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We investigate disorder-induced localization in metals that break time-reversal and inversion
symmetries through their energy dispersion, ϵk ̸= ϵ−k, but lack Berry phases. In the perturbative
regime of disorder, we show that weak localization is suppressed due to a mismatch of the Fermi
velocities of left and right movers. To substantiate this analytical result, we perform quench numerics
on chains shorter than the Anderson localization length ξ – the latter computed and verified to be
finite using the recursive Green’s function method – and find a sharp rise in the saturation value of
the participation ratio due to band asymmetry, indicating a tendency to delocalize. Interestingly,
for weak disorder strength η, we see a better fit to the scaling behavior ξ ∝ 1/η2 for asymmetric
bands than conventional symmetric ones.

I. INTRODUCTION

Weak localization (WL) refers to an enhanced ten-
dency of electrons in a disordered potential to lo-
calize due to constructive quantum interference be-
tween pairs of time-reversed paths [1–6]. It serves as
a precursor to Anderson or strong localization which
refers to the true arrest of quantum diffusion of free
electrons on a lattice [7]. Since its conception in the
context of electrons in a metal, Anderson localiza-
tion has been seen in light waves [8–10], ultrasound
[11, 12], ultracold atoms [13–16], and more recently,
digital quantum simulators such as those provided
by IBMQ [17, 18].

The two regimes of localization are elegantly cap-
tured by the scaling theory of localization [1, 2,
19, 20]. Formulated as a renormalization group ap-
proach, it describes the scaling behavior of conduc-
tance in disordered systems via a scaling function
that, in its simplest form, depends only on the con-
ductance but has no explicit dependence on system
size. Then, the physical conductance in the ther-
modynamic limit is given by the appropriate sta-
ble fixed point of the renormalization group flow.
The results of this procedure depend sensitively on
the dimensionality and symmetry class of the sys-
tem [1, 19–23]. In three dimensions (3D), the scal-
ing function has a zero of order unity in every sym-
metry class, which is an unstable fixed point that
separates the localized and delocalized regimes at
strong and weak disorder, respectively. The local-
ized phase corresponds to Anderson’s original pre-
diction of localization in a disordered lattice. In 2D,
the asymptotic behavior of the system depends deli-
cately on its symmetries. If time-reversal symmetry
(T ) is absent (unitary class) or present but bosonic
(T 2 = 1, orthogonal class), disorder is marginally

relevant [1, 19, 20, 24]. Physically, this means in-
finitesimal disorder will eventually localize the sys-
tem in the thermodynamic limit, but the localiza-
tion length in practice can be astronomically large.
This leads to striking experimental signatures such
as a sharp, symmetric cusp in the magnetoconduc-
tance as the constructive interference is ruined by
the Aharanov-Bohm phase of the magnetic field. In
contrast, the presence of fermionic T (T 2 = −1,
symplectic class), pertinent to metals with strong
spin-orbit coupling, causes disorder to be marginally
irrelevant, leads to weak anti-localization, and allows
metallicity to survive up to the thermodynamic limit
at extremely weak disorder [24]. Experimentally,
weak anti-localization manifests as a peak instead
of a cusp in the magnetoresistance. Finally in 1D,
disorder is relevant and the scaling function is al-
ways negative, which physically implies localization
for infinitesimal disorder in any symmetry class.

Most of our current understanding of metallic
physics is based on the presence of at least one of
inversion (I) and time-reversal (T ) symmetries, as
bulk metals that break both symmetries, i.e., non-
centrosymmetric, magnetic metals, are extremely
rare. The symmetries govern key macroscopic prop-
erties of metals via microscopic processes such as
Cooper pairing and elastic backscattering, perti-
nent to superconductivity and localization, respec-
tively. On the other hand, largely thanks to the
poor screening of electromagnetic fields, lower di-
mensional systems allow phenomena that are sup-
pressed or forbidden in bulk materials. For in-
stance, T - and I-breaking enable a host of exotic
superconducting behaviors either in systems that
are (quasi)-1D or the phenomena themselves have
a directionality. These include Majorana fermions
in nanowires [25–29], superconducting [30–41] and
Josephson diode effects [42–50], and spontaneous su-
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percurrents at equilibrium [51–53]. This immedi-
ately raises the question, “what are the consequences
of T - and I-breaking on the localization properties
of 1D metals?”

In this work, we address this question in the sim-
plest scenario: 1D metals of spinless electrons with
an asymmetric dispersion, ϵk ̸= ϵ−k, in a disor-
dered chemical potential. We refer to such metals
as band asymmetric metals (BAMs) and stress that
they are the generic low-energy theory of 1D met-
als that lack any symmetry; several examples are
given in Appendix A. This problem technically be-
longs to the unitary class; however, it differs from the
usual problem of localization in this class where dis-
order breaks T but the underlying metal does not,
resulting in preserved T on average. In contrast,
the current problem violates T on average too as T
is already broken by the parent metal. Therefore,
this system is conceptually closer to a metal in a
magnetic field than to one with magnetic impuri-
ties. We study both weak and strong localization in
1D BAMs and find that the former contains a new
physical regime while the latter enjoys a localization
length that grows parametrically with band asym-
metry.

In Section II, we discuss the WL correction to the
conductivity in 1D BAMs which is followed by the
discussion of quench numerics and recursive Green’s
function method calculations in Section III and is
concluded by a discussion on possible avenues for
experimental realizations in Section IV. The appen-
dices contain the discussion of some physical mod-
els with T - and I- breaking perturbations, the de-
tails of the conductivity correction calculations, and
the specifics of the recursive Green’s function (RGF)
method.

II. GENERAL CONDUCTIVITY
CORRECTION

Our main result is a new regime of WL in 1D
BAMs. Specifically, we show that the WL correction
to the conductivity in 1D BAMs is given by:

σWL ≈ −e
2

ℏ
2πvτ0√
l
lϕ

+ δv2

4v2

. (1)

for l/lϕ, |δv|/v ≪ 1, where v = (vL+vR)/2 is the av-
erage speed of the left and right movers, δv = vR−vL
is the difference in speeds, l is the mean free path, lϕ
is a phenomenological phase coherence length that is
typically governed by inelastic scattering and ther-
mal decoherence, and τ0 is the quasiparticle lifetime
calculated in the Born approximation. We have as-
sumed a single pair of counterpropagating modes for
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Figure 1. (a) Feynman diagrams representing the polar-
ization bubble for the maximally crossed (Langer-Neal)
diagram, where C is the resummed Cooperon propa-
gator represented diagrammatically by a sum of par-
allel impurity lines in (b). Here, k̃ ≡ (k, iνn) and
k̃′ ≡ (k′, iνn + iωn) label the top incoming and outgoing
lines while q̃ ≡ (q, iωn) is the difference between their
frequency/momentum. (c) Representative asymmetric
band showing the Fermi points and highlighting the dif-
ference in the speeds of the left and right movers.

simplicity. Eq. (1) shows two distinct regimes: for√
l
lϕ

≪ |δv|
2v and

√
l
lϕ

≫ |δv|
2v , dephasing is domi-

nated by band asymmetry and inelastic scattering,
respectively. Thus, symmetric metals with δv = 0
fall in the latter regime and have σWL ∝ −

√
lϕ [54],

which diverges at zero temperature in the absence
of inelastic scattering processes. Intuitively, right
and left moving waves at a given speed have equal
and opposite momenta. Therefore, they form a per-
fect standing wave and enhance localization. In con-
trast, if band asymmetry is large enough [Fig. 1 (c)],
the standing wave heuristically melts into an inter-
ference pattern with net drift. Eq. (1) predicts this
for

√
δv/v ≫ l/lϕ; then σWL remains finite as lϕ

diverges and depends on disorder only through τ0.
To arrive at Eq. (1), we begin by assuming ran-

dom chemical potential quenched disorder and con-
sidering the effect of band asymmetry on τ−1

0 =
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2ImΣ(i0+) in the Born approximation, where Σ(z)
is the complex frequency dependent self-energy. Al-
though the BAM has unequal Fermi momenta for
left and right movers,

∣∣kLF ∣∣ ̸= ∣∣kRF ∣∣ [Fig. 1 (c)], τ0 de-
pends on the band structure only through the den-
sity of states at the Fermi level. As a result, we
find that it changes quantitatively, but not qual-
itatively, as the bands turn asymmetric. Physi-
cally, this means band asymmetry does not qual-
itatively affect classical transport, i.e., transport in
the regime where quantum interference effects vanish
and probabilities rather than amplitudes for differ-
ent Feynman paths add. Thus, one must transcend
the Born approximation and consider appropriate
vertex corrections to see the qualitative effects of
band asymmetry.

In a T -symmetric system, the vertex corrections
that survive disorder-averaging consist of maximally
crossed diagrams, illustrated in Fig. 1 (a,b). Thus,
we evaluate the polarization bubble with these cor-
rections following standard procedure [54, 55] to ob-
tain σWL; see Appendix B for full details of the cal-
culation. When computed for metals under a small
orbital magnetic field, these corrections yield the
well-known experimental signatures of WL in mag-
netoresistance. In the present context, fortunately,
the calculation is simpler since band asymmetry is a
non-singular perturbation unlike an orbital magnetic
field. In particular, all momentum integrals here
can be elegantly done by contour methods once we
note that the integrals are dominated by regions near
the Fermi points and linearize the dispersion around
these points. Moreover, the dominant contribu-
tions to WL are captured by the retarded-advanced
Cooperon propagator since the phenomenon effec-
tively arises from interference between forward and
backward time evolution of the electron wavefunc-
tion. Under the linear approximation, we find the
retarded-retarded Cooperon propagator to exactly
vanish. Linearization also naturally introduces the
Fermi velocities vL,R into the calculation and lets us
package the band asymmetry into a single dimen-
sionless parameter, δv/2v = (vR − vL)/(vL + vR).
Finally, we resum the Dyson series for the Cooperon
propagator and calculate the polarization bubble for
conductivity to obtain σWL. Along the way, we
include Markovian inelastic scattering into the cal-
culation via a phenomenological phase decoherence
probability e−l/lϕ between elastic scattering events.
This yields the result, Eq. (1), for l ≪ lϕ and δv ≪ v.

The dependence of σWL on band asymmetry only
through δv indicates that the above phenomena ap-
pear in a wide range of physical systems. In Ap-
pendixA, we describe several systems with T - and
I- breaking perturbations, some of which are dy-
namically tunable and have seen experimental real-
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Figure 2. (a) A schematic representation of the 1D tight-
binding model with real NN and complex NNN hopping.
(b) Zigzag chain representation of the same model with
alternating flux passing through adjacent triangles. (c)
Graphical representation of the dispersion relation ϵk.
Symmetric cases (θ = 0 and θ = π) and the asymmetric
cases are represented by dashed and solid lines respec-
tively.

izations, where we expect a suppression of WL. In
the next section, we focus on a lattice model and
study localization in it numerically.

III. NUMERICS ON ZIGZAG CHAIN

To substantiate the analytics, we study localiza-
tion numerically on a tight-binding lattice model of
spinless fermions [Fig. 2] described by

H = −t
∑
i

c†i ci+1 − t′eiθ
∑
i

c†i ci+2 + h.c.

+
∑

(εi − µ)c†i ci, (2)

where ci and c†i are fermionic annihilation and cre-
ation operators at the lattice site ‘i’. Also, t, t′, θ,
µ, and εi represent the nearest neighbor (NN) hop-
ping strength, next-nearest neighbor (NNN) hop-
ping strength, T - and I-breaking hopping phase,
chemical potential, and the on-site disorder poten-
tial respectively. The dispersion in the absence of
disorder is
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Figure 3. PR saturation with time for a system with L = 5000. (a) Time evolution of PR up to t = 106 for various
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ϵk = −2[t cos(k) + t′ cos(2k + θ)]− µ, (3)

which shows band asymmetry for generic values of
θ ̸= 0, π [Fig. 2 (c)].

This model can also be viewed as a zigzag chain
with triangular plaquettes [Fig. 2 (b)]. The NN hop-
ping terms form the two sides of the triangles and
NNN ones are across the bases. These triangular
plaquettes have a total phase of ±θ associated with
them corresponding to the total phase picked up
by a particle while hopping anti-clockwise along the
edges. As we can see in Fig. 2 (b), adjacent triangles
have opposite fluxes passing through them. How-
ever, we note that despite having a zigzag chain rep-
resentation, the system has a 1-site unit cell andH is
invariant under unit translation, i→ i+1. Through-
out this paper, we consider t = −1, t′ = −0.5,
µ = −1, and draw εi from a uniform distribution
[−η, η].

As a first diagnostic tool, we calculate the partic-
ipation ratio (PR) defined as

PR =
1∑

i |ψi|4
, (4)

for a tight-binding wavefunction ψ. It is a measure of
the number of states a particle is distributed over.

For a particle localized on only one site, PR = 1,
while a particle evenly distributed over L sites has
PR = L. In general, a finite (vanishing) value of
PR/L as L → ∞ indicates delocalization (localiza-
tion).

To study localization in our system, we numeri-
cally calculate the spread of wavefunctions starting
from one that is localized on two neighboring sites,
|i⟩+|i+1⟩√

2
, |i⟩ being the state corresponding to the

particle localized on site ‘i’. We have chosen this
particular initial condition because its energy lies at
the Fermi level for µ = −1 and the effect of the sup-
pression of weak localization is seen prominently at
finite µ. We choose the sites in the middle of the
chain but the location does not matter as we are
using periodic boundary conditions in all our quan-
tum quench calculations. We evolve the system up
to t = 106 and perform a disorder average of 100
disorder realizations in most cases.

In Fig. 3 (a), we present the time evolution of PR
for different η and θ in a system with L = 5000. The
wavefunction of the particle starting in the middle
of the lattice spreads over the system initially, re-
sulting in an increase in PR with time. However,
the spread does not continue indefinitely and PR
saturates after some time. Increasing η reduces the
saturation value of PR, which is consistent with WL;
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Figure 4. Localization length (ξ) calculations using recursive Green’s function method up to L = 106. (a) Variation
of ξ with θ for a given η as a function of 1

L
. (b) Color plot showing the variation of ξ with θ and η. (c) ξ as a function

of θ for various η. (d) ξ as a function of 1
η2 for various θ. The dots represent the simulation data and the solid lines

represent the power law fit. Inset shows the slope approaching 1 as θ increases.

however, a non-zero θ suppresses this effect result-
ing in a higher PR saturation value compared to the
symmetric case [Fig 3 (c)]. We note that the sup-
pression of WL increases monotonically and rapidly
as θ increases away from 0 [Fig. 3 (b)]. We then per-
form finite size scaling of PR saturation values for
various (θ, η) pairs. For small L, the PR increases
linearly with L. As we argue below, this is because
the localization length ξ > L at these system sizes.
However, PR∞

L decreases as we go towards larger L
[Fig. 3 (d)], suggesting that 1D free-fermions systems
might localize in the thermodynamic limit at arbi-
trarily small disorders even in the presence of band
asymmetry.

The last statement is difficult to check using ex-
act diagonalization for very weak disorder as ξ can
be much larger than the system sizes this method
can access. Fortunately, iterative algorithms such as
transfer matrix [56] and recursive Green’s function
(RGF) method [57–59] exist which can access sig-
nificantly larger system sizes. Thus, we complement
our quench numerics by explicitly computing ξ us-
ing the RGF method. We explore various η and θ
and system sizes up to L = 106, and average over
100 realizations. The details of RGF method for our
system are presented in Appendix C.

We choose the Fermi energy for µ = −1 as be-

fore to see the suppression of WL prominently. In
Fig. 4 (a), we present the iterations of the RGF
method calculations as a function of system size. Af-
ter some fluctuations at small sizes, ξ clearly satu-
rates to a constant value that defines the localization
length in the thermodynamic limit for that partic-
ular (θ, η) pair. Fig. 4 (b) presents ξ as a function
of both η and θ while Fig. 4(c,d) show cuts through
this plot. For a particular η, ξ increases monotoni-
cally with increasing θ [Fig. 4 (c)] and decreases with
increasing η [Fig. 4 (d)]. We see in Fig. 4 (c) that
asymmetry increases ξ but shows signs of saturation
rather than divergence, suggesting that the system
is still localized.

In the regime of weak η and θ = 0, perturba-
tion theory [1, 60] predicts ξ ∝ 1

η2 . By employ-
ing similar arguments using Green function G(E) =´
k
(E − ϵk)

−1 for θ ̸= 0, we get

1

ξ
= −η

2

12

Ê

G
dG

dE
, (5)

where
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Ê

G
dG

dE
= −

Ê ˆ

k,k′

1

E − ϵk

1

(E − ϵk′)2
(6)

= −
ˆ

k,k′

Ak,k′ ln(E − ϵk) +
Bk,k′

E − ϵk′
, (7)

Provided the above integral is finite or properly regu-
larized, the scaling behaviour ξ ∝ 1

η2 holds true even
for finite values of θ. We have verified this relation-
ship between ξ and 1

η2 by performing a power law
fit (solid lines) on the simulation data points (dots)
[Fig. 4 (d)], where we observe the slope approaching
1 as θ increases [Fig. 4 (d) (inset)]. Since the scaling
ξ ∝ 1

η2 is well-known at θ = 0 in the thermodynamic
limit [1, 60], the deviation from this scaling is pre-
sumably due to finite size effects. This suggests that
finite size effects, surprisingly, are smaller for θ ̸= 0.

PR and ξ both measure the degree of localization
in a system, with PR quantifying the number of sites
the wavefunction is spread over and ξ being the char-
acteristic length scale over which the wave function
decays. Therefore, we observe consistent trends in
PR and ξ with varying η and θ. Notably, the RGF
method calculations yield large values of ξ for cer-
tain parameters, surpassing the system size used in
exact diagonalization. It is important to note here
that these calculations correspond to two different
regimes. The analytical result [Eq. (1)] is valid, and
the PR calculations [Fig. 3] are done in the regime
ξ > L where a finite system is delocalized, whereas
the RGF method calculations [Fig. 4] are performed
in the regime L > ξ which is smoothly connected
to the thermodynamic limit. The trends in these
numerical calculations align with the analytical re-
sult [Eq. (1)] that the conductivity increases due to
asymmetry, though a finite ξ [Fig. 4] implies that the
conductivity is 0 by definition in the thermodynamic
limit.

IV. EXPERIMENTS

The suppression of localization due to band asym-
metry can be probed in 1D metallic wires with
Rashba spin-orbit coupling using a magnetic field.
As described in Appendix A, the dispersion is sym-
metric in the absence of a magnetic field due to T .
A weak magnetic field will break T , turn the bands
asymmetric, and should enhance the conductivity.
We emphasize that the enhancement in 1D is due to
the Zeeman effect of the magnetic field, and is dis-
tinct from the usual suppression of WL due to the
Aharanov-Bohm effect of an orbital field in 2D, 3D
and even in 1D wires with a finite width [61, 62].

Concrete realizations of our model [Fig. 2] may
also be achieved in synthetic [63] and optical [64]
lattices, which offer high tunability of hopping am-
plitudes, disorder and fluxes using artificial gauge
fields. Moreover, unlike solids, these platforms nat-
urally lack phonons and uncontrolled disorder. With
increasing flux as illustrated in Fig. 2, we predict a
greater spread of an initially local wavefunction. In
particular, the localization length extracted from the
long-time density profiles should increase as the flux
increases. While the Aharanov-Bohm flux plays a
key role in this realization, its main role is to break
the k → −k symmetry of the bands. Indeed, the av-
erage flux is zero, which distinguishes it from usual
studies of WL in uniform magnetic fields in solid
state systems.

V. CONCLUSIONS

We have shown that in 1D metals where time re-
versal and inversion symmetry are broken, dubbed
band asymmetric metals, weak localization is sup-
pressed due to the asymmetry in velocities of left
and right movers. Heuristically, the formation of
perfect standing waves due to quantum interference
between time-reversed paths, leading to weak local-
ization, is disrupted due to this asymmetry. The
analytical results are validated by the numerical cal-
culations of the participation ratio and localization
length such that there is an increase in conductivity,
participation ratio, and localization length with in-
creasing band asymmetry, indicating a tendency to
delocalize. Metallic nanowires with strong spin-orbit
coupling and tunable synthetic and optical lattices
with controlled disorders may be convenient plat-
forms for experimentally investigating the impact of
band asymmetry on the localization properties of
disordered systems.
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Appendix A: Models and realizations

Here, we discuss three physical models with T - and I- breaking perturbations and calculate the asymmetry
in speeds of left and right movers to leading order.

1. Zigzag chain

Considering the zigzag chain dispersion relation [Eq. (3)], for the symmetric case (θ = 0, π) we find equal
(in magnitude) and opposite (in direction) Fermi momenta

±kF = ±


cos−1

(
−2t+

√
4t2−16t′(µ−2t′)

8t′

)
θ = 0

cos−1

(
2t−

√
4t2+16t′(µ+2t′)

8t′

)
θ = π

, (A1)

and equal Fermi speeds vR = −vL ≡ vF where

vF = |2t sin kF + 4t′ sin 2kF | . (A2)

The perturbative correction due to small asymmetry θ to the leading order breaks T and I symmetries to
give kR/L

F = kF ± δ, where

δ =
−2t′ cos kF
t+ 4t′ cos kF

θ, (A3)

and

vR/L = vF ∓ 4tt′ sin2 kF
t+ 4t′ cos kF

θ, (A4)

showing the difference in the magnitude of Fermi speeds, δv ∝ θ.

2. Cubic perturbation

For a continuum model with a cubic perturbation, the dispersion relation is given by

ϵcubic =
k2

2m
+ αk3 + βk4 − µ, (A5)

where αk3 is the T - and I- breaking perturbation and βk4 with β > 0 keeps ϵcubic positive in the limit
k → ±∞. We treat the quadratic and quartic terms in the dispersion as the unperturbed system and
calculate the correction due to the cubic term. Similar to the zigzag chain, the symmetric case (α = 0) has
equal and opposite Fermi momenta

±kF = ±

√
−1 +

√
1 + 16µβm2

4mβ
(A6)

and equal Fermi speeds

vF =
kF
m

+ 4βk3F (A7)

The cubic perturbation gives kR/L
F = kF ± δ, where δ = −αk2Fm to leading order, and

vR/L ≈ vF ± 2k2F

[
1− 6βk2F

m

]
α, (A8)

resulting in the difference in the magnitude of Fermi speeds, δv ∝ α.
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3. Spin-orbit coupling and magnetization

Here, we consider a wire along x with a Zeeman field By and Rashba spin-orbit coupling λ. Its Hamiltonian
is

H =
k2

2m
− µ+ λkσy − γµBBy

σy
2
, (A9)

where γ and µB are the gyromagnetic ratio and Bohr magneton, respectively, and σy = ±1 refers to spin
along y. For each value of σy, there exists a right mover and a left mover at the Fermi level, resulting in
a total of four Fermi points. For this system, there are two ways to obtain a symmetric band structure.
The first is by switching off the magnetic field (By = 0), which yields two pairs of equal and opposite Fermi
momenta:

|kF | = m

∣∣∣∣∣−σyλ±
√
λ2 +

2µ

m

∣∣∣∣∣ , (A10)

and equal Fermi speeds

vF =

√
λ2 +

2µ

m
. (A11)

In this case, band symmetry exists between a right-mover with spin σy and left-mover with spin −σy due
to T . The second way to obtain a symmetric dispersion is by suppressing spin-orbit coupling (λ = 0). This,
too, gives a pair of equal and opposite Fermi momenta for each value of σy due to I:

KF,σy
=
√
m(2µ+ γµBByσy), (A12)

and equal Fermi speeds

VF,σy
=

√
2µ+ γµBByσy

m
, (A13)

When both By and λ are non-zero, neither the Fermi points nor the velocities appear in equal and opposite
pairs. Their values now are,

kR/L
σy

= m

(
−σyλ+

√
λ2 +

2µ+ σyγµBBy

m

)
, (A14)

vR/L
σy

=

√
λ2 +

2µ+ σyγµBBy

m
, (A15)

Appendix B: Detailed calculation of σWL

1. Self-energy

We consider a disorder potential U(x) =
∑

n U(x − Rn) with ¯U(x) = 0 and ¯U(x)U(x′) = niu
2
0δ(x − x′)

where the bar denotes disorder-average and ni is the impurity density, and begin the analysis by considering
the effect of band asymmetry on the self-energy as a function of complex frequency Σ(z) [54, 55]:

Σ(z) = niu
2
0

π̂

−π

dk

2π

1

z − ϵk
, (B1)
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Analytically continuing z within a half-plane, z → ε+ i0+sgn[Im(z)] and absorbing ReΣ into a redefinition
of µ, we get a lifetime from the imaginary part:

1

τ(ε)
= 2πniu

2
0

ˆ

k

δ(ε− ϵk) (B2)

To simplify the analysis, let us assume there is a single left-mover at each ε with speed vL(ε) and a single
right-mover with speed vR(ε). Then,

1

τ(ε)
= niu

2
0

(
1

vL(ε)
+

1

vR(ε)

)
, (B3)

where substituting the density of states per unit length g(ε) = 1
2π

(
1

vL(ε) +
1

vR(ε)

)
, we get:

1

τ0(ε)
= 2πniu

2
0g(ε) (B4)

Clearly, the Born lifetime depends only on the mean inverse speed and is not affected qualitatively by the
velocity asymmetry. Nevertheless, it is convenient to separate the speeds into their average and differences,
vL = v − δv/2, vR = v + δv/2. This gives

1

τ0(ε)
=

2niu
2
0v(ε)

v2(ε)− δv2(ε)/4
(B5)

Here, GR(k, ε), GA(k, ε), and G(k, iνn) are the usual retarded, advanced, and Matsubara electron Green’s
functions.

2. Cooperon propagator

To determine the weak localization correction to the conductivity, σWL(q̃), we need to calculate the polar-
ization bubble due to the maximally crossed or Langer-Neal diagrams that capture constructive interference
between time-reversed paths [54, 55]. The bubble is given by

ΠWL(q̃) = −
ˆ

k̃,k̃′

vk+q/2vk′+q/2G(k̃)G(k̃ + q̃)C(k̃, k̃′, q̃)G(k̃′)G(k̃′ + q̃), (B6)

where k̃ ≡ (k, iνn), q̃ ≡ (q, iωn),
´
k̃
≡ T

∑
ikn

´
dk
2π , and C is the resummed Cooperon propagator that

is represented diagrammatically by a sum of parallel impurity lines [Fig. 1 (a,b)]. We use the notation
C(k̃, k̃′, q̃), where k̃ and k̃′ label the top incoming and outgoing lines while q̃ is the difference between the
frequency/momentum of the bottom outgoing line and the top incoming line.

Some simplifications occur or can be justifiably made while doing these calculations. Since we will eventu-
ally be interested in the dc limit, so we can set q = 0. Also, impurity lines after disorder-averaging behave like
interactions that conserve frequency, so the top and bottom fermion lines have frequencies iνn and iνn+ iωn

for every diagram in the Dyson series for C, or in short, C ∝ 1
T δνn,ν′

n
. Finally, for short-range impurities, the

scattering potential is momentum-independent. This ensures that C(k, k′, q = 0) only depends on k+k′ ≡ Q.
The Dyson series for C can now be resummed, and yields:

C(Q; iνn + iωn, iνn) =
n2iu

4
0

´
p
G(Q− p, iνn + iωn)G(p, iνn)

1− niu20
´
p
G(Q− p, iνn + iωn)G(p, iνn)

, (B7)

where we have written the frequency and momentum arguments separately in the Green’s functions.

3. Contour integrals

This calculation can be carried out in two steps.
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a. Frequency integral

Since two complex frequencies are involved, there are two branch cuts, at Imz = 0, and Imz = −iωn where
iνn → z. We first perform the frequency integration by summing over one of the two frequencies (iνn),
doing a Taylor expansion around the other (ω), and calculating the correction to the conductivity [54, 55],
σWL = − limω→0

1
ω ImΠWL(ω). This gives

σWL = −
ˆ

k,k′,ε

vkvk′f ′(ε)
[
GA(k, ε)GA(k′, ε)CRA(Q; ε, ε)−GR(k, ε)GR(k′, ε)CRR(Q; ε, ε)

]
GR(k′, ε)GR(k, ε)

(B8)
where

CRA(Q; ε, ε) = C(Q; ε+ i0+, ε− i0+) =
n2iu

4
0

´
p
GR(Q− p, ε)GA(p, ε)

1− niu20
´
p
GR(Q− p, ε)GA(p, ε)

=
niu

2
0ζ

RA(Q)

1− ζRA(Q)
(B9)

CRR(Q; ε, ε)CRR(Q) = C(Q; ε+ i0+, ε+ i0+) =
n2iu

4
0

´
p
GR(Q− p, ε)GR(p, ε)

1− niu20
´
p
GR(Q− p, ε)GR(p, ε)

=
niu

2
0ζ

RR(Q)

1− ζRR(Q)
(B10)

At T → 0, f ′(ε) → −δ(ε), so only the point ε = 0 contributes. Suppressing ε in the arguments of G and C,

σWL = 2π

ˆ

k,k′

vkvk′
[
GA(k)GA(k′)CRA(Q)−GR(k)GR(k′)CRR(Q)

]
GR(k′)GR(k) (B11)

where ε = 0 is understood and Q = k + k′.
To evaluate CRA(Q) and CRR(Q), we need to evaluate ζRA(Q) and ζRR(Q). To account for inelastic

scattering which leads to loss of phase coherence, we can phenomenologically modify ζ(Q) → e−l/lϕζ(Q),
where lϕ is the phase coherence length and l is the mean free path. Physically, this allows a probability
∝ el/lϕ for the particle to lose phase coherence between successive elastic scattering processes.

For symmetric metals, the dominant – in fact, divergent – contribution to CRA(Q) comes from Q = 0
because ζRA(Q = 0) turns out to be 1 if l/lϕ → 0. In contrast, the ‘RR’ terms are expected to be
subdominant.

b. Momentum integrals

After performing the frequency integral, we carry out the momentum integral for a general asymmetric
dispersion which results in an expression involving the Fermi momenta of the two movers. We have

ζRA(Q) = niu
2
0e

−l/lϕ

ˆ
dp

2π

1

ϵQ−p − i
2τ0

1

ϵp +
i

2τ0

(B12)

Now, there is no “special” value of Q where ϵp = ϵQ−p over all p. Nonetheless, the dominant contribution
will presumably come from terms where both p and Q − p are close to Fermi points, kRF and −kLF , so the
corresponding Q value is Q0 = kRF − kLF . We have adopted a sign convention where kRF , k

L
F > 0 are the

magnitudes of the Fermi momenta. Parametrizing (i) p = kRF +P , Q− p = −kLF −P , and (ii) p = −kLF +P ,
Q− p = kRF − P gives

ζRA(Q0) =
niu

2
0e

−l/lϕ

π

∞̂

−∞

dP
1

vLP − i
2τ0

1

vRP + i
2τ0

, (B13)

where we have extended the limits of the P -integral cutoffs to ±∞ to focus on the contribution from regions
near the Fermi points. In practice, the cutoffs will be determined by the non-linearity away from the Fermi
points. This integral can be easily done by contour methods and gives

ζRA(Q0) = e−l/lϕ

(
1− δv2

4v2

)
(B14)
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Clearly, ζRA
j ≈ 1 for δv ≪ v and l ≪ lϕ. Importantly, CRA(Q0) =

niu
2
0ζ

RA(Q0)
1−ζRA(Q0)

no longer diverges for
l/lϕ → 0 unlike the symmetric case.

Now, to calculate a more accurate result, we need to consider nearby momenta as well. For small deviations
from Q0, i.e., for Q = Q0 + ∆Q, the process can be repeated with (i) p = kRF + P + ∆Q/2, Q − p =
−kLF − P +∆Q/2, and (ii) p = −kLF + P +∆Q/2, Q− p = kRF − P +∆Q/2:

ζRA(Q0 +∆Q) =
ζRA(Q0)

1 +
[
el/lϕτ0vζRA(Q0)∆Q

]2 (B15)

CRA(Q0 +∆Q) =
v

2τ0

[
ζRA(Q0)

]2
[1− ζRA(Q0)] +

[
el/lϕτ0vζRA(Q0)∆Q

]2 (B16)

where we have used Eq. (B5) with ε = 0. Compared to a symmetric dispersion which has Q0 = 0, ζRA(Q0) =
1 and hence, a double pole in CRA at Q = 0, CRA(Q0 +∆Q) has poles away from the real axis at

∆Q = ±i
√
1− ζRA(Q0)

el/lϕτ0vζRA(Q0)
(B17)

Similarly,

ζRR(Q0 +∆Q) = e−l/lϕ
niu

2
0

2π
2Re

∞̂

−∞

dP

(
1

vL(P −∆Q/2) + i
2τ0

1

vR(P +∆Q/2) + i
2τ0

)
(B18)

Now, both poles are above the real axis, so completing the contour in the lower half-plane causes the integral
to vanish exactly. Thus, ζRR(Q0 +∆Q) = CRR(Q0 +∆Q) = 0.

4. Final result for σWL

With the expression obtained after frequency and momentum integral, we can calculate the correction to
conductivity by doing another momentum integral. Explicitly,

σWL = 2π

ˆ

k,k′

vkvk′
1

ϵ2k + 1
4τ2

0

1

ϵ2k′ + 1
4τ2

0

CRA(k + k′) (B19)

Again, we focus on pairs (k, k′) such that k + k′ = Q0 + ∆Q, i.e., k and k′ are near the left and right
Fermi points or vice versa. Parameterizing (i) k = kRF + K + ∆Q/2, k′ = −kLF − K + ∆Q/2, and (ii)
k = −kLF +K +∆Q/2, k′ = kRF −K +∆Q/2,

σWL = −2π

ˆ

K,∆Q

vLvR

[
1

v2R(K +∆Q/2)2 + 1
4τ2

0

1

v2L(K −∆Q/2)2 + 1
4τ2

0

+ (∆Q→ −∆Q)

]
CRA(Q0 +∆Q)

(B20)

For complex K, the above integral has simple poles at K = ±Q
2 ± i

2vL,Rτ0
. Completing the K-contour in,

say, the upper half plane gives

σWL = −2π

ˆ

∆Q

4τ30 ve
l/lϕζRA(Q0)

1 +
[
el/lϕτ0vζRA(Q0)∆Q

]2CRA(Q0 +∆Q) (B21)

Besides the two simple poles of CRA(Q0+∆Q) given by Eq. (B17), we now have another pair of simple poles
at ∆Q = ±i

[
el/lϕτ0vζ

RA(Q0)
]−1

. Integrating over a complex half-plane gives

σWL = −
2πτ0v

[
ζRA(Q0)

]2[√
1− ζRA(Q0) + 1− ζRA(Q0)

] (B22)

For large inelastic mean free path (l ≪ lϕ) and small asymmetry (|δv| ≪ v), using Eq. (B14) and reinstating
dimensionful factors of e2 and ℏ gives Eq. (1) in the main paper to leading orders in l/lϕ and δv/v.
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Appendix C: Recursive Green’s function method

Recursive Green’s function method is an iterative algorithm for calculating properties of the system such
as the localization length in the thermodynamic limit [57–59]. As the name suggests, this method calculates
the Green’s function recursively by using that of a smaller system size and growing the system layer-by-layer.

For a given Hamiltonian H(N) for a system size of N , the Green’s function at complex energy z, G(z,N)
is defined as its resolvent and for a real energy E, it is obtained by taking the imaginary part of z to zero.
The localization length (ξ) in terms of the matrix elements of the Green’s function is

4

ξ
= − lim

n→∞

1

n
ln
(
Tr|G1,n|2

)
, (C1)

where Gn,m ≡ ⟨n|G(z,m)|m⟩.
The quantity An = G−1

1,n−2, obeys the recursive relation [58]:

An+2 = (E −Hn+1)V
−1
n An+1 − V †

nVn−1An, (C2)

where Hn is the matrix representing the tight-binding Hamiltonian for the nth slice, and Vn is the matrix
that describes the particles hopping onto the (n + 1)th slice from the nth slice. For our model [Fig. 2], we
have,

Hn =

[
ϵi t
t ϵi+1

]
, Vn,n+1 =

[
t′e−iθ t
0 t′e−iθ

]
. (C3)

ξ can be calculated by iterating Eq. (C2) with some initial values for A0 and A1, which we choose as
A0 = 0, A1 = V0. However, Eq. (C2) suffers from a numerical instability in that the elements of An grow
exponentially for large n and hence require some regularization. Therefore, in every iteration we multiply
both sides of Eq. (C2) with [An+1]

−1. Simplifying this procedure, we get the regularized recursion relation
[58],

Ãn = (E −Hn+1)V
−1
n − V †

nV
−1
n−1Ã

−1
n−1, (C4)

that helps us resolve this issue and calculate ξ. We choose Ã0 = 1 and to calculate ξ, define a new matrix,

Bn =
Bn−1Ã

−1
n

bn
, (C5)

where bn = ||Bn|| is the Frobenius norm of Bn, and B0 = 1. We calculate Bn and store bn in every iteration
of Eq. (C4). The matrix Bn is very useful because

ln
(
Tr|G1,n|2

)
= 2 [ln(bn+1) + · · ·+ ln(b1)] , (C6)

which can then be substituted in Eq. (C1) to determine ξ.
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