)
1 = 0 #𝑋 (2)

1 = 0 #𝑀 (4)
1 = 1

−1 #Γ (4)
2 = 0 #𝑋 (2)

2 = 1 #𝑀 (4)
2 = 0 (−1, 1, 0; 1) (0 | − 1, 1, 0, 0; 1)

#Γ (4)
3 = 1 #𝑀 (4)

3 = 0
#Γ (4)

4 = 0 #𝑀 (4)
4 = 0

#Γ (4)
1 = 0 #𝑋 (2)

1 = 2 #𝑀 (4)
1 = 0

i𝜎𝑧 #Γ (4)
2 = 1 #𝑋 (2)

2 = 0 #𝑀 (4)
2 = 1 (2, 0, 0; 2) (0 | 2, 0, 0, 0; 2)

#Γ (4)
3 = 0 #𝑀 (4)

3 = 0
#Γ (4)

4 = 1 #𝑀 (4)
4 = 1

#Γ (4)
1 = 0 #𝑋 (2)

1 = 1 #𝑀 (4)
1 = 0

i #Γ (4)
2 = 1 #𝑋 (2)

2 = 0 #𝑀 (4)
2 = 0 − (0 | 1, 0,−1, 1; 1)

#Γ (4)
3 = 0 #𝑀 (4)

3 = 0
#Γ (4)

4 = 0 #𝑀 (4)
4 = 1

#Γ (4)
1 = 0 #𝑋 (2)

1 = 1 #𝑀 (4)
1 = 0

−i #Γ (4)
2 = 0 #𝑋 (2)

2 = 0 #𝑀 (4)
2 = 1 − (0 | 1, 0, 1,−1; 1)

#Γ (4)
3 = 0 #𝑀 (4)

3 = 0
#Γ (4)

4 = 1 #𝑀 (4)
4 = 0

TABLE X. 𝐶4 symmetry: Invariants induced from Wyckoff position 1𝑏 for different site symmetry representations

Site symm. 𝜌(𝐶3) 𝜌𝚪
𝐺
(𝐶3) 𝜌K

𝐺
(𝐶3) 𝜒

(6)
T 𝜒 (6)

#Γ (3)
1 = 2 #𝐾 (3)

1 = 0
1 #Γ (3)

2 = 0 #𝐾 (3)
2 = 1 (0,−2; 2) (0 | 0,−2, 1; 2)

#Γ (3)
3 = 0 #𝐾 (3)

3 = 1

#Γ (3)
1 = 0 #𝐾 (3)

1 = 2
𝑒i 2𝜋

3 𝜎𝑧 #Γ (3)
2 = 2 #𝐾 (3)

2 = 1 (0, 2; 4) (0 | 0, 2,−1; 4)
#Γ (3)

3 = 2 #𝐾 (3)
3 = 1

#Γ (3)
1 = 0 #𝐾 (3)

1 = 1
𝑒i 2𝜋

3 #Γ (3)
2 = 2 #𝐾 (3)

2 = 0 − (0 | 0, 1,−2; 2)
#Γ (3)

3 = 0 #𝐾 (3)
3 = 1

#Γ (3)
1 = 0 #𝐾 (3)

1 = 1
𝑒i 4𝜋

3 #Γ (3)
2 = 0 #𝐾 (3)

2 = 1 − (0 | 0, 1, 1; 2)
#Γ (3)

3 = 2 #𝐾 (3)
3 = 0

TABLE XI. 𝐶6 symmetry: Invariants induced from Wyckoff position 2𝑏 with different site symmetry representations
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Site symm. 𝜌(𝐶2) 𝜌𝚪
𝐺
(𝐶2) 𝜌M

𝐺
(𝐶2) 𝜒

(6)
T 𝜒 (6)

1 #Γ (2)
1 = 3 #𝑀 (2)

1 = 1 (−2, 0; 3) (0 | − 2, 0, 0; 3)
#Γ (2)

2 = 0 #𝑀 (2)
2 = 2

−1 #Γ (2)
1 = 0 #𝑀 (2)

1 = 2 (2, 0; 3) (0 | 2, 0, 0; 3)
#Γ (2)

2 = 3 #𝑀 (2)
2 = 1

TABLE XII. 𝐶6 symmetry: Invariants induced from Wyckoff position 3𝑐 with different site symmetry representations

Appendix E: Calculation of corner charges

The corner charges (𝑄 (𝑛)
corner) can be determined by consid-

ering finite tilings of unit cells with 𝐶𝑛 symmetry for each
Wannier center configuration. The formula for 𝑄 (𝑛)

corner in terms
of the symmetry-indicator invariants can then be determined by
the procedure described below. In this procedure, a choice of a
set of linearly independent 𝜒 indices is made and it is important
to note that the corner charge formulae are not unique and
depend on this choice. However, the corner charge itself is a
physical quantity and is independent of this choice.

The particular finite tilings considered here and the corner
charges that they host are shown in Fig. 11 for all𝐶𝑛 symmetries.
It is also important to note that in the case of 𝐶3 symmetry,
the corner charges depend on the exact type of finite tiling
considered. The system formed by placing one Wannier center
at 1𝑏 hosts a corner charge of 1/3 only in an inverted triangle
tiling, as shown in Fig. 11(d). If instead an upright triangle
tiling is considered, the corner charge would be 0 (and vice
versa for 1𝑐). This subtlety does not arise in 𝐶3-symmetric
systems when bands with vanishing P(3) are being considered.

With these two caveats in mind, we now derive the corner
charge formulas given in the main text for all 𝐶𝑛 symmetries,
with and without TRS.

1. 𝐶2 symmetry

For both TR-symmetric and TR-broken cases, 𝐶2-symmetric
lattices have three symmetry-indicator invariants: [𝑋 (2)

1 ],
[𝑌 (2)

1 ] and [𝑀 (2)
1 ]. The corner charge is given by a linear

combination of these invariants

𝑄
(2)
corner = 𝜆1 [𝑋 (2)

1 ] + 𝜆2 [𝑌 (2)
1 ] + 𝜆3 [𝑀 (2)

1 ] . (E1)

To determine 𝜆1, 𝜆2, 𝜆3, we solve for 𝑄𝑖 = 𝜒
(2)
𝑖 𝑗
𝜆 𝑗 , where

𝑄𝑖 is the corner charge that corresponds to the 𝜒 (2) formed
by the 𝑖-th row of 𝜒 (2)

𝑖 𝑗
. Since the 𝜒-indices for different site

symmetry representations are linearly dependent, we choose the
following linearly independent set of 𝜒-indices that form a basis:
1𝑏 : (−1,−1, 0; 1), 1𝑐 : (−1, 0,−1; 1), 1𝑑 : (0,−1,−1; 1). By
examining the finite systems formed by the tilings of the 𝐶2-
symmetric unit cell in Fig. 11(a), (b), and (c), we see that the
corner charges for 1𝑏, 1𝑐 and 1𝑑 are 1/2, 0 and 0 respectively.

This implies that

©«
1
2
0
0

ª®®®¬ =

©«
−1 −1 0
−1 0 −1
0 −1 −1

ª®®®¬
©«
𝜆1

𝜆2

𝜆3

ª®®®¬ , (E2)

which gives 𝜆1,2,3 = − 1
4 ,−

1
4 ,

1
4 . Therefore,

𝑄
(2)
T ,corner = 𝑄

(2)
corner =

1
4

(
−[𝑋 (2)

1 ] − [𝑌 (2)
1 ] + [𝑀 (2)

1 ]
)
. (E3)

For 𝐶2-symmetry, it is possible to find a situation where the
charges at each corner are not quantized. The system shown
in Fig. 11(a) is a valid 𝐶2-symmetric configuration where the
corner charges need not be quantized but the corner charge per
𝐶2-symmetric sector is quantized to 1/2.

2. 𝐶3 symmetry

For the TR-symmetric case, 𝐶3-symmetric lattices have two
symmetry-indicator invariants: [𝐾 (3)

1 ] and [𝐾 (3)
2 ]. The corner

charge is given by a linear combination of these invariants

𝑄
(3)
T ,corner = 𝜆1 [𝐾 (3)

1 ] + 𝜆2 [𝐾 (3)
2 ] . (E4)

We choose the following linearly independent set of 𝜒-indices
that form a basis: 1𝑏 : (−1, 1; 1), 1𝑐 : (−1, 0; 1). By examining
the finite systems formed by the tilings of the 𝐶3-symmetric
unit cell in Fig. 11(d) and (e), we see that the corner charges
for 1𝑏 and 1𝑐 are 1/3 and 0 respectively. This implies that(

1
3
0

)
=

(
−1 1
−1 0

) (
𝜆1

𝜆2

)
, (E5)

which gives 𝜆1,2 = 0, 1
3 . Therefore,

𝑄
(3)
T ,corner =

1
3
[𝐾 (3)

2 ] . (E6)

For the TR-broken case, 𝐶3-symmetric lattices have
four symmetry-indicator invariants: [𝐾 (3)

1 ], [𝐾 (3)
2 ], [𝐾 ′(3)

1 ],
[𝐾 ′(3)

2 ]. The corner charge is given by a linear combination of
these invariants

𝑄
(3)
corner = 𝜆1 [𝐾 (3)

1 ] + 𝜆2 [𝐾 (3)
2 ] + 𝜆3 [𝐾 ′(3)

1 ] + 𝜆4 [𝐾 ′(3)
2 ] . (E7)
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FIG. 11. 𝐶2-symmetric tilings of one Wannier center placed at the Wyckoff position (a) 1𝑏 (b) 1𝑑 and (c) 1𝑐. 𝐶3-symmetric tilings of one
Wannier center placed at Wyckoff position (d) 1𝑏 and (e) 1𝑐. 𝐶4-symmetric tilings of (f) one Wannier center placed at Wyckoff position 1𝑏 and
(g) two Wannier centers placed at the Wyckoff position 2𝑐. 𝐶6-symmetric tilings of (h) two Wannier centers placed at Wyckoff position 2𝑏 and
(i) three Wannier centers placed at Wyckoff position 3𝑐. In all figures, some Wannier centers (hollow circles) have been removed to maintain 𝐶𝑛

symmetry. The resultant fractional occupation along the boundaries is labeled, which helps identify the quantization of fractional corner charges
in each case.

We choose the following linearly independent set of 𝜒-
indices that form a basis: 1𝑏1 : (0 | − 1, 1,−1, 0; 1),
1𝑏2 : (0 | 1, 0, 0, 1; 1), 1𝑐1 : (0 | − 1, 0,−1, 1; 1), 1𝑐2 :
(0 | 0, 1, 1, 0; 1). By examining the finite systems formed by
the tilings of the 𝐶3-symmetric unit cell in Fig. 11(d) and (e),
we see that the corner charges for 1𝑏1, 1𝑏2, 1𝑐1 and 1𝑐2 are
1/3, 1/3, 0 and 0 respectively. This implies that

©«
1
3
1
3
0
0

ª®®®®®¬
=

©«
−1 1 −1 0
1 0 0 1
−1 0 −1 1
0 1 1 0

ª®®®®®¬
©«
𝜆1

𝜆2

𝜆3

𝜆4

ª®®®®®¬
, (E8)

which gives 𝜆1,2,3,4 = 1
3 ,

1
3 ,−

1
3 , 0. Therefore,

𝑄
(3)
corner =

1
3

(
[𝐾 (3)

1 ] + [𝐾 (3)
2 ] − [𝐾 ′(3)

1 ]
)
. (E9)

3. 𝐶4 symmetry

For the TR-symmetric case,𝐶4-symmetric lattices have three
symmetry-indicator invariants: [𝑋 (4)

1 ], [𝑀 (4)
1 ] and [𝑀 (4)

2 ].
The corner charge is given by a linear combination of these
invariants

𝑄
(4)
T ,corner = 𝜆1 [𝑋 (4)

1 ] + 𝜆2 [𝑀 (4)
1 ] + 𝜆3 [𝑀 (4)

2 ] . (E10)

We choose the following linearly independent set of 𝜒-indices
that form a basis: 2𝑐 : (−1,−1, 1; 2), 1𝑏1 : (−1, 1, 0; 1),
1𝑏2 : (2, 0, 0; 2). By examining the finite systems formed by
the tilings of the 𝐶4-symmetric unit cell in Fig. 11(f) and (g),
we see that the corner charges for 2𝑐, 1𝑏1 and 1𝑏2 are 0, 1/4
and 1/2 respectively (note that 1𝑏2 : (2, 0, 0; 2) is induced by
two bands, each with Wannier centers at 1𝑏. Therefore, the net
corner charge is (2 × 1/4) mod 1 = 1/2). This implies that

©«
0
1
4
1
2

ª®®®¬ =

©«
−1 −1 1
−1 1 0
2 0 0

ª®®®¬
©«
𝜆1

𝜆2

𝜆3

ª®®®¬ , (E11)

which gives 𝜆1,2,3 = 1
4 ,

1
2 ,

3
4 . Therefore,

𝑄
(4)
T ,corner =

1
4

(
[𝑋 (2)

1 ] + 2[𝑀 (4)
1 ] + 3[𝑀 (4)

2 ]
)
. (E12)

For the TR-broken case, 𝐶4-symmetric lattices have four
symmetry-indicator invariants: [𝑋 (4)

1 ], [𝑀 (4)
1 ], [𝑀 (4)

2 ] and
[𝑀 (4)

4 ]. The corner charge is given by a linear combination of
these invariants

𝑄
(4)
corner = 𝜆1 [𝑋 (4)

1 ] +𝜆2 [𝑀 (4)
1 ] +𝜆3 [𝑀 (4)

2 ] +𝜆4 [𝑀 (4)
4 ] . (E13)

We choose the following linearly independent set of 𝜒-indices
that form a basis: 2𝑐 : (0 | − 1,−1, 1, 1; 2), 1𝑏1 : (0 | −
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1, 1, 0, 0; 1), 1𝑏2 : (0 | 1, 0,−1, 1; 1), 1𝑏3 : (0 | 1, 0, 1,−1; 1).
By examining the finite systems formed by the tilings of the
𝐶4-symmetric unit cell in Fig. 11(f) and (g), we see that the
corner charges for 2𝑐, 1𝑏1, 1𝑏2 and 1𝑏3 are 0, 1/4, 1/4 and
1/4 respectively. This implies that

©«
0
1
4
1
4
1
4

ª®®®®®¬
=

©«
−1 −1 1 1
−1 1 0 0
1 0 −1 1
1 0 1 −1

ª®®®®®¬
©«
𝜆1

𝜆2

𝜆3

𝜆4

ª®®®®®¬
, (E14)

which gives 𝜆1,2,3,4 = 1
4 ,

1
2 ,

3
8 , 3

8 . Therefore,

𝑄
(4)
corner =

1
4

(
[𝑋 (2)

1 ] + 2[𝑀 (4)
1 ] + 3

2
[𝑀 (4)

2 ] + 3
2
[𝑀 (4)

4 ]
)
.

(E15)

4. 𝐶6 symmetry

For the TR-symmetric case, 𝐶6-symmetric lattices have two
symmetry-indicator invariants: [𝑀 (2)

1 ] and [𝐾 (3)
1 ]. The corner

charge is given by a linear combination of these invariants

𝑄
(6)
T ,corner = 𝜆1 [𝑀 (2)

1 ] + 𝜆2 [𝐾 (3)
1 ] . (E16)

We choose the following linearly independent set of 𝜒-indices
that form a basis: 2𝑏 : (0, 2; 4), 3𝑐 : (2, 0; 3). By examining
the finite systems formed by the tilings of the 𝐶6-symmetric
unit cells in Fig. 11(h) and (i), we see that the corner charges for
2𝑏 and 3𝑐 are 1/3 and 1/2 respectively (note that 2𝑏 : (0, 2; 4)
is induced by four bands, with Wannier centers of each pair at
2𝑏. The net corner charge is therefore (2 × 2/3) mod 1 = 1/3).
This implies that (

1
3
1
2

)
=

(
0 2
2 0

) (
𝜆1

𝜆2

)
, (E17)

which gives 𝜆1,2 = 1
4 ,

1
6 . Therefore,

𝑄
(6)
T ,corner =

1
4
[𝑀 (2)

1 ] + 1
6
[𝐾 (3)

1 ] . (E18)

For the TR-broken case, 𝐶6-symmetric lattices have three
symmetry-indicator invariants: [𝑀 (2)

1 ], [𝐾 (3)
1 ] and [𝐾 (3)

2 ].
The corner charge is given by a linear combination of these
invariants

𝑄
(6)
corner = 𝜆1 [𝑀 (2)

1 ] + 𝜆2 [𝐾 (3)
1 ] + 𝜆3 [𝐾 (3)

2 ] . (E19)

We choose the following linearly independent set of 𝜒-indices
that form a basis: 2𝑏1 : (0 | 0, 1,−2; 2), 2𝑏2 : (0 | 0, 1, 1; 2),
3𝑐 : (0 | 2, 0, 0; 3). By examining the finite systems formed by
the tilings of the 𝐶6-symmetric unit cells in Fig. 11(h) and (i),
we see that the corner charges for 2𝑏1, 2𝑏2 and 3𝑐 are 2/3, 2/3
and 1/2 respectively. This implies that

©«
2
3
2
3
1
2

ª®®®¬ =

©«
0 1 −2
0 1 1
2 0 0

ª®®®¬
©«
𝜆1

𝜆2

𝜆3

ª®®®¬ , (E20)

which gives 𝜆1,2,3 = 1
4 ,

2
3 , 0. Therefore,

𝑄
(6)
corner =

1
4
[𝑀 (2)

1 ] + 2
3
[𝐾 (3)

1 ] . (E21)

Appendix F: Effect of unit cell choices on boundary states

When considering 2D PhCs with OAL bands, a particular
choice of unit cell can affect the relevant symmetries for
the topological classification of the bulk and the presence of
boundary states in a finite tiling of that unit cell. For example,
consider all possible unit cell choices shown in Fig. 12(a). The
unit cells marked in red are 𝐶4 symmetric and correspond to
Wannier centers located at 1𝑎 or 1𝑏 positions. The same infinite
structure is also consistent with unit cells that have reduced
symmetry, in this case, 𝐶2 symmetry, marked in blue. These
correspond to Wannier centers located at the 1𝑎, 1𝑏, 1𝑐, or 1𝑑
positions. A finite tiling of any of these unit cells will result
in edge or corner states depending on the dipole moment and
corner charge of their respective Wannier center configurations.
This analysis is performed diagrammatically for all possible
Wannier center configurations in Fig. 12.

Furthermore, when a choice of the unit cell reduces the
symmetry of the system, the new symmetry-reduced invariants
may be found using the following relations: Under TRS, the 𝐶2
invariants of a 𝐶4-symmetric PhC obey [𝑋 (2)

1 ] = [𝑌 (2)
1 ] and

[𝑀 (2)
1 ] = −2[𝑀 (4)

2 ], and the 𝐶3 invariants of a 𝐶6-symmetric
PhC obey [𝐾 (3)

1 ] = [𝐾 (3)
2 ]. Under broken TRS, the 𝐶2 in-

variants of a 𝐶4-symmetric PhC obey [𝑋 (2)
1 ] = [𝑌 (2)

1 ] and
[𝑀 (2)

1 ] = −2[𝑀 (4)
2 ], and the 𝐶3 invariants of a 𝐶6-symmetric

PhC obey [𝐾 (3)
1 ] = [𝐾 ′(3)

1 ] and [𝐾 (3)
2 ] = [𝐾 ′(3)

2 ].
These considerations are important for PhC design since

a second “cladding” material is often required to confine the
boundary states of the topological “core”. With a different
choice of unit cell made for the cladding material, both the
core and cladding can have identical band structures and there-
fore conveniently overlapping bandgaps while having different
topological invariants.
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FIG. 12. All possible atomic limits that have (a) one and (b) two Wannier centers with 𝐶4- (red) and 𝐶2- (blue) symmetric unit cells that
correspond to the same infinite lattice. All possible atomic limits that have (d) one, (e) two, and (f) three Wannier centers with 𝐶6- (yellow), 𝐶3-
(green), and 𝐶2- (blue) symmetric unit cells that correspond to the same infinite lattice. Note that some atomic limits with reduced symmetry do
not have Wannier centers fixed to maximal Wyckoff positions but are instead movable (marked with a ×).
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