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We obtain the Seebeck coefficient or thermopower S, which determines the conversion efficiency
from thermal to electrical energy, for the two-dimensional Hubbard model on different geometries
(square, triangular, and honeycomb lattices) for different electronic densities and interaction
strengths. Using Determinantal Quantum Monte Carlo (DQMC) we find the following key results:
(a) the bi-partiteness of the lattice affects the doping dependence of S; (b) strong electronic
correlations can greatly enhance S and produce non-trivial sign changes as a function of doping
especially in the vicinity of the Mott insulating phase; (c) S(T ) near half filling can show non-
monotonic behavior as a function of temperature. That is, our results show that electronic
interactions lead to unexpected behavior for the thermopower for given fillings, even at high
temperatures, which may vary depending on the geometry. We emphasize the role of strong
interaction effects in engineering better devices for energy storage and applications, as captured
by our calculations of the power factor PF = S2σ where σ is the dc conductivity.

PACS numbers: 71.10.Fd, 71.30.+h, 02.70.Uu

I. INTRODUCTION

Over the past decades, a great deal of interest has been
given to increasing the efficiency of electrical devices. As
a possible route to this end, the thermoelectric materials
may play a crucial role, once they exhibit induced voltage
in presence of a temperature gradient. The efficiency
of these materials is measured through parameters that
composed the Figure of Merit, such as the Seebeck
coefficient (thermopower) and the thermoelectric Power
Factor [1]. However, there are many technical issues
that make the development of efficient thermoelectric
materials a challenge, e.g., the toxicity of the compounds,
or their thermal instability. There are few ways to
overcome these problems: (i) optimizing the already
known compounds through band-structure engineering
and nanostructuration techniques [2–4], or (ii) seeking
new classes of compounds which exhibit unconventional
properties usually related to strong electron-electron
interactions [5]. In view of the increasing number of novel
correlated compounds, controlling and manipulating
geometry and correlations to enhance the thermopower
properties is an open issue.

Despite intense experimental efforts, further
theoretical investigations are required, in particular
to understand interacting electronic compounds,
such as NaxCoO2 or FeSb2, which exhibit unusual
large thermopower response [5–7]. In the former, the
combination of quasi two-dimensional character with
band topology and strong electronic correlations make
this material an interesting playground to examine
thermoelectricity. Once the charge carriers are confined
to the hexagonal layers of Co atoms, a disordered
distribution of Na ions above and below it can induce
a charge imbalance. Using local-density approximation

and dynamical mean-field theory, Held et al [5] showed
that disorder combined with the pudding-mold band
structure and strong correlations enforce the electron-
hole imbalance and enhances the thermopower by 200%
with respect to the non-interacting case.

The thermopower of superconducting cuprates has
been experimentally studied [8–11], with different
compounds displaying very similar behavior with a sign
change of the Seebeck coefficient near the maximum
critical temperature [8]. This nearly universal behavior
has been the subject of theoretical interest, being
ascribed to a possible underlying critical point [12], to
the presence of a van Hove singularity [13], and has been
recently observed for the Hubbard Model with next-
nearest neighbor hopping [14].

In view of these stimulating results, we explore
how electron-electron interactions and geometry affect
the Seebeck coefficient, and the thermoelectric Power
Factor. In order to avoid the complexities behind
the geometries and atomic orbitals present in real
compounds, here we examine single band cases, to further
understand the main effect of the correlations (from exact
methodologies) on the thermopower properties. That is,
our findings may shed light on so far unclear anomalous
behavior of the Seebeck coefficient, in particular its sign
change [15, 16]. To this end, we use unbiased Quantum
Monte Carlo simulations to study the single band
repulsive Hubbard model. We analyze the thermoelectric
and electrical transport properties in the long wavelength
DC limit in two-dimensions, in the square, triangular and
honeycomb lattices. Our study finds a strong influence
of particle hole symmetry of the many body spectrum
and DOS on the behavior of the Seebeck coefficient with
respect to doping. We show non trivial sign changes
of the Seebeck coefficient that signal a deviation of the
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Fermi surface from the Luttinger count and a subsequent
anomalous change of the type of carriers below and above
half filling. The sign change is also accompanied by a
significant increase of the Seebeck coefficient near half
filling with respect to the non-interacting and weakly
interacting case. We show that despite using a simplified
thermodynamic formula for the Seebeck coefficient that
is independent of dynamical quantities, we are able to
capture the effects of strong correlation.

The paper is organized as follows: In Section II
we discuss the Hubbard model, an introduction to the
Seebeck coefficient, Kelvin formula and the auxiliary
field QMC method used to solve it. In Section III we
discuss how to calculate the entropy and present our
results for this quantity. Section IV shows the Local
Density of States and conductivity results. In Section
V we discuss the Seebeck coefficient and in Section VI
the Power Factor. Finally, in section VIII we summarize
our findings.

II. MODEL AND METHODS

The repulsive Fermi Hubbard model describes
electrons on a lattice with an onsite repulsive interaction,
with the Hamiltonian

H =− t
∑
⟨i,j⟩,σ

(
c†i,σcj,σ +H.c.

)
− µ

∑
i,σ

ni,σ

+ U
∑
i

(ni,↑ − 1/2)(ni,↓ − 1/2), (1)

where the sums run over sites of a given two-dimensional
lattice, with ⟨i, j⟩ denoting nearest-neighbor sites. Here,

we use the second quantization formalism, with c†i,σ (ci,σ)

being creation (annihilation) operators of electrons on

a given site i, and spin σ, while ni,σ ≡ c†i,σci,σ are
number operators. The first two terms on the right-hand
side of Eq. (1) correspond to the hopping of electrons,
and the chemical potential µ, respectively, with the
latter determining the filling of the lattice. The third
term describes the local repulsive interaction between
electrons, with interaction strength U ; the factor of 1/2 is
introduced to ensure invariance of the hamiltonian under
particle-hole transformations on bipartite lattices. This
implies that for the bipartite lattices we consider here
(square and honeycomb lattices), µ = 0 sets half-filling
for all temperatures, and interaction strengths.

Our central quantities of interest are the transport
coefficients, and their behavior with respect to doping
and strength of interactions. The transport coefficients
are defined through the following relations,

j⃗ = L
↔

11E⃗ + L
↔

12(−∇⃗T )

j⃗q = L
↔

21E⃗ + L
↔

22(−∇⃗T ) (2)

where j⃗ and j⃗q are the electrical and thermal currents,

and the L
↔
s are rank 2 tensors defining conductivities

of the system. The tensors L
↔

11 and L
↔

22 are the

electrical and thermal conductivities, and L
↔

12(L
↔

21) are
the thermoelectrical(electrothermal) conductivities. The
thermopower or Seebeck coefficient is defined as

S =

(
L
↔

12
)
xx(

L
↔

11
)
xx

=
1

T

(
L
↔

21
)
xx(

L
↔

11
)
xx

, (3)

where the second equality is due to Onsager’s reciprocity
relations[17]. Using linear response theory with respect
to electrical field and temperature, the Seebeck coefficient
in the Kubo formalism can also be written as

S(qx, ω) =
1

T

χρ̂(qx),H(−qx)(ω)

χρ̂(qx)ρ̂(−qx)(ω)
(4)

where

χρ̂(q)H(−q)(ω)= lim
η→0

∑
n,m

(fn−fm)
⟨n|ρ̂(q)|m⟩⟨m|H(−q)|n⟩

ω + iη + ϵn − ϵm

χρ̂(q)ρ̂(−q)(ω) = lim
η→0

∑
n,m

(fn−fm)
⟨n|ρ̂(q)|m⟩⟨m|ρ̂(−q)|n⟩

ω + iη + ϵn − ϵm

(5)

define the electrothermal and electrical conductivities,
respectively. The operator ρ̂(q) is the charge density at
a wave vector q, defined by

ρ̂(q) =
∑
k,σ

ĉ†k+q,σ ĉk,σ (6)

and H(q) is the Fourier transform of the Hamiltonian.
Evaluation of a Kubo-like formula (Eq (4)) is not
easy for interacting systems in the thermodynamic
limit, although it is the most insightful. Alternate
formulas like the Mott formula[18], Heikes-Mott[19], high
frequency Seebeck[20–22] and Kelvin formula[21, 23]
exist but are limited by their applicability to specific
scenarios (weakly correlated metal at low temperatures
for the Mott formula, high-temperature limit for the
Heikes-Mott formula, and measurement of transport
at high frequencies compared to characteristic energy
scale for high-frequency Seebeck formula). The Kelvin
formula was proposed by Lord Kelvin to provide
reciprocity between Seebeck and Peltier coefficients, and
is calculated in the slow limit (qx → 0, ω → 0); it can
be derived by taking the slow limit of Eq (4) [23]. The
Kelvin formula for the Seebeck coefficient is

SKelvin = −1

e

∂µ

∂T

∣∣∣∣
V,n

=
1

e

∂s

∂n

∣∣∣∣
T,V

,

where the second equality follows from Maxwell’s
relations. Although expressed in terms of
thermodynamic quantities, which are sufficient to
capture the effects from the many-body density of
states, it misses kinematic factors like contributions
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from velocities at the Fermi surface and relaxation
times. Nonetheless, the effects of strong correlations
on the low-frequency transport behavior are taken
into account, as it retains the ω < U approximation,
which the high frequency formula, S∗ misses. The
justification and benchmark of using the Kelvin formula
for strongly interacting systems like the Hubbard model
and fractionalized systems like ν = 5/2 FQHE states
have already been established[23, 24].

We investigate the thermodynamics and transport
properties of Eq. (1) on three different lattices: square,
triangular and honeycomb. In particular, we examine
the behavior of the entropy, conductivity, Local Density
of States (LDOS), Seebeck coefficient, and Power
Factor as functions of lattice filling, for different values
of interaction strengths. To this end, we perform
unbiased determinant quantum Monte Carlo (DQMC)
simulations [25–28], a state-of-the-art numerical method
that maps a many-particle interacting fermionic system
into a single-particle (quadratic form) one, with the
aid of bosonic auxiliary fields. More details about
the methodology may be found in, e.g., Refs. 29–31,
and references therein. Our DQMC simulations are
performed for finite-sized systems (with 100, 144 and
162 sites for the square, triangular, and honeycomb
lattices, respectively), with a Trotter step size ∆τ ≤ 0.1
and each run is generated with 2000 warmup passes
and 50000 measurement passes. Throughout this work,
unless otherwise indicated, we consider for interaction
strengths U/t = 0, 2, 4, 6, 8, and 10; i.e., from non-
interacting to strong coupling regimes and T/t = 0.5,
which corresponds to an energy scale low enough to
observe the crossover towards an insulating phase at half-
filling [32–34]. Hereafter, we define the lattice constant
as unity, and the hopping integral t as the energy
scale. Finally, our simulations have the infamous minus-
sign problem of the fermion determinant, which requires
longer runs, and constrains the scales of our temperatures
and interaction strengths.

III. ENTROPY

We start our analysis with the electronic density n as
a function of chemical potential µ shown in Figure 1 for
T/t = 0.5 and the different lattices studied: (a) square,
(b) triangular, and (c) honeycomb. To obtain this Figure,
we gathering density data on a fine grid of chemical
potentials. Particle-hole symmetry is evident for the
square and honeycomb lattices, where n(µ) = 2−n(−µ),
thereby the density data only need to be gathered either
above or below half-filling. We employ a grid of ∆µ =
0.20 or 0.25 for fillings 0.1 ≲ n ≲ 0.9, and ∆µ = 0.5 out
of this range. In all geometries, correlations lead to the
formation of a Mott plateau (insulating phase) around
half-filling, although the critical interaction strength for
the onset of “Mottness” is strongly influenced by the
lattice geometry.
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Figure 1. (Color online) Density n as a function of chemical
potential µ for the (a) square, (b) triangular, and (c)
honeycomb lattices, for fixed T/t = 0.5, and different
interaction strengths U/t. Here, and in all subsequent figures,
when not shown, error bars are smaller than symbol size. A
Mott plateau is formed above a critical interaction strength
which depends on lattice geometry. Note the width of this
plateau is a measure of the charge gap or “Mottness”.

As the Seebeck coefficient is obtained from the entropy,
we now turn to discuss its behavior for these geometries.
The entropy can be obtained from the electronic density,
n(µ), by integrating it over the chemical potential µ,

s(µ, T ) =

∫ µ

−∞
dµ

∂n

∂T

∣∣∣∣
µ

. (7)

Here, we define a three point derivative for dn/dT |µ,
using βt = 1.8, 2.0 and 2.2.
Figure 2 (a) displays s(µ, T ) as a function of n for the

square lattice. One may notice that, at T/t = 0.5, the
results for U/t = 2 (red circles symbols) and U/t = 4
(blue diamond symbols) exhibit very similar behavior
to the non-interacting one (solid black curve), once the
temperature is high enough to destroy the correlation
effects for such small interaction strengths. However
as U/t increases, e.g. U/t = 6, 8, and 10 the entropy
presents a local minimum at half-filling, being drastically
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Figure 2. (Color online) Entropy s as a function of the
electronic density n for the (a) square, (b) triangular, and
(c) honeycomb lattices, for fixed T/t = 0.5, and different
interaction strengths U/t. Note that the entropy is very
different among the three lattices in the noninteracting limit.
In presence of sufficiently large interactions, a local minimum
appears at the half-filling for all three lattices; However, it
becomes qualitatively similar for the square and honeycomb
lattices, while it is different for the non-bipartite triangular
lattice.

reduced as T/t → 0, due to the Mott gap formation in the
ground state [33, 35–38]. The increased entropy for the
metallic state in the vicinity of half-filling in the presence
of interactions has been observed for the cubic lattice and
is relevant for cold fermionic atoms trapped in optical
lattices, where the metallic region of the atomic cloud is
used to absorb entropy and allow a central Mott region
at a higher entropy per particle [39].

Unlike what is observed for the square lattice, the
entropy behavior on the triangular geometry only
exhibits such a local minimum at U/t = 10, the largest
interaction strength considered, as presented in Fig. 2 (b).
This suggests an absence of a Mott gap for weak and
intermediate interaction strengths. In fact, at U/t ≳ 8,
a small dip starts to form around n = 1, in line with the
expectation for a metal-to-insulator transition occurring
for U/t ≈ 7 − 8 [40–42]. The lack of particle-hole

symmetry in the triangular lattice shown in Fig. 1 (c) is
clearly also present in the entropy.
The entropy for the honeycomb lattice is more subtle.

Similar to the square and triangular lattices, a local
minimum appears at half-filling in presence of strong
interaction; however, different from what is seen in the
two previous cases, here s(n, T ) displays a suppression
at half-filling even for the non-interacting case. This
behavior is understood by recalling that the honeycomb
lattice has a vanishing DOS at half-filling, with van Hove
singularities below and above it. That is, the results of
Fig. 2 confirm our expectations that the entropy provides
hints about the DOS, irrespective of the interaction
strengths. These odd features of the honeycomb lattice
lead to strong changes for the Seebeck coefficient at
U = 0, as we shall see in Section V, and may obscure
some of the the electronic correlation effects.

IV. LOCAL DENSITY OF STATES AND
CONDUCTIVITY

As discussed before, Fig. 1 signals the occurrence of a
Mott insulating state due to the presence of a plateau
in the density as a function of chemical potential, driven
by correlations. The subtleties in the entropy, such as
the appearance of a minimum for the noninteracting case
at the half-filled honeycomb lattice [see Fig. 2(c)], in
contrast to the square and triangular lattices [Figs. 2(a)
and (b)], require an analysis of the suppression of spectral
weight for different densities. In order to avoid numerical
analytical continuations, we examine the LDOS only at
the Fermi level (ω = 0). Here we recall that, at the
ground state, N(ω = 0) = dN

dω ∝ κ(T = 0). Therefore,
at finite temperatures, the thermodynamic DOS [14] is
given by

N(ω = 0, T ) =
dn

dµ
= n2κ(T ) (8)

Fig. 3 shows N(ω = 0, T ) for the (a) square, (b)
triangular, and (c) honeycomb lattices. A common
feature for all geometries is that the non-interacting
case is an upper bound for the LDOS, with data close
to the empty and completely filled systems showing a
negligible dependence on the interaction strength. For
the temperature shown, T/t = 0.5, we can see that for the
square lattice and U/t = 2 the dip at half-filling has not
developed yet. As correlations increase, the dip starts to
form, leading to maxima at n ≈ 0.6 and n ≈ 1.4. In the
case of the honeycomb lattice, the non-interacting ground
state is known to be a semi-metal, with a vanishing
LDOS at half-filling at T/t → 0. Figure 3(c) shows a
dip in the DOS at T/t = 0.5 already for U/t = 0, in
line with entropy data. Similar to what is seen for the
square lattice, maxima develop as correlations increase,
but the positions are moved to n = 0.5 and n = 1.5.
The triangular lattice LDOS shows a distinct behavior,
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Figure 3. (Color online) Local density of states (LDOS) at
the Fermi level at T/t = 0.5 as a function of density for
the (a) square, (b) triangular, and (c) honeycomb lattices.
Note the similarity of the doping dependence of LDOS to
that of the entropy (Fig. 2) in the non-interacting limit.
When correlations increase, LDOS develops a dip near half-
filling, leading to maxima at intermediate densities which
depend on the lattice geometry. The LDOS also becomes
qualitatively similar to the square and honeycomb lattices in
the strongly interacting limit, but is quite different from the
triangular lattice which, in contrast, is not bipartite and has
an asymmetric particle-hole many-body spectrum.

as can be seen in figure 3(b), with a broad peak for
U/t = 0 located at n ≈ 1.6. The effects of correlations
are only relevant for n ≳ 0.6. For the larger values of U/t
considered, a small broad peak is present at n ≃ 0.75 and
a higher one at n ≃ 1.6, with a dip at half-filling signaling
the Mott state for large U .
To further investigate the transport properties, we now

turn to the longitudinal dc conductivity,

σdc =
β2

π
Λxx(q = 0, τ = β/2), (9)

in which

Λxx(q, τ) = ⟨jx(q, τ)jx(−q, 0)⟩ (10)

is the current-current correlation function with jx(q, τ)
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Figure 4. (Color online) Longitudinal DC conductivity at
T/t = 0.5 as a function of density for the (a) square, (b)
triangular and (c) honeycomb lattices. The dip at half-
filling signifies the opening of the Mott gap, and the presence
(absence) of bipartiteness is reflected in the particle-hole
symmetric (asymmetric) behavior of the conductivity. The
locations of the peaks of N(ω = 0) are very different from
that of σDC in the strongly interacting regime. Note that in
the noninteracting case, U/t = 0, the dip in LDOS in Fig. 3
is not accompanied by a dip in σdc in the honeycomb lattice.

being the Fourier transform of the unequal-time current
operator

jx(i, τ) = eτH

[
it
∑
σ

(
c†i+x,σci,σ − c†i,σci+x,σ

)]
e−τH.

(11)
Here we also avoid analytical continuation, see, e.g.,
Refs. 43–45.
Similar to what is seen for the LDOS, correlations

reduce the conductivity, with the non-interacting
conductivity as an upper limit for all the geometries
studied as shown in Fig. 4. Once again, correlations
are shown to be irrelevant to transport properties for
densities near the completely empty or filled bands, while
its effects increase as half-filling is approached, with
σdc → 0 as U/t increases. It is interesting to note that,
for the honeycomb lattice, the dip in the non-interacting
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DOS is not accompanied by a dip in the conductivity
[shown in Figs. 3(c) and 4(c), respectively]. For large
values of U/t, the maxima for the conductivity are not
at the same densities as the ones for the LDOS; for the
square lattice, the conductivity has maxima at n = 0.5
and n = 1.5. For the honeycomb lattice, the maxima
are at n = 0.6 and 1.4 and for the triangular lattice,
the maxima are at n = 0.45 and n = 1.45. For the
triangular lattice, one can see that both the U/t = 0
peak and the higher intensity peak for the LDOS, which
are above half-filling, move to densities below half-filling
for the conductivity.

V. SEEBECK COEFFICIENT

We now turn to the Seebeck coefficient, which
is obtained from the entropy by using the Kelvin
formula [24, 46],

SKelvin =
1

e

∂s

∂n

∣∣∣∣
T,V

. (12)

Within this approach, Fig. 5 displays the behavior of
SKelvin in units of kB/e

2 as a function of the electronic
density for the (a) square, (b) triangular, and (c)
honeycomb lattices.

At this point, it is worth recalling that the sign of
the Seebeck coefficient is directly related to the type
of carrier, being negative for holes and positive for
electrons. As a consequence of particle-hole symmetry for
the square and honeycomb lattices, one has SKelvin(n) =
−SKelvin(2 − n), leading to SKelvin(n = 1) = 0. For all
geometries examined, the effect of correlations is strongly
dependent on density, being negligible for n ≲ 0.3 and
n ≳ 1.7, as previously observed for entropy, DOS and
conductivity.

As expected, the Seebeck coefficient for the non-
interacting square lattice presents only one sign change,
at half-filling, as shown in Fig. 5 (a). However, notice that
in the presence of strong correlations (U/t ≳ 6) there
is an anomalous behavior, characterized by a change of
sign for densities away from half-filling, also displayed in
Fig. 6 (a) for n ≈ 0.96. In addition, there is a notable
increase in the absolute value of the Seebeck coefficient,
compared to the non-interacting case. For instance, at
n = 0.99, SKelvin ≈ 2.37 kB/e

2, at U/t = 10, while for
U/t = 0, SKelvin ≈ −0.01 kB/e

2. This steep increase can
be explained by noting that the Seebeck coefficient, as
defined in Eq. (3), is the ratio between the longitudinal
thermoelectric and electrical conductivities. As we
approach the Mott insulator at half-filling, electrons
form local moments, and electrical transport is strongly
reduced, as shown by both conductivity and LDOS
in the previous section. The fast-decreasing electrical
conductivity in the vicinity of half-filling must be
accompanied by a non-vanishing thermoelectric current
for the peaks to form. We can understand this as follows:
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Figure 5. (Color online) Seebeck coefficient for different values
of the interaction strength at T/t = 0.5 as a function of
density for the (a) square, (b) triangular, and (c) honeycomb
lattices. For clarity, we have reduced the set of U/t values
compared to previous plots. In the non-interacting limit, the
Seebeck coefficient changes sign at half-filling for bipartite
lattices (square and honeycomb), but at a finite doping
for triangular lattice. With strong interactions, there is
an enhancement of the Seebeck coefficient near half-filling,
as well as an anomalous sign changes away from half-
filling, signaling a change in carrier type. Note that for
the honeycomb lattice, there is a sign change in Seebeck
coefficient away from half filling even at U/t = 0, due to
presence of Van Hove singularities from the Bloch bands.

at half-filling and strong correlations, each site is singly
occupied and local moments are completely formed, there
is no electric or thermoelectric transport and the Seebeck
coefficient is zero. As we move slightly away from half-
filling, there is a background of local moments over which
p = 1 − n carriers lead to thermoelectric and electric
currents. This reduced number of carriers is in line
with the breaking of Luttinger count [47–49] that has
been established for the Fermi Hubbard model and is
in agreement with the change in carrier density in Hall
experiments for YBCO [50].

Due to the absence of particle-hole symmetry in the
triangular lattice, the sign change of SKelvin in the non-
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Figure 6. (Color online) Seebeck coefficient as a function of
U/t, at a fixed T/t = 0.5 for different densities in (a) square,
(b) triangular and (c) honeycomb lattices. For densities
close to half-filling, the Seebeck coefficient changes sign and
enhances as U/t is increased.

interacting limit occurs away from half-filling, at n =
1.42, as shown in Fig. 5 (b), as opposed to the square
lattice, which has particle-hole symmetry, and exhibits
the sign change symmetrically around half filling. There
is a range of densities, around 0.5 ≤ n ≤ 0.9 where
correlations lead to a small increase in the modulus of the
Seebeck coefficient. In contrast to the square lattice, the
peak in the Seebeck coefficient for the triangular lattice
at n = 0.99 is only present for very strong interactions.
For U/t = 8, SKelvin ≈ −0.18 kB/e

2, while for U/t = 0,
for this electronic density SKelvin ≈ −0.55 kB/e

2. Strong
correlations, around U/t = 10, are needed to change the
sign of the Seebeck coefficient at half-filling, as presented
in Fig. 6 (b). Interestingly, above half-filling and below
the sign-change point for U/t = 0, the correlations are
detrimental to the thermopower up to U/t = 8, bringing
the Seebeck coefficient closer to zero.

Fig. 5 (c) shows the Seebeck coefficient for the
honeycomb lattice. For the non-interacting system,
SKelvin changes sign at n = 0.6, 1.0, and 1.4, therefore
the charge of the carriers is negative for n < 0.6 and
1.0 < n < 1.4, while it is positive for 0.6 < n < 1.0
and n > 1.4. Interestingly, these densities correspond
to the peaks and dip positions for the conductivity,
as seen in Fig. 4 (c). We recall that such changes in
carriers come from the fact that the honeycomb lattice

has two bands for the noninteracting case, so one may
expect changes from electron to hole properties of the
transport coefficients depending on the filling of each
band. However, correlations push the sign change to
values closer to half-filling, going from n = 0.6 and 1.4 at
U/t = 0 to n = 0.85 and 1.15 at U/t = 8. One thing
to note is that although the behavior of the Seebeck
coefficient is very different between the square and the
honeycomb lattice in the noninteracting limit, adding
interactions and transitioning to the Mott insulating
state seems to wash these differences away. This can be
understood by noting that in the noninteracting picture,
the transport is determined by the Bloch bands which
are different for square and honeycomb lattices. However,
with strong interactions, Mott physics destroys the Bloch
bands, opens up a Mott gap, and forms upper and lower
Hubbard bands. While details of the single particle
bands are erased, the information about the particle-hole
symmetry imprinted in the many-body spectrum is still
retained. Hence the behavior of the Seebeck coefficient is
qualitatively similar between the square and honeycomb
lattice but different from the triangular lattice.

Similar to the square lattice, there is a significant
increase in the Seebeck coefficient for the honeycomb
lattice close to half-filling at U/t = 6, 8 and 10, as shown
for n = 0.96 and n = 0.99 in Fig. 6 (c). For U/t = 10, for
example, we have that for n = 0.99, SKelvin ≈ 2.30 kB/e

2,
while in the non-interacting case (U/t = 0) for this
density value, SKelvin ≈ 0.03kB/e

2, an enhancement of
two orders of magnitude. At this point, it is worth
recalling that the sign change of the Seebeck coefficient
(for a given electronic density) is an unexpected feature
for Fermi liquids, being usually related to a Fermi surface
reconstruction in cuprates [15, 16]. Figure 6 describes
such a non-Fermi liquid behavior for the geometries
analyzed here, the energy scale for the sign change
depends on the interaction strength and temperature of
the system.

We also analyze the effects of temperature on the
thermopower for the square lattice at U/t = 10. Figure
7 (a) displays SKelvin as a function of n for different T/t,
while Fig. 7 (b) shows SKelvin as a function of T/t for
different densities. The curves for different temperatures
in [Fig. 7(a)] display narrow crossings in ⟨n⟩ = 0.53, 1.47
leading to almost horizontal lines at these densities
in Fig. 7(b). The presence of such narrow crossings
suggests the existence of isosbestic points, which can
reveal interesting physics [51]; for instance, the existence
of sharp crossing points in the specific heat curves of
strongly correlated systems is related to the fact that the
high-temperature entropy is bounded and independent of
the correlation strength [52], and has been observed for
the square lattice Hubbard model [38]. Simulations for
the SU(N) Hubbard model show that narrow crossings
on energy curves lead to unexpected scaling relations [53].
Here we see that for n ≲ 0.5 and n ≳ 1.5 reducing the
temperature is detrimental to the thermopower, as seen
by a reduction of the modulus of the Seebeck coefficient
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Figure 7. (Color online) Seebeck coefficient for the square
lattice at U/t = 10 as (a) a function of density for the
square lattice at different temperatures (b) a function of
temperature for different densities. In panel (a), the Seebeck
coefficient shows anomalous behavior at low temperatures and
approaches the free particle limit as T/t is increased. In panel
(b), at low densities (n = 0.2), the Seebeck coefficient has the
expected sign and monotonically decreases with temperature.
At a critical density n ≈ 0.5 (also shown for n ≈ 1.5 in
the electron-doped side), the Seebeck coefficient is almost
temperature independent. In the anomalous region (0.75 ⪅
n ⪅ 1.0), peaks in the Seebeck coefficient start to move
towards the smallest temperature considered here, as one
moves towards the half-filling limit, where it becomes 0 for
all temperatures.

for n = 0.2. For densities in the range 0.5 ≲ n ≲ 0.9 and
1.1 ≲ n ≲ 1.5, the behavior of SKelvin with temperature is
non-monotonic, and can change sign with T/t, as shown
for n = 0.75 in figure 7(b). Finally, the anomalous
behavior in the vicinity of half-filling has a marked
dependence on temperature, increasing the modulus of
the Seebeck coefficient as T/t is reduced. This fast
increase of the thermopower with decreasing temperature
close to half-filling has also been observed in the t − J
model[23], Hubbard model on an FCC lattice[24] and
t− t′ − U Hubbard Model [14].

0.0

0.1

0.2

0.3

0.0

0.1

0.2

0.0 0.5 1.0 1.5 2.0
0.0

0.1

0.2

(c)

(a)

(b)

Honeycomb lattice

Square lattice

Triangular lattice
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 U/t = 2
 U/t = 6
 U/t = 10

P
F
(k

2 B
/e

2 h)
n

Figure 8. (Color online) Thermoelectric Power factor as a
function of density for (a) square, (b) triangular, and (c)
honeycomb lattices. In the free particle limit (almost empty
and almost filled lattice), the Power factor exhibits a peak
for all values of U/t. Interaction causes additional peaks
to develop very close to the Mott insulating limit for large
interaction strengths. Additional features for intermediate
doping also appear that are strongly influenced by lattice
geometry.

VI. THERMOELECTRIC POWER FACTOR

Proceeding, we now discuss the effects of correlations
to the thermoelectric Power Factor (PF ), defined as

PF = S2σ, (13)

where the dc conductivity (σ) and the Seebeck coefficient
(S ) were obtained in Sections IV and V, respectively.
Simultaneously increasing both the modulus of the
Seebeck coefficient and the conductivity maximizes the
Power Factor. Strategies to determine the Seebeck
coefficient that leads to an optimum thermoelectric
Power Factor have been sought theoretically for systems
that can be described by the Boltzmann transport
equation [54] and experimentally for CZTS thin films [55]
and La-doped SrTiO3 [56] thin films.
Fig. 8 shows the thermoelectric Power Factor as a

function of density for fixed T/t = 0.5, and for the
three analyzed geometries. A common feature to all data
is the presence of peaks close to the empty (n ≲ 0.1)
and completely filled lattices (n ≳ 1.9). Starting with



9

completely empty (filled) lattices, as density increases
(decreases) the conductivity increases, and the Seebeck
coefficient modulus decreases, leading to peaks that are
independent of interaction strength. As the conductivity
goes to zero for Mott insulators, PF → 0 at half-filling
for a geometry-dependent value of U/t. For the square
lattice, the hump in PF for U/t = 0 around n ≈ 0.6 (1.4)
turns into a peak at n ≈ 0.5 (1.5) with the increase of
correlations, the dominant contribution coming from the
conductivity.

The effect of correlations for the intermediate densities
peak of the honeycomb lattice is more subtle, as can be
seen in figure 8(c). The peaks for the non-interacting
system at n = 0.85 (n = 1.15) decrease in intensity
with correlations for U/t = 2 and 4, and then a shoulder
develops at lower (higher) densities for larger U/t. Close
to half-filling once again correlations drive the Seebeck
coefficient peak up which in turn leads to the PF peaks.

For the triangular lattice one can see that the non-
interacting system has a peak at n = 0.95. Correlations
move the peak to lower densities and increase its
intensity, as clearly seen in figure 8(b), where the peak
for U/t = 10 is at n ≃ 0.7. As for the other geometries, a
peak develops in the vicinity of the Mott insulating state,
here only seen for the larger values of U/t studied.

Comparing the overall effects of correlations in the
different geometries analyzed, we see that there are
clear correlation-induced peaks near half-filling in all
cases. For the square and honeycomb lattices, the non-
interacting thermoelectric power factor is zero at half-
filling and is driven to PF ≈ 0.1 k2B/e

2h. Around quarter
and three-quarter fillings as well, correlations also play a
relevant role in increasing the power factor for the square
and honeycomb lattices. Correlations are very effective
in increasing the Power Factor in a triangular lattice,
where PF ≃ 0.27 k2B/e

2h, the largest value obtained, for
U/t = 10 at n ∼ 0.7. For this geometry, we observe that
density can be used to tune the thermoelectric Power
Factor.

VII. FINITE-SIZE EFFECTS

In this section, we investigate finite-size effects. To
this end, we perform simulations for a 16 × 16 square
lattice (i.e., with 576 sites), fixing U/t = 8, while
varying the electronic density. Figure 9 displays (a)
the longitudinal dc conductivity and (b) the Seebeck
coefficient, for this system size, comparing it with our
previous results for a 10 × 10 square lattice. Figure 9
clearly shows that, for these quantities, finite-size effects
may be disregarded within the range of results examined
in previous sections. Indeed, short-ranged quantities
must suffer much less from finite-size effects than long-
ranged quantities. However, these minor dependencies
do not affect the main results discussed in the previous
sections.
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Figure 9. Comparison between results obtained for 10 × 10
(orange squares) and 16 × 16 (black triangles) lattices for
(a) the longitudinal dc conductivity and (b) the Seebeck
coefficient as a function of the electronic density at U/t = 8.
When not shown, error bars are smaller than the symbol size.

VIII. CONCLUSIONS

We have studied the thermoelectric properties of
strongly interacting two dimensional systems with
different geometries. Our results clearly show an anomaly
in the Seebeck coefficient in the vicinity of half-filling,
characterized by an enhanced response depending on
both geometry and interaction strength. The anomaly
is characterized by a change in the sign of the carriers
which is accompanied by an interaction-induced increase.
The anomaly is also intensified with the reduction of
temperature.
The thermoelectric Power Factor displays a

competition between the Seebeck coefficient and
the conductivity. The anomaly in the Seebeck coefficient
is reflected in the PF , with correlation-driven peaks
immediately below and above half-filling at geometry-
dependent values of U/t. The decreasing conductivity
near half-filling is the limiting factor in the intensity of
PF in this region of densities. Away from half-filling,
at intermediate densities (around n = 0.4 − 0.6 and
n = 1.4−1.6) the peaks in PF have a strong contribution
from the conductivity with positions strongly dependent
on geometry. For this range of densities, peak position
and intensity can be tuned by correlations. Although the
Seebeck coefficient is smaller for the triangular lattice,
the Power Factor for this geometry shows the higher
peak values and the stronger tunability with density and
correlations, making it a strong candidate for enhanced
thermoelectric properties.
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APPENDIX

In this appendix, we discuss basic aspects of
noninteracting and interacting cases related to the
geometries examined in this work.

1. Dispersion and Density of States

The tight-binding approach for a single-band (s-wave)
case leads to the following electronic dispersions,

E(k) = −2t(cos kx + cos ky), (A.14)

E(k) = −2t

[
cos

(
kx +

√
3k2

2

)
cos

(
kx −

√
3k2

2

)
+ cos (kx)

]
,

(A.15)

E±(k) = ±t
√
3 + 2 cos(kx) + 2 cos(ky) + 2 cos (kx + ky),

(A.16)

for the square, triangular, and honeycomb lattices,
respectively. Here, we define t as the integral hopping for
nearest neighbors, while assuming the lattice parameter
as unity.

From the dispersion relation, one is able to obtain
the Density of States (N(ω)) for each geometry, as
shown in Fig. 10. Notice that van Hove singularities
(vHS) occur for all cases, as expected for noninteracting
electrons in two-dimensional geometries. In particular,
such a singularity is at half-filling for the square lattice
but occurs at different fillings for the triangular and
honeycomb ones. At finite temperatures, the vHS
are smeared, with the occurrence of a cusp instead of
divergence, as presented in Fig. 3. Furthermore, N(ω)
also provides us hints of another important feature: the

existence of particle-hole symmetry (PHS). The PHS
implies a symmetric distribution for electrons and holes,
therefore leading to µ = 0 for the half-filling and a
symmetric DOS around it. Notice that these features
are present in the square and honeycomb lattices, but
are absent in the triangular one.

2. Critical points

For the repulsive Hubbard model, the interaction may
lead to drastic changes in the DOS and other quantities’
responses. In particular, some fillings may have
instabilities, with the occurrence of phase transitions.
From unbiased QMC methodologies, it is known that the
Hubbard model at the half-filled square lattice exhibits
antiferromagnetism for any U/t > 0 [57–59], while one
has a finite critical point in the honeycomb lattice, for
Uc/t ≈ 3.8 [60–62]. By contrast, the ground state of the
Hubbard model in the triangular lattice is less clear. In
spite of this, there are pieces of evidence that a metal-
insulator transition occurs around Uc/t ≈ 7 [63–67].
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Figure 10. (Color online) Density of state as a function of ω
for square (a), triangular (b), and honeycomb (c) lattices and
T/t = 0.0
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D. Pelloquin, E. Guilmeau, F. Gascoin, O. Lebedev, and
A. Maignan, Searching for new thermoelectric materials:
some examples among oxides, sulfides and selenides,

Journal of Physics: Condensed Matter 28, 013001 (2015).
[2] G. Ding and J. Li, Band structure engineering of multiple

band degeneracy for enhanced thermoelectric power
factors in MTe and MSe (M = Pb, Sn, Ge), RSC Adv.

https://doi.org/10.1088/0953-8984/28/1/013001
https://doi.org/10.1039/C5RA18369C


11

5, 91974 (2015).
[3] J. P. Heremans, V. Jovovic, E. S. Toberer, A. Saramat,

K. Kurosaki, A. Charoenphakdee, S. Yamanaka, and
G. J. Snyder, Enhancement of thermoelectric efficiency
in PbTe by distortion of the electronic density of states,
Science 321, 554 (2008).

[4] L. D. Hicks and M. S. Dresselhaus, Effect of quantum-
well structures on the thermoelectric figure of merit,
Phys. Rev. B 47, 12727 (1993).

[5] P. Wissgott, A. Toschi, H. Usui, K. Kuroki, and K. Held,
Enhancement of the NaxCoO2 thermopower due to
electronic correlations, Phys. Rev. B 82, 201106 (2010).

[6] P. Wissgott, A. Toschi, G. Sangiovanni, and K. Held,
Effects of electronic correlations and disorder on the
thermopower of NaxCoO2, Phys. Rev. B 84, 085129
(2011).

[7] J. M. Tomczak, Thermoelectricity in correlated narrow-
gap semiconductors, Journal of Physics: Condensed
Matter 30, 183001 (2018).

[8] S. D. Obertelli, J. R. Cooper, and J. L. Tallon,
Systematics in the thermoelectric power of high-tc oxides,
Phys. Rev. B 46, 14928 (1992).

[9] J. L. Tallon, C. Bernhard, H. Shaked, R. L. Hitterman,
and J. D. Jorgensen, Generic superconducting phase
behavior in high-tc cuprates: tc variation with hole
concentration in yba2cu3o7−δ, Phys. Rev. B 51, 12911
(1995).

[10] T. Honma and P. H. Hor, Unified electronic phase
diagram for hole-doped high-Tc cuprates, Phys. Rev. B
77, 184520 (2008).

[11] T. M. Benseman, J. R. Cooper, C. L. Zentile,
L. Lemberger, and G. Balakrishnan, Valency and spin
states of substituent cations in bi2.15sr1.85cacu2O8+δ,
Phys. Rev. B 84, 144503 (2011).

[12] A. Garg, B. S. Shastry, K. B. Dave, and P. Phillips,
Thermopower and quantum criticality in a strongly
interacting system: parallels with the cuprates, New
Journal of Physics 13, 083032 (2011).

[13] G. C. McIntosh and A. B. Kaiser, van hove scenario and
thermopower behavior of the high-tc cuprates, Phys. Rev.
B 54, 12569 (1996).

[14] E. W. H. B. M. Wen O. Wang, Jixun K. Ding and T. P.
Devereaux, Quantitative assessment of the universal
thermopower in the Hubbard model, arXiv:2302.13169
(2023).

[15] O. Cyr-Choinière, S. Badoux, G. Grissonnanche,
B. Michon, S. A. A. Afshar, S. Fortier, D. LeBoeuf,
D. Graf, J. Day, D. A. Bonn, W. N. Hardy, R. Liang,
N. Doiron-Leyraud, and L. Taillefer, Anisotropy of
the seebeck coefficient in the cuprate superconductor
yba2cu3oy: Fermi-surface reconstruction by bidirectional
charge order, Phys. Rev. X 7, 031042 (2017).

[16] A. Gourgout, G. Grissonnanche, F. Laliberté, A. Ataei,
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