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Abstract

Nuclear spins in the proximity of electronic spin defects in solids are promising platforms for

quantum information processing due to their ability to preserve quantum states for a remarkably

long time. Here we report a comprehensive ab initio study of the nuclear spin dynamics in solid-

state systems. First, we characterize spin exchange-dependent oscillations of the Hahn-echo signal

of the single nuclear spins in iso-nuclear spin baths pointing at a new sensing modality of dynamical-

decoupling spectroscopy. Using first-principles simulations, we then quantify the enhancement in

the coherence of nuclear spins as a function of distance and state of the electron spin and validate

our results with experimental data for the nitrogen vacancy in diamond. Finally, we describe how

hybridization of the electronic states suppresses the coherence time of strongly coupled nuclear

spins and how dynamical changes of the electron spin state may deteriorate nuclear coherence.

The computational framework developed in our work is general and can be broadly applied to

predict the dynamical properties of nuclear spins in a wide variety of systems. Overall, our results

elucidate many pitfalls that should be avoided to preserve the nuclear spin state in solid-state

systems.

I. INTRODUCTION

Nuclear spins in solids and molecules can preserve their quantum state for a remarkably

long time, exceeding seconds [1, 2] and even hours [3, 4], compared to the typical millisecond

timescale of electronic spin defects [5, 6], due to their low magnetic moment. Hence nuclear

spins are valuable resources for quantum information processing, including memory registers

in quantum networks [2, 7–9], nuclei-assisted quantum sensors [10, 11] and components of

fault-tolerant quantum processors [12, 13]. In particular, in the presence of electron spin

qubits in semiconductors and insulators, the hyperfine interactions between the electron and

nuclear spins allow for electron-spin assisted initialization and read-out [14–16], enabling full

quantum control over the nuclear spin states.

Yet it still remains unclear what is limiting the coherence time of nuclear spins. While the

coherence properties of the spin defects have been extensively investigated both experimen-

tally [17–23] and theoretically [24–28], our understanding of the nuclear spin qubit dynamics
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is minimal. Acquiring a fundamental understanding of nuclear spin coherence in the prox-

imity of electron spin qubits is crucial, e.g., to guide the design of nuclear spin environments

for optimal performance of memory registers in quantum network applications [2, 5, 29].

First principles simulations represent promising techniques to investigate decoherence of

the spin qubits in solids. From predicting bath spin-induced relaxation [30, 31], identifying

new host materials [32, 33], and sensing modalities [34–37] to engineering spin environments

[38–40], simulations have proved to be crucial in understanding spin-bath interactions in

realistic systems. However to date, no attempt has been made to quantitatively characterize

nuclear spin coherence processes in the presence of a spin defect using accurate computational

methods. Such a characterization is challenging as one needs to account for weak correlated

fluctuations of numerous bath spins, where the dominant interaction arises from the electron-

nuclear spin coupling.

In this work, we use large-scale cluster-correlation expansion (CCE) calculations in con-

junction with density functional theory (DFT) results to perform an ab initio study of

nuclear spin coherence dynamics. We consider nuclear spins in the proximity of a state-

of-the-art spin qubit platform, the negatively charged nitrogen vacancy in diamond (NV)

[41, 42]. Our computational results for nuclear spin Hahn-echo and Ramsey coherence times

are in excellent agreement with experimental data, bridging the gap between theory and

experiment. Our calculations enable the precise mapping of the coherence times to the ge-

ometric positions of the nuclear spins, relative to the spin defect, and the identification of

the primary sources of nuclear spin decoherence in a wide range of conditions. The deco-

herence channels identified in our work are general and our conclusions may be applied to

any nuclear-electron spin coupled platforms. Overall, our work provides a robust approach

to predict nuclear spin coherence dynamics for a variety of systems.

II. NUCLEAR SPIN IN A NUCLEAR SPIN BATH

We begin by investigating the coherence properties of a single nuclear spin coupled to an

iso-nuclear spin bath.The properties of such nuclear spins can be measured in the experiment

if the electron spin nearby has an even total spin (see section III). As an example, we

consider a 13C nucleus in diamond with natural isotopic abundance (Fig. 1a). We adopt

two theoretical frameworks - the CCE approach [43], which assumes that decoherence arises
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only from dephasing, and the generalized CCE approach (gCCE) [44], which accounts for

both relaxation and dephasing of the central spin (see Appendix A for in-depth discussion

on the methods).

Figure 1b shows the computed coherence time of the nuclear spins corresponding to

Ramsey and Hahn-echo measurements in a high field limit. We find an excellent agreement

between theory and experiment [45]. Ramsey calculations (Fig. 1c) converge at the 2nd order

of the CCE (CCE2) and Hahn-echo results (Fig. 1d) converge at the 4th order [46]. The

difference between Ramsey signals computed at the first and second order is small, indicating

that the single bath spin dynamics dominates the decoherence process, as expected [25]. The

order at which the Hahn-echo signal converges is significantly higher than that typically

required to investigate the coherence time of electron spins (CCE2) [47–49], highlighting

the need to account for higher-order correlations of the bath dynamics to accurately predict

nuclear spin coherence times.

We find that both coherence times scale as the inverse of the nuclear spin concentration

(T2, T ∗
2 ∝ c−1) [46]. We note that the distributions of the inhomogeneous T ∗

2 and homo-

geneous spin dephasing times T2 overlap in Fig. 1b, and the coherence enhancement from

the refocusing pulse is on average small, a characteristic behavior of a broad noise spectrum

[50].

However, the behaviour of the coherence function turns out to be much more complex

than one might expect from classical stochastic noise models, where inter-nuclear interactions

are simply treated as an effective nuclear spin field [51]. Only with a complete quantum-

mechanical treatment can we uncover the complex oscillatory dynamics of the Hahn-echo

signal (Fig 1d). The oscillations arise from the direct spin-exchange interactions with single

spins in the environment: if one neglects the spin exchange (CCE framework), the coherent

oscillations are not present in the Hahn-echo signal (Fig. 1d). Similar effects have been

observed in the electron spin-echo envelope modulation (ESEEM) of electron-radical pairs

in organic molecules [52, 53]. Contrary to the ESEEM arising from perpendicular hyperfine

couplings [47], these oscillatory features do not disappear with increasing magnetic field.

To illustrate the physical origin of the spin-exchange-dependent modulations we derive an

analytical expression for the Hahn-echo coherence function L(t) =
(
⟨Îx,0(t)⟩+ i⟨Îy,0(t)⟩

)
of

a central spin coupled to a single bath spin. We consider the following simplified Hamiltonian
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FIG. 1. (a) Schematic representation of a nuclear spin in a nuclear spin bath. (b) Distribution

of Ramsey (T ∗
2 ) and Hahn-echo (T2) coherence times for nuclear spins computed with the gCCE

approach. Horizontal bars show the range of experimental values[45]. (c (d)) Computed Ramsey

(Hahn-echo) signals of the nuclear spins. The top diagram represents the sequence of pulses for

each type of experiment. Each grey trace was obtained for a single random configuration and

computed at the gCCE level of theory. Colored lines show ensemble-averaged coherence curve

computed with the CCE (dashed line) and gCCE (solid line) methods. The applied magnetic field

is 50 mT. (e) Real (red) and imaginary (orange) part of the Hahn-echo coherence function for a

random bath configuration which contains a bath spin coupled to a central spin with σ = 151 Hz

(Eq. 1) at a magnetic field of 0.05 mT. Analytical expression for ⟨Îx⟩ of the system with only the

central spin and a single bath spin shown in black (Eq. 2).
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of the system:

Ĥ = w0Îz,0 + w1Îz,1 +
1

2
σ(Î+,0Î−,1 + h.c.) (1)

where Îi,0 and Îi,1 are spin operators for the central spin and the bath spin respectively, w0,

w1 are Larmor frequencies, and σ is the spin-exchange coupling. The presence of Îz,0Îz,1 type

of couplings in the Hamiltonian leads to the same expression for the spin magnetization (see

Eq. 2 and 3 below) and hence they were omitted in Eq. 1.

Assuming the initial state of the central spin is |+X⟩ = 1√
2
(|↑⟩ + |↓⟩) and the π-pulse

applies a rotation around the x-axis, we obtain the following expressions for the spin mag-

netization:

⟨Îx,0(t)⟩ =
1

2
− σ2

Ω2
sin2[

Ωt

4
] sin2 (

(w0 + w1)t

4
), (2)

and

⟨Îy,0(t)⟩ =
σ2

2Ω2
sin2 (

Ωt

4
) sin (

(w0 + w1)t

2
), (3)

where Ω =
√

(w1 − w0)2 + σ2. For a 13C nuclear spin in a 13C spin bath, Larmor frequencies

are equal, w0 = w1 = −γnBz, and the spin-exchange coupling arises from the dipolar

interactions σ = −Pzz (see Appendix A).

Hence, one can observe a strong out-of-phase signal ⟨Îy(t)⟩ (Eq. (3) and Fig. 1e),

which should be easily detectable in the experiment, providing a possible way to directly

measure spin-exchange coupling between spins in solids. In contrast to existing methods

that probe the nuclear spin pair dynamics with the sensor spin [54, 55], the echo oscillations

characterized here require selective π-pulses and readout on one of the spins, but do not

necessitate an auxiliary probing qubit.

Equations (1-3) assume the presence of a single bath spin with a coupling significantly

stronger than its interactions with the remaining bath. Due to the same strength of in-

teractions in the iso-nuclear spin bath and the stochastic nature of their spatial location,

such assumptions are not always justified in the systems under study. However, the physical

phenomena of the out-of-phase spin-echo oscillations depending on the exchange-type inter-

action is general, and will be present in the dynamical decoupling experiments whenever the

spin qubit is coupled to the spin bath of the same type.

In addition, our calculations show that the role of longitudinal relaxation in determin-

ing the decoherence processes is highly dependent on the given nuclear spin configuration.

Relaxation is negligible for some nuclear spins; for others, it completely determines the de-
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coherence rate [46]. On average, the spin exchange with the environment accounts for about

40% of the decoherence rate for the ensemble of 13C nuclear spins-1⁄2 (gCCE ensemble T2

22.4(2) ms vs. CCE 36.66(9) ms) and 30% for single ones. The effect of higher spins is dis-

cussed in the supplementary information [46]. Thus, for each specific electronic spin defect

present in a solid, one should perform a detailed search within all experimentally available

nuclear spins to identify the ones best suited for quantum memories.
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FIG. 2. (a) Graphical representation of the experimentally determined positions of 27 13C nuclear

spins in proximity of an NV center in diamond from ref. [56]. Orange circles show nuclear spins

with measured coherence times. (b) Coherence signals for the nuclear spin C5. Solid lines are

theoretical predictions; yellow points are experimental data. (c (d)) T2 and T ∗
2 of the nine nuclear

spin registers measured by Bradley et al. [45] and represented by yellow lines when the NV is

in the ms = 0 (ms = −1) state. Distributions correspond to computed coherence times in 50

random nuclear spin configurations around the 27 nuclear spins, identified in the experiment (see

text). The Hahn echo is computed at the 4th (5th) order of the cluster expansion for the 13C (14N)

nuclear spins.
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III. NUCLEAR SPINS IN THE PRESENCE OF AN ELECTRON SPIN

Now we turn our attention to the properties of nuclear spins in the presence of an electron

spin.

The CCE method up to the second order was previously used to qualitatively investigate

the properties of the nuclear spins in proximity of shallow donors in Si [57]. Here we apply the

fully converged CCE [43] and generalized CCE [44] schemes with so called ”externally aware”

cluster corrections [58] (See Appendix A) to quantitatively reproduce the experimental data.

We consider the NV center in diamond as a prototypical example of an electronic spin

defect. With a total spin of 1, the NV center can be initialized in three eigenstates, which

differ by the projection of the magnetic moment along the [111] axis of diamond (ms =

−1, 0, 1). By preparing the NV in the ms = 0 state, one can, up to first order, eliminate the

electron spin coupling to the spin bath and recover the same coherence time that nuclear

spins exhibit in a pure nuclear spin bath (i.e, free nuclear spins). In the ms = −1, 1 states,

the NV center induces a strong hyperfine field on the nuclear spins, which dominates the

inter-nuclear interactions. The hyperfine field gradient greatly suppresses the polarization

transfer between different nuclei, leading to a significant change in the nuclear spin dynamics

– an effect known as frozen core [57, 59].

A. Experimental validation of the computational protocol

We validate the predictions of our calculations by comparing our results with the ex-

perimental measurements of coherence times reported by T. H. Taminiau and coworkers

[16, 45, 56]. The data for NV in ms = 0 presents a new and previously unpublished data

set obtained on the same NV center as used in these studies [60]. To apply π-pulses to the

separate nuclear spins in the experiment, one has to include a short period of time during

which the electron spin is in ms = −1 state [46], which might lead to small discrepancies

between the theoretical predictions and the experimental data.

We prepare a set of random configurations of nuclear spins placed around a cluster of

27 nuclear spins with experimentally identified positions [56] and compute the coherence of

nine selected nuclear spins (C1-C8 and N in Fig. 2a). Using ab initio computed hyperfine

parameters for randomly placed nuclear spins (see Appendix A), we obtain both Hahn-echo
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and Ramsey coherence times of all nine nuclear registers.

Our calculations show that the presence of the electronic defect center greatly affects the

nuclear spin qubit dynamics under the dynamical decoupling protocol. For example, in Fig.

2b, we show that the Hahn-echo coherence time of the C5 nuclear register is enhanced by a

factor of 18 when the electron spin is in the ms = −1 state. We also find a clear correlation

between distance from the NV and the T2 of the nuclear spins. Maximum T2 values are

achieved for the 14N nuclear spin, which is located in the center of the frozen core and has

a lower gyromagnetic ratio than that of 13C.

The electron-nuclear spin interactions dominate the dynamics of the nuclear spin bath;

thus, an accurate description of the nuclear spin’s decoherence processes requires accounting

for numerous weak correlated fluctuations of the bath spins. For the CCE calculations to

converge, it was necessary to include on the order of 106 clusters of three and four nuclear

spins in our Hahn-echo calculations for 13C nuclear spins, and additionally 106 clusters of

five for 14N. In contrast to the results obtained for the free nuclear spin bath (ms = 0), the

Hahn echoes for the NV center in the ms = −1 state are identical with both the CCE and

gCCE methods [46], indicating a complete suppression of the spin relaxation process.

Unlike the Hahn echo, the Ramsey signal remains mostly unchanged when the electron

is in the ms = −1, compared to that of the free nuclear spins. The T ∗
2 is limited by the

interactions with the small number of nearest bath spins [25]. We note that each experi-

mental data falls well within the computed distribution (Fig. 1b); however the computed

T ∗
2 is overestimated for specific nuclear spins, due to the fixed exclusion radius around the

experimental cluster used to set up our model (see Appendix A). By varying this exclusion

radius we can reproduce the experimental Ramsey coherence time for specific nuclear spins

[46]. These results point at an amount of nuclear spins in the proximity of each of the

registers which is larger than expected based on the number of experimentally identified

positions [56].

Overall we find excellent agreement between experimental and computed values, thus val-

idating the applicability and accuracy of our computational framework, even in the presence

of the dominating hyperfine field of the electron spin.
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FIG. 3. (a) Spin density distribution around the NV center in diamond computed using DFT and

the PBE functional. d is the distance from the NV center, the polar angle Θ is the angle between

the NV axis and the position of the nuclei. (b) Computed ensemble-averaged T2 as a function of

the distance d from the NV center and the polar angle Θ. To simulate the high-field limit,

the coherence time of the nuclear spins at distances ≤ 0.5 nm computed at the magnetic field of 1

T, for all other distances B = 50 mT. Dashed white lines show distances at which the T2 is (from

left to right) 600, 300, and 100 ms. (c) Computed T2 of the nuclear spin at three polar angles

Θ = 0◦, 35◦, 90◦. The generalized cluster expansion (gCCE) simulations (dashed line) were

carried out using a smaller number of clusters than CCE, converged for free nuclear spin [46].

The value of d where the mean hyperfine coupling is equal to the mean internuclear coupling

Azz(d) = ⟨Pij⟩ was computed as
∣∣∣ γeγn r3ij∣∣∣1/3 where rij is the mean internuclear distance (0.45-0.5

nm). (d) Computed ensemble-averaged Hahn echo as a function of the distance from the NV

center for nuclear spins aligned along the [111] direction.

B. Coherence time of nuclear spins as a function of position

Having validated our computational framework, we now turn to investigating the depen-

dence of the nuclear coherence time on the position and orientation of the nuclear spins

inside the frozen core of the electron spin (Fig. 3a).

In Figure 3b, we report a complete map of the nuclear spins ensemble averaged T2,
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computed as a function of the polar angle Θ and the distance from the electron spin d, for

the NV center in the ms = −1 statein the limit of high magnetic field. The precise magnetic

field at which the coherence time saturates depends on the location of the nuclear spin inside

the frozen core. For the nuclear spins within 1 nm of the NV center, very strong magnetic

fields are required, while for the further spins 50 mT is sufficient [46].

We find that T2 ranges from more than 600 ms for nuclear spins within 0.5 nm of the

electron spin to less than 50 ms for nuclear spins at distances larger than 4 nm. Figure 3c

reports cuts along several polar angles, showing a strong dependence of the coherence time

on the orientation of the nuclear spin with respect to the NV center.

At distances of 3-4 nm, we observe a crossover between the predicted values of the CCE

and gCCE methods. In this regime, the hyperfine gradient still suppresses the direct spin

exchange between the central nuclear spin and the bath; however the number of clusters one

needs to include in the calculations is smaller than those required to evaluate the coherence

time well within the frozen core. Thus, the CCE and gCCE results give similar values of

the coherence time. At large distances, the direct spin exchange contributes significantly

to the decoherence, and the smaller coherence time predicted with gCCE is more accurate

than the CCE result.

The coherence time reaches its maximum for equatorial nuclear spins in the (111) plane,

Θ = 90◦. In the vicinity of the NV, the distribution of computed T2 values matches that

of the spin density of the defect (Fig. 3a), and the nuclear spins located where the spin

density is the highest exhibit the maximum coherence time. In contrast, the axial nuclear

spins along the [111] axis have longer T2 times at larger distances. The boundary of the

enhanced coherence time region lies within approximately four to five nanometers from the

NV center; this distance is comparable to the distance at which the average strength of the

internuclear interactions (∼ 60 Hz) matches that of the mean hyperfine coupling. A more

quantitative analysis of the frozen core size is presented in the next section.

C. Frozen core size of the electron spin

To quantify the spatial extent of the frozen core of the electron spin, we propose a

simplified spin pair-only model, where the size of the bath and spin-pair cutoff radii are

obtained in the absence of the electron spin (See Appendix A for more details). We find that
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FIG. 4. (a) Spin-pair coherence function as a function of distance from the NV for two different

isotopic concentrations. The frozen core radius rfc is computed as the distance at which the model

coherence function at time ≥ 106 ms decreases to 1/e (b) Shape of the NV frozen core at natural

isotopic concentration. (c) Scaling of the rfc with 13C concentrations at different polar angles Θ

(See Fig. 3). Solid lines show fits to the function rfc = Ac−1/3.

within this approximation, the computed Hahn echo of the nuclear spins in the vicinity of the

electron spin persists indefinitely. In the opposite limit of large distances between nuclear

and electron spins, the model yields a coherence function decaying to zero, as expected

(Fig. 4a). The distance from the electron at which the model coherence function changes its

behavior from constant to decaying determines the boundary of the frozen core. Specifically,

we define the frozen core radius (rfc) as the distance at which the model coherence at an

infinite time decreases to 1/e.

Using this definition, we find that the frozen core of the NV center is asymmetrical and

elongated along the z-axis (Fig. 4b). The radius rfc varies from 2.7 nm at Θ = 55◦ to 3.8

nm at Θ = 180◦, matching the coherence time behavior shown in Fig 3c: the computed T2

decays below 100 ms at 3.8 nm for axial and at 2.9 nm for equatorial spins nuclear spins. In

contrast, the rfc dependence on the azimuthal angle is negligible. The total volume of the

frozen core is 165 nm3, which corresponds to about 300 13C nuclear spins on average.

The frozen core size is correlated with the strength of the parallel component of the
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hyperfine interaction with the electron spin. Within the point-dipole approximation, this

interaction can be written as [61]:

Azz = −G
r3
(3 cos2Θ− 1) (4)

Where G = µ0γeγnℏ
4π

= 7.60 Hz nm3 for 13C nuclear spins. We note that for different systems

(such as quantum dots in Si [57]), other terms might dominate the hyperfine interactions, and

one can expect different shapes of the frozen core. Interestingly, at the angle arccos (1/
√
3) ≈

55◦ where the dipolar coupling vanishes, the value of rfc = 2.7 nm is only slightly smaller

than 2.8 nm, obtained for Θ = 90◦.

We find that the isotopic purification of the system leads to an increased size of the

frozen core, where rfc scales as the cubic root of the isotopic concentration in a wide range

of spin densities (Fig. 4c). The ratio between rfc at different polar angles remains constant.

Such scaling means that the average number of nuclear spins inside the frozen core remains

constant for most isotopic concentrations. Only at high concentrations (above two percent of

13C), the scaling deviates from cubic, and then the actual electron spin density distribution

and discrete lattice site positions should be taken into account.

D. Nuclear spin coherence in a strongly coupled hybrid electron-nuclear spins

system

The results of the Sec. III B are valid when electron spin and nuclear spin states are

fully decoupled (i.e., Ŝz and Îz commute with the total Hamiltonian). However, at ambient

magnetic fields, this condition can be violated when nuclear spin is strongly coupled to the

electron, significantly altering the nuclear spin dynamics.

As an example, we consider 13C (Fig. 5a) belonging to the first shell of the NV center.

We write the central spins Hamiltonian as:

Ĥen = DŜz
2
+ γeBzŜz + γnBz Îz + AzzŜz Îz+

AxxŜxÎx + AyyŜy Îy + Axz(ŜxÎz + Ŝz Îx)
(5)

Where Ŝi, Îi are electron and nuclear spin operators, D = 2.88 GHz is the NV center zero-

field splitting, γe, γn are electron and 13C nuclear spin gyromagnetic ratios respectively (see

Appendix A for the full description). Axx = 99.8 MHz, Ayy = 176.8 MHz, Azz = 108.0 MHz,
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to |0a⟩ and |1a⟩ levels respectively (see text). (c) Coherence time of the first-shell 13C as a function

of the applied magnetic field along the [111] axis, computed with CCE (solid orange line), gCCE

(dashed orange line), and hybridization-limited T elim
2 (blue line, see text). T2 for the free nuclear

spin (black) is shown as a comparison. The green shaded region denotes avoided crossing (AC) in

the electronic levels due to the hyperfine interactions; the red shaded region denotes ground state

level anticrossing (GSLAC) of the electronic levels.

Axz = 25.5 MHz are hyperfine couplings obtained from DFT calculations and are in good

agreement with experimental data [62]. The energy levels of the combined electron-nuclear

spins system are shown in Figure 5b.

We find that to obtain saturation of the coherence time of the first shell 13C, a much
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higher magnetic field is required than in the case of free nuclear spins (Fig. 5c). Strikingly,

at all other applied fields, the nuclear spin T2 is severely affected by the partial hybridization

of the electronic spin levels induced by the hyperfine coupling. To analyze this effect, we

express the two energy levels |0a⟩ and |1a⟩ of the hybrid electron-spin nuclear spin system

as:

|1a⟩ = |−1 ↑⟩+ α1a
−1↓ |−1 ↓⟩+ α1a

0↑ |0 ↑⟩+ α1a
0↓ |0 ↓⟩ (6)

|0a⟩ = |−1 ↓⟩+ α0a
−1↑ |−1 ↑⟩+ α0a

0↑ |0 ↑⟩+ α0a
0↓ |0 ↓⟩ (7)

In the secular limit of Bz → ∞, the amplitudes α1a
0↑, α

1a
0↓ and α0a

0↑, α
0a
0↓ that account for

the hybridization of electron spin states, vanish [63, 64]. In the non-secular regime, these

amplitudes can be computed by directly diagonalizing the Hamiltonian or from perturbation

theory.

If the reduced density matrices of the electron spin in states |0a⟩ and |1a⟩ differ substan-

tially, we expect a significant impact of the mixing of electron spin levels on the nuclear

spin coherence time. To estimate the effect on T2 of the difference in hybridization between

the |0a⟩ and |1a⟩ levels, we use a modified approximate model first suggested in Ref. [65].

The model was first proposed to predict the T2 of two electron-spin states with similar mag-

netization in the high-field regime, when slow oscillations of nuclear spin pairs dominate

the decoherence process. Using such a model, we can express the contribution to the nu-

clear spin coherence time arising only from the electronic hybridization (which we denote

as electron-limited, (elim)) as:

T elim
2 (B) ≈ C ||P0a(B)||+ ||P1a(B)||

||P0a(B)− P1a(B)||
, (8)

where P0a(B) = ⟨0a|S |0a⟩, P1a(B) = ⟨1a|S |1a⟩ are the effective magnetization of the elec-

tron spin in the |0a⟩ and |1a⟩ states respectively, C is a magnetic field-independent constant,

specific to a given system. We find C to be equal to 0.31 ms for the parameter range ap-

propriate for the system under study [46]. The electron-limited coherence obtained from

the model agrees well with the predictions of the full quantum mechanical treatment over a

wide range of magnetic fields, thus confirming the significant impact of the hybridization of

the electron spin levels on the coherence time of nuclear spins.
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Using perturbation theory, we obtain an approximate expression for the electron spin-

limited coherence time [46]:

T elim
2 (B) ≈ 4C(D + γeB)(Azz + γnB)

Axz(Axx + 2Azz + 2γnB)
(9)

We find that T elim
2 is proportional to tan−1(ΘA) at intermediate magnetic fields, where ΘA

is the angle between the hyperfine quantization axis n = Axzi + Ayzj + Azzk and the [111]

direction of the diamond lattice. For the first shell 13C, the angle is equal to ΘA = 13◦

(Fig. 5a). Our results show that the T2 of any nuclear spin with a substantial perpendicular

component of the hyperfine coupling requires a significantly higher magnetic field to achieve

saturation when the electron spin is in ms = −1 state. One can use Eq. 9 to estimate the

conditions at which the impact of the hybridization of the electron spin levels on nuclear

spin T2 becomes insignificant.

The effect of the partial hybridization of electron spin levels has the highest impact near

avoided crossings of energy levels. In the case of electron spins, avoided crossings originating

from hyperfine interactions lead to a decoherence-protected subspace [66]. Instead, the effect

of these transitions on the T2 of nuclear spins is extremely detrimental. At each of the avoided

crossings, our calculations show a sharp dip in the coherence time of strongly coupled nuclear

spins, highlighting the important trade-off one faces in utilizing nuclear spins as memory

qubits at avoided crossings [14].

E. Effect of electron spin control on nuclear spin coherence

Having analyzed the characteristics of nuclear spin coherence times in the vicinity of an

electron spin as a function of ms, we now investigate how nuclear spin coherence is affected

by changes in the state of the electronic spin. The dynamical change of the state of the

electron spin has been shown to be a valuable tool for improving nuclear spin coherence.

For example, one can use unbalanced echo [67] by applying control pulses to the electron

spin to enhance the protection of the nuclear spin ensembles against lattice strain noise.

We analyze the effect of the central spin coherent control on nuclear spin coherence by

applying a sequence of πe-pulses (here, the index e denotes electron spin) to the NV center

and we compute the dynamics of nuclear spins at two distances from the electron.

Figure 6a shows the nuclear spin coherence when a single πe-pulse is applied to the electron
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FIG. 6. (a) Pulse sequences and the corresponding computed nuclear spin T2 (black and red) and

T ∗
2 (blue) for a single nuclear spin at distances 1 nm and 5 nm from the NV center when a single πe

pulse is applied to the electron spin. The dark blue (orange) arrow represents an electron (nuclear)

spin. T ∗
2 is shown for d = 1 nm.(b) Pulse sequence and the nuclear spin T2 when many πe pulses

are applied to the electron spin. Red color shows T2 of the nuclear spin at 1 nm. Spacing between

the pulses (τi) is either random (points inside shaded area) or constant (solid line). Black line

shows T2 of the nuclear spin at 5 nm. Coherence time is computed at a 50 mT magnetic field using

CCE at δ < 0.05 and gCCE everywhere else.

spin at different fractions of the total time 0 ≤ δ ≤ 1. The electron spin is initialized in

the ms = 0 state; after the πe-pulse is applied, the electron spin rotates into the ms = −1

state. Before the πe pulse, the nuclear spin precesses with frequency w
(0)
L = −γnB; upon

the application of the pulse, the frequency is w
(−1)
L = −γnB−Azz, leading to the emergence

of a nonzero phase of the Hahn-echo signal. In our calculations, we obtain the decay of the

coherence time from the absolute value of the coherence function |L|.

We find that the coherence time of the nuclear spins outside the frozen core does not

18



change significantly with the state of the central spin. However, within the frozen core, the

change is drastic: when δ > 0.5, the nuclear spin coherence time reaches a local minimum

and we observe a 15% drop in T2, compared to that of the spin in thems = 0 state, indicating

a destructive interference between nuclear and electron control pulses.

Figure 6b shows the T2 of the nuclear spin as a function of the number of applied πe pulses.

The electron spin is initialized in the ms = 0 state. In this case, one can achieve a so-called

motional narrowing of the hyperfine field [14]: as the number of πe pulses increases, the

electron-induced field rapidly oscillates and its overall effect can be described by an average

field. The motional narrowing leads to a significant enhancement in coherence time. We

obtain the highest increase in T2 for a constant spacing between πe pulses; however, T2 is

still much smaller than the coherence time achieved when the electron spin remains in the

ms = −1 state (620 ms).

IV. DISCUSSION AND OUTLOOK

In this work, we presented and validated a robust computational protocol to describe the

nuclear spin dynamics in a nuclear spin bath. Using the proposed protocol, we determined

the main noise channels affecting the coherent lifetime of nuclear memories in spin defect

systems. In the absence of electron spins, nuclear spin coherence is limited almost equally

by dephasing and relaxation processes. However, the interplay between these two processes

greatly varies depending on the specific spatial configuration of nuclear spins. This finding

indicates that the geometrical arrangements of the nuclear spin environment of spin defects

should be carefully characterized [56], in order to identify the optimal nuclear spins to store

nuclear quantum states as long as possible.

Our calculations showed that the Hahn echo of single nuclear spins exhibit complex

oscillatory features emerging from the spin exchange interactions with the bath. These

oscillations arise from the direct interactions between a single bath spin and the central spin,

and they have potential to be used to identify and characterize spin exchange interactions

with the bath.

In the presence of electron spins, we characterized the shape of the frozen core of nuclear

spins around the defect with a spin-pair model. The core turns out to be oblong and

elongated along the z-axis, matching the dependence of the dipolar hyperfine coupling on
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the polar angle. The volume of the frozen core is inversely proportional to the concentration

of nuclear spins; thus, the total number of nuclear spins inside the frozen core is constant

and equal to about 300 13C, irrespective of any isotopic purification. This value sets a precise

boundary on how many 13C nuclear spins it is possible to interact with and, therefore, sense

or control using a single NV center.

We analyzed the frozen core effect on coherence time and found that the Hahn-echo T2 of

the nuclear spins can be enhanced by up to 36 times for the closest nuclear spins, when an

electron is in the ms = −1 state. Near an NV center, the highest T2 is attained by equatorial

nuclear spins, closely matching the spin density distribution of the NV center. Further away

from the electronic spin defect, it is the polar nuclear spins that retain the highest T2.

However, in strongly coupled nuclear-electron spin systems, the hyperfine-induced hy-

bridization of electron spin levels acts as a major source of decoherence at commonly used

range of magnetic fields. This decoherence channel is most prominent near avoided crossings

between energy levels. We find that the prohibitively high magnetic fields would be nec-

essary to suppress the impact of partial hybridization of electron spin states on coherence

time in the strong coupling regime.

Finally, we uncovered that the coherent control of the electron magnetic states severely

impacts the nuclear spin coherence time inside the frozen core. Even with no noise affecting

the electron spin, we find that the nuclear T2 is dramatically decreased as soon as the state

of the electron is changed.

Overall, the validated computational framework proposed here for the study of nuclear

spin registers is general and applicable to broad classes of systems and problems. For

example, one can use the proposed platform to study the impact of the total spin of an

electron qubit on the frozen core effect. In particular, one could investigate the difference

in coherence times in the presence of electron spin-1/2 qubits, exhibiting a hyperfine field

in any state, and NV centers, where one of the magnetic states does not exert a hyperfine

field. Importantly, using our computational platform one may screen materials for optimal

nuclear spin coherence times [32].

Another interesting avenue of research is the exploration of the predicted frozen core

size and shape as an engineering tool for the bottom-up design of spin qubits in molecular

systems [68]. With each frozen core corresponding to a computational domain of a specific

electron spin, one can envision a nanoscale network of spin processors, with electron spins
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as processing units and nuclear spins acting as memory qubits.

Finally, our results tell a series of cautionary tales for the applications of nuclear spins

for quantum technologies. From the applied magnetic field to the electron spin control, we

elucidated the various noise channels that may adversely affect the quantum state of the

nuclear spins.
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Appendix A: Computational framework

The quantum evolution of the combined electron spin-nuclear register is described by the

model Hamiltonian:

Ĥ = Ĥen + Ĥen-b +Hb (A1)

The central spin Hamiltonian Ĥen includes:

Ĥen = DŜz + γeB · S+ γnB · I0 + S ·A0 · I0 (A2)

Here D is the zero field splitting of the electron spin, B = (Bx, By, Bz) is the mag-

netic field, γn is the gyromagnetic ratio of the 13C nuclear spin, S = (Ŝx, Ŝy, Ŝz) and

Ii = (Îx,i, Îy,i, Îz,i) denote electron and the i-th nuclear spin operators, respectively. The

zero index denotes a given nuclear spin chosen as a qubit.

The bath-central spins Hamiltonian Ĥen-b and the bath Hamiltonian Ĥb are defined as

follows:

Ĥen-b =
∑
i

S ·Ai · Ii + I0 ·P0i · Ii, (A3)
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and

Ĥb =
∑
i

−γnB · Ii +
∑
i≥j

Ii ·Pij · Ij (A4)

.

Here Ai is the hyperfine coupling tensor of the i-th nuclear spin, and Pij is the dipole-

dipole coupling between spins i and j.

We use the cluster-correlation expansion (CCE) to compute the coherence function of the

nuclear spin, defined as:

L(t) = ⟨Î−(t)⟩
⟨Î−(0)⟩

=
⟨↑| ρ̂(t) |↓⟩
⟨↑| ρ̂(0) |↓⟩

(A5)

where |↑⟩ and |↓⟩ are nuclear spin-up and spin-down states and Î− are nuclear lowering

spin operators, ρ̂(t) is the density matrix of the central spin. In the presence of an NV center

we define off-diagonal elements between eigenstates of Ĥen corresponding to the diabatic

levels |↑ 0⟩, |↓ 0⟩ for ms = 0, and to |↑ −1⟩, |↓ −1⟩ for ms = −1 cases.

Within the CCE scheme, the coherence function L(t) is factorized into the contributions

of bath spin clusters with different size [43]:

L(t) =
∏
i

L̃{i}
∏
i,j

L̃{ij}... (A6)

The contributions are computed recursively from the coherence function of the central

spin, interacting with only a given cluster C as L̃C = LC∏
C′ L̃C′⊂C

, where the subscript C ′

indicates all sub-clusters of C.

Depending on the framework, the LC are computed as follows. In conventional CCE

[43, 69] (referred throughout the text as CCE), the relaxation processes of the central spin

are discarded, and the coherence function is computed as an overlap in the cluster evolution,

dependent on the central spins state:

LC = ⟨C| Û (0)
C (t)Û

(1)†
C (t) |C⟩ (A7)

Where |C⟩ is the initial state of the cluster C. Û
(α)
C (t) is the time propagator defined in

terms of the effective Hamiltonian Ĥ
(α)
C conditioned on the qubit levels. Up to the second

order of perturbation theory it can be written as:

Ĥ
(α)
C = ⟨α| ĤC |α⟩+

∑
i ̸=α

⟨α| Ĥb |i⟩ ⟨i| Ĥb |α⟩
Eα − Ei

(A8)
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Where |α⟩, |i⟩ are eigenstates of the central spins Hamiltonian Ĥen, ĤC is the Hamiltonian

in Eq. (A2) including only the bath spins in the cluster C:

ĤC = Ĥen + Ĥ
(i∈C)
en-b + Ĥ

(i,j∈C)
b (A9)

In contrast, in the generalized CCE (gCCE) we compute the cluster contributions from

the respective elements of the reduced density matrix of the central spin as [44]:

LC = ⟨a|TrC [ρ̂en⊗C(t)] |b⟩ , (A10)

where ρen⊗C(t) is the density matrix of the system, which includes bath spins in the cluster

C and all central spins. The evolution is computed using the full cluster Hamiltonian ĤC .

All π-pulses are assumed to be ideal, instantaneous, and selective to the spin chosen as a

central one.

The strength of interactions between central nuclear spin and bath spins is very similar

in the system under study, making the convergence of the expansion order particularly

challenging. Here, we use Monte Carlo sampling of bath states [44], and for each pure bath

state, we use ”externally aware” cluster expansion by adding Izing-type coupling with the

bath spins outside of the given cluster in a mean-field way. This approach has been shown

to improve the convergence of the CCE method in the all-dipolar spin systems [58].

We use the PyCCE module [70] to carry out all CCE simulations. To approximate the

dipolar coupling parameters, we use the actual spin density of the NV center in diamond,

computed with density functional theory at the PBE [71] level in a 1000 atoms supercell

using the Quantum Espresso package [72]. The dipolar coupling is then computed as [73]:

Aab =
1

2

µ0

4π
γeγnℏ2

∫
|r|2δab − 3rarb

|r|5
ρs(r)dr (A11)

Where r is the position relative to a given nuclear spin, ρs is the electron spin density.

The contact terms of the nuclear spins at distances under 1 nm were computed using the

GIPAW module of Quantum Espresso. For every other nuclear spin we assumed the contact

terms to be vanishing.

To approximate the experimental nuclear spin bath we generated 50 random bath con-

figurations around the experimental cluster. Assuming that all closest nuclear spins were

identified in the experiment, we imposed a cutoff of 0.56 nm around each of the identified
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nuclear spins. This cutoff is chosen so that the exclusion volume on average contains 27

nuclear spins.

To characterize the extent of the frozen core, we implement the following procedure. We

use the coherence of the nuclear spin (test spin), computed with the CCE2 (the spin-pair

model, similar to ref. [57]) as a criterion to decide whether the test spin is inside the frozen

core. We first estimate how many spins and spin pairs around the nucleus contribute to its

decoherence in the absence of electron spins, by using the spin-pair model. The number of

spin pairs is determined via convergence of the model coherence function with the size of

the bath (r bath) and the cutoff radius (r dipole) [70]. Using this number of spin pairs, we

compute the dynamics of this hypothetical test spin at various distances from the electron

spin. When the test spin is far away from the electron spin, the predicted model coherence

function matches that of a test spin in the absence of the electron spin. The model coherence

of the test spin in the vicinity of the electron spin, computed using the same number of pairs,

is a constant (see Fig. 4a). The distance at which the model coherence function changes

its behavior from constant to decaying function of time corresponds to the boundary of the

frozen core. Therefore, at very long times (t > 106 ms), the model coherence (L∞) is 1

near the electron spin and 0 outside of the frozen core. By fitting this coherence function at

infinite time to a stretched exponential (L∞ = exp(−(d/rfc)
n)), we recover the size of the

frozen core rfc.
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