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Quantum systems in 3+1-dimensions that are invariant under gauging a one-form symmetry
enjoy novel non-invertible duality symmetries encoded by topological defects. These symmetries
are renormalization group invariants which constrain dynamics. We show that such non-invertible
symmetries often forbid a symmetry-preserving vacuum state with a gapped spectrum. In particular,

we prove that a self-dual theory with Z(1)
N one-form symmetry is gapless or spontaneously breaks

the self-duality symmetry unless N = k2ℓ where −1 is a quadratic residue modulo ℓ. We also
extend these results to non-invertible symmetries arising from invariance under more general gauging
operations including e.g. triality symmetries. Along the way, we discover how duality defects in
symmetry protected topological phases have a hidden time-reversal symmetry that organizes their
basic properties. These non-invertible symmetries are realized in lattice gauge theories, which serve
to illustrate our results.
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I. INTRODUCTION

The study of renormalization group flows and phase
transitions has been a central topic in quantum field the-
ory for the past half century. A core conceptual idea is
the organization of phases of field theories by their global
symmetries and the realization of these symmetries on
the ground state. This is the Landau paradigm for states
of matter. In this paper, we explore this framework for
novel non-invertible duality symmetries.

In its modern incarnation, the idea of symmetry has
become intrinsically linked with topology. Each global
symmetry of a theory may be understood as a co-
dimension one defect operator (or as a domain wall in
a spontaneously broken phase). These symmetry defects
are topological: continuous deformations of their posi-
tions which do not cross other operators leave their cor-
relation functions invariant.

Over the last decade this idea has radically broadened
in its scope and applicability, encompassing higher-form
symmetry corresponding to invertible topological oper-
ators of general dimension [1], higher-group symmetries
which intertwine invertible topological operators of dif-
ferent dimensions [2–5], and finally non-invertible sym-
metries [3, 6–9]: the algebraic frontier where the defect
operators are characterized by general higher fusion cat-
egories [10–16].
In this work, we focus on non-invertible symmetries of

(3+1)d theories, with the basic goal of determining when
these symmetries are compatible with a unique vacuum
state and a gapped spectrum. As we describe below,
in general we will find that such realizations of duality
symmetries are impossible. These obstructions are sim-
ilar in spirit to the Lieb-Shultz-Mattis (LSM) theorem
[17] which implies that certain (1+1)d lattice models are
gapless or have degenerate ground states given the exis-
tence of certain types of symmetry. There are has been
a lot of work in extending the LSM theories to higher
dimension and understanding its relation to anomalies
[18–23]. Our results extend these ideas to the arena of
higher-dimensional field theories invariant under a novel
class of symmetries.

A. Symmetry in Duality Invariant Theories

Examples of (3+1)d systems invariant under non-
invertible symmetries may be constructed by starting
from the class of quantum field theories which have a

Z(1)
N one-form global symmetry. Given any such theory

Q, one can construct others by the following operations:

• S: Gauging the Z(1)
N symmetry by coupling to a dy-

namical ZN two-form gauge field b. The resulting

theory SQ, then has an emergent dual Z(1)
N global
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symmetry arising from the Wilson surface opera-
tors exp

(
2πi
N

∮
b
)
.

• T : Stacking the theory Q with a minimal invertible

theory for the Z(1)
N global symmetry. In terms of a

Z(1)
N background gauge field B this is expressed as{

exp
[
2πi
2N

∫
X
P(B)

]
N even ,

exp
[
2πi(N+1)

2N

∫
X
P(B)

]
N odd ,

(1)

where P(B) is a suitable quadratic function (see
equation (6) below).

As an action on the set of all field theories with Z(1)
N sym-

metry, S, and T realize a discrete analog of the modular
group and obey the equations:

S2 = C , (ST )3 = Y , (2)

where C is charge conjugation acting as B ↔ −B, and Y
represents stacking the original theory Q with an invert-
ible field theory depending only on the spacetime mani-
fold [1, 24].

By performing such a gauging procedure in half of
space-time with Dirichlet boundary conditions separating
the two halves, one obtains an interface separating two
theories Q and SQ (see Figure 1). As observed in [8, 9]
when the theory is self-dual under gauging i.e. Q ∼= SQ,
then this interface D is a topological symmetry opera-
tor in Q, a duality defect. Such duality defects gener-
alize Kramers-Wannier duality lines from (1+1)d QFTs
to this higher-dimensional setting. More generally, one
may also consider theories invariant under gauging oper-
ations built from composites of S and T . For instance,
invariance T−1S leads to a triality defect [13].

These defects generalize the ordinary concept of sym-
metry. In particular, their fusion is not defined by a
group. For instance, the duality defect D is invertible up
to a condensate of one-form symmetry defects. Specifi-
cally, wrapping the defect D on a three-manifold M and
colliding it with its CPT conjugate D one finds:

D(M)×D(M) ∼=
1

N

∑
S∈H2(M,ZN )

exp

(
2πi

N

∮
S

b

)
, (3)

For a complete list of the fusion rules for the duality and
triality defects see [13].

A wide variety of non-trivial examples realizing these
symmetries or related non-invertible defects have re-
cently been constructed in the literature. These include
[8, 9, 11–15, 25–63], which build on extensive previous
investigations of non-invertible symmetries in (1 + 1)d
theories [3, 7, 64–91].

B. Phases of Duality Invariant Field Theories

Like all notions of symmetry in quantum field theory,
the duality defects described above can be used to con-
strain dynamics. Below our main focus is on character-
izing the interplay between duality invariant phases and

FIG. 1. The definition of the duality defect D via gauging
in half of spacetime. The left region couples to a background

two-form gauge field BL associated to the Z(1)
N global symme-

try. In the right region this symmetry is gauged with dynami-

cal field b. The right region recovers the Z(1)
N global symmetry

through the Wilson surface operators of b which couple to the
background field BR.

the mass gap. We restrict our discussion below to theo-
ries where the long distance physics is Lorentz invariant.
Given any discrete symmetry in (3+1)d, one may al-

ways realize it in a spontaneously broken phase. Con-
cretely, this leads to multiple local vacua which are char-
acterized by the presence of distinct topological local op-
erators.1 For the duality symmetry discussed in this pa-
per, spontaneous symmetry breaking means that there
are (at least) two local vacua. The physics in a given
ground state is unconstrained, but the spontaneously
broken duality symmetry implies the presence of an-

other ground state which differs by gauging the Z(1)
N 1-

form symmetry. For instance, if the first ground state is
gapped without topological order, its partner state would
support a topological order defined by topological ZN

gauge theory. This possibility can occur at a first order
phase transition, where the duality defect forms the do-
main wall between different ground states. We discuss
spontaneous symmetry breaking further in appendix D,
and highlight its occurrence in ZN lattice gauge theory
for small N below.
In contrast with the scenario outlined above, symme-

try preserving phases are tightly constrained. In this sit-
uation there is a unique local topological operator (the
identity). Scale invariant phases arising at the end of
renormalization group flows can be classified as follows:

• Invertible Phases: The theory is gapped and invertible.
Its partition function is a phase and there is a unique
ground state on any spatial topology.

• Topologically Ordered Phases: The theory is gapped,
but described by a non-trivial topological quantum
field theory (TQFT). The ground state degeneracy de-
pends on the spatial manifold. In contrast to gapless
phases, there is an exponential decay of correlation
functions.

1 Here and below, by a local vacuum state we mean a ground state
on R3 or equivalently S3.
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SPT 2, 5, 10, 13, 17, 25, 26, 29, 34, 37, 41, 50, 53, 58, ...
TQFT 4, 8, 9, 16, 18, 20, 25, 32, 36, 40, 45, 49, 50, 52, ...

TABLE I. Possible N ≤ 60 for Z(1)
N symmetric gapped phases

invariant under gauging (S). The top line enumerates those
N where an SPT exists. These are integers where −1 is a
quadratic residue modulo N [9]. The second line enumerates
those N where a duality invariant non-trivial TQFT exits. In
this case N = k2ℓ, where −1 is a quadratic residue modulo ℓ.
A duality symmetry preserving theory with N that does not
appear above is gapless. These include N = 3, 6, 7, 11, 12, ....

• Gapless Phases: The mass gap vanishes and the theory
is a free or interacting conformal field theory, with non-
trivial power law correlation functions.

In the case of invertible symmetry (characterized by
groups), the obstruction to the existence of an invertible
realization is the ’t Hooft anomaly. However, anomalies
can also obstruct the existence of a topologically ordered
phase. This phenomenon is referred to as symmetry en-
forced gaplessness explored in condensed matter systems
in [92–96], and through the lens of quantum field theory
in [97–104].

We generalize these considerations to (3+1)d duality
invariant field theories by providing the first examples
of TQFTs which are duality invariant without sponta-
neous symmetry breaking, and classifying all possible N
for which this can occur. This extends parallel results in
(1+1)d [7] as well as the work of [9, 13], where duality
invariant (3+1)d one-form symmetry protected topologi-
cal (SPT) phases were classified. For the case of theories
invariant under S with the duality defect D, our findings
are enumerated in Table I.

Our basic method is to generalize the analysis of
[101, 102] to the setting of non-invertible symmetries.

The key idea is to examine the Z(1)
N one-form symmetry

action on line operators. A distinguished role is played

by the subgroup of Z(1)
N that does not act faithfully, i.e.

the subgroup of the symmetry with no associated charged
objects.2 In a gapped phase, these operators admit topo-
logical boundary conditions. If we further assume that
there is no spontaneous symmetry breaking of the dual-
ity invariance, the effect of these unfaithfully acting sur-
face operators can be reduced to insertions of the iden-
tity operator. Enforcing duality invariance then leads to
constraints on N as elucidated in theorem 5. We also
provide a converse to our constraints on N by explicitly
constructing duality invariant TQFTs for all allowed val-
ues of N , generalizing the results of [103] to the setting
of non-invertible symmetries.

2 Note that a one form symmetry which acts unfaithfully by link-
ing with line operators may still have non-trivial correlation func-
tions for instance via triple linking or other more intricate con-
figurations [105, 106].

Beyond simply reproducing the analysis of [9] for SPT
phases, our analysis of duality defects also reveals their
physical properties. In particular, we show that for a
duality invariant SPT phase the world-volume theory of
the defect D is a minimal Abelian TQFT [107] with a T
invariant spectrum of anyons as analyzed in [108]. This
is analogous to the analysis presented in [109–111], where
Z2 symmetry defects were shown to admit T symmetry
with a map relating the bulk and defect anomalies.
Finally, we illustrate our results by considering ZN lat-

tice gauge theories. In these theories, topological phase
transitions for Z2,Z3 and Z4 occur by spontaneous break-
ing of non-invertible self-duality, while for larger N the
duality invariant point is gapless. Thus, these first order
phase transitions for small N can be viewed as part of
a generalized Landau paradigm by incorporating non-
invertible symmetries. Several appendices summarize
more technical material about quadratic Gauss sums,
partition functions of topological two-form gauge theo-
ries, details of our argument classifying duality invariant
TQFTs, and comments about models that spontaneously
break duality symmetry.

II. INVERTIBLE PHASES

In this section, we classify invertible field theories
with duality symmetry which are invariant under com-
binations of the gauging operations S and T following
[9, 13]. We also highlight how self-duality leads to an
anti-unitary time-reversal symmetry acting on the dual-
ity defect D, and comment on other physical aspects of
the resulting symmetry defects.
For simplicity, throughout this paper we will work on

a smooth simply-connected Euclidean spacetime four-
manifold X. The manifold X has the bi-linear inter-
section pairing in the middle dimension

I : H2(X;Z)×H2(X;Z) → Z , (4)

defined by the cup product. Associated to I we intro-
duce a quadratic function P(B) where B ∈ H2(X;ZN )
is a background field for the one-form symmetry and P
depends on the parity of N as:

P(B) =

{
Pontryagin square ∈ H4(X,Z2N ) N even ,

B ∪B ∈ H4(X,ZN ) N odd .

(5)

A. Self-Dual SPT Phases

The most general bosonic SPT phase for a Z(1)
N one-

form symmetry can be expressed as [112]:

Z[B] = exp

[∫
X

2πip

2N
P(B)

]
. (6)
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Here the integer p characterizes the phase and is iden-
tified as p ∼ p + 2N . For N even there are thus 2N
distinct phases, while for N odd, p is further constrained
to be even leading to N distinct phases.
The phase (6) enjoys duality symmetry if it is invari-

ant under the gauging operation S. This can be directly
checked by computing the partition function after gaug-
ing:3

SZ[B] = λ−1
N

∑
b∈H2(X,ZN )

Z[b] exp

[∫
X

2πi

N
b ∪B

]
, (7)

where λN =
√
|H2(X,ZN )|. The right-hand side above

is in general a non-invertible TQFT, and hence can only
be equivalent to (6) in the special case where all operators
are trivialized by the equations of motion for b, given by

pb+B = 0 mod N . (8)

If p is co-prime to N , the above equation may be solved
for b restricting it to be a non-fluctuating classical back-
ground B. Thus only in this case can gauging the SPT
(6) result in an invertible theory. From now on we assume
this condition. Substituting (8) back into the action (7)
leads to4

SZ[B] = G(I, p,N) exp

[
−
∫
X

2πi (p)
−1
γ(N)N

2N
P (B)

]
.

(9)
In the above, G(I, p,N) is an overall B independent
phase defined by a Gauss sum for the intersection form
I (see appendix A):

G(I, p,N) =
1

N rk(I)/2

N−1∑
x=0

exp

(
2πip

2N
xT Ix

)
, (10)

where rk(I) is the rank of I.
Let us focus first on the B dependence of (9). We see

that the gauged action has a quadratic dependence on B
with a map on p:

p 7→ −(p)−1
γ(N)N , γ(N) ≡

{
1 odd N

2 even N
, (11)

where the notation (α)−1
β denotes the inverse of α in the

ring Zβ for co-prime integers α and β. Invariance under
the S transformation therefore means that in the discrete
group classifying the SPT, this map is the identity.

3 In (7) one may also consider a more general bi-character by mod-
ifying the the weight of the b ∪ B term by an integer ℓ which is
co-prime to N . This does not modify the conclusions below.

4 When N is odd, we pick an even (p)−1
N so that the action is well-

defined. If (p)−1
N is odd, we can redefine it by a shift of N to

obtain an even (p)−1
N .

Thus, a duality invariant SPT can exist only if there
are solutions to the modular quadratic equation:

p2 = −1 mod γ(N)N . (12)

Moreover, when solutions to the above exist it is straight-
forward to check that the overall phase defined by the
Gauss sum in (9) is unity (see (A10).) As is well known,
the existence of solutions to (12) depends on the prime
factorization of N . Thus, we reproduce the result of [9]:

Theorem 1. There exist invertible bosonic phases real-
izing the duality defect D, i.e. invariant under the gaug-
ing operation S if and only if N is odd and a product of
Pythagorean primes:

N = pa1
1 pa2

2 . . . pan
n , ∀i pi = 1 mod 4 . (13)

For fermionic or equivalently spin theories, we can fur-
ther refine the result above. When N is even, using the
fact that,

P(B) = B ∪ w2(X) mod 2 , (14)

we deduce that on a spin manifold, P(B) is also even
and hence there is an identification p ∼ p + N . Then,
the same steps as above imply that we have to solve the
quadratic residue equation modulo N for both odd and
even N

p2 = −1 mod N . (15)

Moreover in this case the overall phase defined by the
Gauss sum is trivial due to Rokhlin’s theorem (see below
(A9)). Therefore we again reproduce the result of [9]:

Theorem 2. There exist invertible spin phases invariant
under the gauging operation S if and only if N a product
of Pythagorean primes up to a single factor of two.

B. Physics of the Duality Defect

It is instructive to analyze the physics of the duality de-
fect D. We focus below on the bosonic case, though anal-
ogous considerations hold for duality defects of fermionic
SPTs.5

With general bulk dynamics, the symmetry defect has

a Z(1)
N × Z(1)

N symmetry which arises from bulk one-form
symmetry defects ending on the duality defect (see Fig-
ure 2). This ending is possible because the duality defect
is defined by Dirichlet boundary conditions for the dy-
namical gauge field (see Figure 1).
Physically, the one-form symmetries of D define

Abelian anyons within D. The self-braiding of each Z(1)
N

5 This subsection is a deep dive into the symmetries of the duality
defect, and might be omitted on a first reading.
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FIG. 2. Z(1)
N ×Z(1)

N symmetry of D arises from ending of one-
form symmetry defects from Q (purple) and SQ (green).

factor is theory dependent, but the braiding between the

generators of each Z(1)
N factor is fixed by the pairing of b

and B in the gauging defining the defect (See Figure 1).6

When the bulk dynamics are invertible the theory on
the duality defect is a well-defined (2+1)d TQFT and
the bulk SPT phase on the left and the right specify the
anomaly of this system. Moreover the construction of the
defect by gauging in a half space identifies the (2+1)d
defect theory as a minimal Abelian TQFT AN,p [107]
(see Figure 3). Such a theory has a spectrum of lines
which are exactly given by the abelian anyons defining
the one-form symmetry.

FIG. 3. The duality defect D in a bulk SPT phase. The defect
D is a well-defined (2+1)d TQFT which is identified with a
minimal abelian TQFT.

Note that in this special case of invertible bulk dy-
namics, the duality defect theory AN,p has a single inde-

pendent Z(1)
N symmetry generated by an abelian anyon

a. Thus, the left and right bulk symmetry surfaces must
each end on these abelian anyons but with a possible dif-
ference in the choice of generating line. To deduce the
relationship between left and right, we consider the equa-
tion of motion (8) and interpret B and b as the fields on
the wall sourcing the right and left symmetries. When
(8) is not solved the partition function of the total system

6 This generalizes an analogous statement in (1+1)d theories with
Tambara-Yamagami fusion category symmetry where the bi-
character encodes the anomaly between left and right symmetries
of the defect [7, 82, 113].

including the defect vanishes. This means that the quan-
tity appearing in the equations of motion sources charged
abelian anyons wrapping non-trivial cycles in the defect.
Correspondingly, when the equation of motions hold no
charged lines are inserted. Hence, the left and right sur-
faces end on the lines:

Left : a Right : a(p)
−1
N . (16)

This relation between the left and the right symmetries
(16) may be further understood by observing that in an
invertible phase, the duality defect D has an antiunitary
time-reversal symmetry, T. Note that this is true even
though for general p the bulk SPT defined in (6) does
not have T symmetry.
To argue for this conclusion we proceed analogously to

[109–111]. Consider the theories Q and SQ separated by
the duality defect as in Figure 4. A rotation by π along
an axis in the defect, which we denote by Rπ, swaps the
theories Q and SQ. By composing this operation with
gauging of the one-form symmetry in all of space-time
i.e. S we obtain a symmetry T

T ≡ S ·Rπ . (17)

By construction this leaves the boundary conditions in-
variant and therefore acts on the duality defect. More-
over since it reverses the defect orientation it is a time-
reversal symmetry.7

We can also deduce the unitary symmetry T2 from the
fusion algebra of the duality defect (3). Within the wall
the T symmetry defect is realized by intersecting D with
itself. Since this is a time-reversal symmetry, at each
such intersection the orientations of the defects reverse
(see Figure 5). If we now collide two such junctions we
obtain the fusion of D×D resulting in a condensation of
one-form symmetry surfaces. Such surfaces come in two
varieties:

• Surfaces parallel to the vertical duality defect D
in Figure 5. These surfaces are simply absorbed
by the duality defect. Indeed, D is characterized
by Dirichlet boundary conditions (see Figure 3),
and therefore absorbs one-form symmetry defects
contained completely within it.

• One-form symmetry surfaces that intersect the ver-
tical duality defect D in Figure 5. These are non-
trivial and give rise to abelian anyons within the
duality defect. Taking into account the identifica-
tion of generators, we see that a generator for the
bulk one-form symmetry yields an abelian anyon

a1+(p)−1
N within D.

7 More generally when the bulk dynamics is not invertible, we
expect that the duality defect D still enjoys an antiunitary non-
invertible symmetry analogous to those recently discussed in [38].
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FIG. 4. T symmetry of the duality defect separating phases Q and SQ. Rπ combined with gauging of one-form symmetry in all
of spacetime maps the boundary conditions to themselves, but reverses the orientation of D. Hence this composite operation
defines a time-reversal symmetry T of the duality defect worldvolume.

FIG. 5. The T symmetry of the duality defect D is realized
by intersecting duality defects (shown as black dots). At each
such intersection the duality defect orientations reverse. Col-
liding two such junctions leads to the bulk fusion algebra of D
with its orientation reversal D resulting in a condensation of
one-form symmetry surfaces shown in magenta. Within the
duality defect worldvolume, this restricts to a condensation
of abelian anyons that produces the charge conjugation sym-
metry C.

From these observations, we deduce that the operator
T2 in D is defined by a condensate of abelian anyons
[11]. For instance taking the surface supporting T to be
a torus M we find:

T2 =
1

N

∑
γ∈H1(M,ZN )

a1+(p)−1
N (γ) . (18)

Although condensation operators like the one appearing
above are frequently non-invertible, in fact in this special
case the condensation is invertible and is identified with
the charge conjugation symmetry C that maps ar to a−r.
To demonstrate this we note that as a consequence

of (12), when N is odd, 1 + (p)−1
N is co-prime to N .8

Therefore, the condensation defect above is equivalent to
a sum over all abelian anyons:

T2 =
1

N

∑
γ∈H1(M,ZN )

a(γ) . (19)

Now we follow [11] and evaluate the action of T2 on a line
as. Let α, β ∈ H1(M,Z) denote a basis for the one-cycles

8 Using (12), we have (1 + (p)−1
N )(2)−1

N (1− (p)−1
N ) = 1 mod N for

odd N and therefore 1 + (p)−1
N is co-prime to N .

on the torus with intersection form α ∩ β = 1. We can
split a general line on a cycle γ as:

a(xα+ yβ) = exp

(
2πipxy

2N

)
ay(β)ax(α) , (20)

where x, y ∈ Z, and above we have used that the spin of
the line ar is fixed as:

h(ar) =
pr2

2N
. (21)

We consider a geometry where the anyon as wraps the β
cycle at the center of the solid torus whose boundary is
the support M of T2. Then the lines wrapping α braid
with the central anyon, while those wrapping β fuse with
it. Whence using (20):

T2 (as) =
1

N

N−1∑
x,y=0

exp

(
2πipxy

2N

)
ay(β)ax(α)as(β) ,

=
1

N

N−1∑
x,y=0

exp

(
2πipxy

2N
+

2πipxs

N

)(
ay+s

)
.(22)

The sum above over x now enforces

py

2
+ ps = 0 , mod N . (23)

And since N is odd and p and N are co-prime, we can
solve for y to find simply:

T2 (as) = a−s . (24)

This is exactly the expected action of charge conjugation
on lines. In summary we have derived the algebra:9

T2 = C . (25)

The symmetry T that we have identified provides an-
other explanation of several of the features of the duality
defect. As is evident from Figure 4, T exchanges the left
and right bulk one-form symmetries. Since these couple

9 For evenN , charge conjugation is instead the condensation defect
generated by a2. This matches (18) because (15) implies that
(1 + (p)−1

N )(1 − (p)−1
N ) = 2 mod N and therefore 1 + (p)−1

N is

even and (1 + (p)−1
N )/2 is co-prime to N/2.
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differently to the defect as in (16), we conclude that T
acts on the anyons of the defect theory AN,p as:

T(a) = a(p)
−1
N . (26)

We can see that this is a consistent action of time-reversal
by recalling that the spin of the anyon ar in (21). Indeed,
T changes the sign of the spin precisely when p obeys p2 =
−1 mod N . This reproduces the condition (8) necessary
for the existence of a duality invariant SPT. However,
now we see that it is a consequence of the T symmetry
of the (2+1)d duality defect TQFT in agreement with
analysis of [108].

Finally, let us comment on the chiral central charge c
of the duality defect. This may be computed by summing
over the spins of the distinct lines (21). Recalling that
pN is even (and hence AN,p is bosonic), the distinct lines
correspond to ar for r = {0, . . . , N − 1}. This yields:

exp

(
2πic

8

)
=

1√
N

N−1∑
r=0

e
2πip
2N r2 = G([+1], p,N) , (27)

where the right-hand side is the quadratic Gauss sum for
the intersection form of CP2. Pragmatically, this is also
the same phase factor that we encounter in (9) when we
integrate out the dynamical field b.
As remarked above (and proven in (A10)), when the

conditions for the existence of the duality defect are met,
namely when p2 = −1 mod N for odd N , the Gauss sum
above is trivial and hence the chiral central charge van-
ishes modulo eight. In particular, this implies that up to
possibly stacking with a properly quantized bosonic grav-
itational Chern-Simons term, we deduce that the chiral
central charge of the duality defect AN,p vanishes.
In fact, the condition c = 0 is also compatible with

the time-reversal invariance of the duality defect, since T
relates left and right moving chiral edge modes. Thus we
see how the T symmetry of the duality defect explains
and unifies many of its physical properties.

C. General Duality Invariant Invertible Phases

It is straightforward to extend the previous analysis to
invertible phases invariant under compositions of gauging
(S) and stacking (T ) operations defined in section IA.

Let us now consider the composite operation T−p′
S. In

particular, the case p′ = ±1 or p′ = ±(1 + N), for even
or odd N respectively give rise to the existence of triality
defects studied in [13].

Acting on the general invertible theory defined in (6),

the operation T−p′
S leads to the action

(T−p′
SZ)[B]

= λ−1
N

∑
b∈H2(X,ZN )

Z[b] exp

[∫
X

2πi

N
b ∪B − 2πip′

2N
P(B)

]
.

(28)

Using the equations of motion for b, we can follow the
same steps that we did to derive (9) to obtain

(T−p′
SZ)[B]

= G(I, p,N) exp

−∫
X

2πi
(
p′ + (p)−1

γ(N)N

)
2N

P (B)

 ,

(29)

If the theory T−p′
SQ is equivalent to the original theory

Q (up to a gravitational counter-term), then the depen-
dence on B must match. Imposing this condition leads
to the following theorem [13]:

Theorem 3. There exists a bosonic SPT that is invari-
ant under T−p′

S gauging a Z(1)
N one-form symmetry, if

and only if there exists a solution p to

p(p+ p′) = −1 mod γ(N)N . (30)

Analogously, for spin theories we have [13]:

Theorem 4. There exists a spin SPT that is invariant

under T−p′
S gauging a Z(1)

N one-form symmetry, if and
only if there exists a solution p to

p(p+ p′) = −1 mod N . (31)

We now restrict our attention to triality invariant
SPTs. For even N , this means that the SPT is invariant

under T−1S gauging the Z(1)
N one-form symmetry. Such

a (spin) SPT does not exist because there is no solution
to the conditions (30) or (31) when p′ = 1 and N is even.
For odd N , p′ = −(1 +N) and such SPTs may exist.10

As in the case of SPTs invariant under the S opera-
tion, it is instructive to analyze the physics on the trial-
ity defect defined by doing T−(1+N)S gauging in half of
the spacetime. The theory on the triality defect is the
minimal Abelian TQFTs AN,p×AN,N+1. The first min-
imal TQFT comes from S gauging the SPT in half of the
spacetime while the second one is introduced to cancel
the anomaly inflow from the T−(1+N) operation on the
right. We can evaluate the chiral central charge of the
TQFT on the defect by summing over lines as in (27)
yielding:

exp

(
2πic

8

)
= G([+1], p,N)G([+1], 1 +N,N) . (32)

The first Gauss sum is the same phase factor that shows
up in (29). The Gauss sum in (32) does not equal to
unity in general but it is independent of the integer p
characterizing the triality invariant SPT. Using (A13),
we get

exp

(
2πic

8

)
=

{
1 N ≡ 1 mod 4 ,

−1 N ≡ 3 mod 4 .
(33)

10 Inspecting equation (30), we deduce that solutions exist if and
only if -3 is a quadratic residue modulo N [13].



8

Since the Gauss sum is always an eighth root of unity
the chiral central charge of the symmetry defect may be
cancelled by stacking with a well quantized spinC gravi-
tational Chern-Simons term.

Therefore, for triality invariant SPT phases, the sym-
metry defects implementing the gauging operation have
a vanishing chiral central charge modulo the addition of
invertible (2+1)d gravitational theories.

III. TOPOLOGICALLY ORDERED PHASES

In this section, we construct examples of (3+1)d du-
ality symmetry preserving TQFTs which are invariant
under combinations of S and T gauging operations of a

Z(1)
N one-form symmetry. Without loss of generality, we

consider only TQFTs that have a unique local vacuum.
After these explicit constructions, we prove that for val-
ues of N that are not realized by these explicit examples,
such TQFTs do not exist.

A. Examples

As a starting example, consider the case when N = k2

is a perfect square. Then, a Zk gauge theory is invariant

under gauging a Z(1)
N one-form symmetry that couples to

the background gauge field B as

Z[B] = λ−1
k

∑
b∈H2(X,Zk)

exp

[
2πi

k

∫
X

b ∪B

]
= λk δ(B mod k) ,

(34)

where λk =
√
|H2(X,Zk)|. The Z(1)

N one-form symmetry,

in particular its Z(1)
k subgroup, does not act faithfully on

line operators. The unfaithful Z(1)
k symmetry operators

Ug link trivially with all line operators. Consequently,
line operators transform with a N/k = kth root of unity,

instead of a Nth root of unity, under the Z(1)
N one-form

symmetry.

It is straightforward to check that gauging the Z(1)
N

one-form symmetry leads to the same partition function
as the original Zk gauge theory. Using the half space
gauging construction, we find that the duality defect fac-
torizes into the product of Dirichlet boundary conditions
for the Zk two-form gauge fields on the two sides.
More generally, consider the case when N = k2ℓ for

some integers k and ℓ, and -1 is a quadratic residue of ℓ.
Then, there exists a (spin) TQFT that is invariant under

gauging a Z(1)
N one-form symmetry. Let p be a solution

to p2 + 1 = 0 mod ℓ. In particular, this implies that p
and ℓ are co-prime.

Let us first consider the case when ℓ is odd. Then
solutions exist if and only if ℓ is a product of Pythagorean
primes. The TQFT invariant under gauging is a Zk gauge

theory stacked with a Z(1)
N one-form SPT described by the

following partition function11

Z[B]

= λ−1
k

∑
b∈H2(X,Zk)

exp

[
2πi

∫
X

(
p

2N
P(B) +

1

k
b ∪B

)]

= λkδ(B mod k) exp

[
2πip

2ℓ

∫
X

P
(
B

k

)]
.

(35)

Gauging the Z(1)
N one-form symmetry, we obtain a parti-

tion function identical to (35)

SZ[B]

= λ−1
kℓ

∑
b∈H2(X,Zkℓ)

exp

[
2πi

∫
X

(
p

2ℓ
P(b) +

1

kℓ
b ∪B

)]

= λkδ(B mod k)G(I, p, ℓ) exp

[
−
2πi(p)−1

ℓ

2ℓ

∫
X

P
(
B

k

)]
= λkδ(B mod k) exp

[
2πip

2ℓ

∫
X

P
(
B

k

)]
= Z[B] .

(36)
In the second equality, we used (9) for the odd ℓ case
since p and ℓ are co-prime, and we pick an even (p)−1

ℓ .
In the last equality, we simplified the expression using
the fact that G(I, p, ℓ) = 1 when p2 + 1 = 0 mod ℓ and
and (p)−1

ℓ /2 = −p/2 mod ℓ. Note that the TQFT (35),
as a bosonic TQFT, is already invariant under gauging.
Now consider the case when ℓ is even. Then solutions

exist if ℓ/2 is odd and ℓ/2 is a product of Pythagorean
primes. Again, let us consider the theory (35). Using (9)
for the even ℓ case, gauging leads to

SZ[B] =λkδ(B mod k)G(I, p, ℓ)

× exp

[
−
2πi(p)−1

2ℓ

2ℓ

∫
X

P
(
B

k

)]
.

(37)

As a spin TQFT, the theory is exactly invariant un-

der gauging the Z(1)
N one-form symmetry since (p)−1

2ℓ =
−p mod ℓ and G(I, p, ℓ) = 1 on spin manifolds. How-
ever, as a bosonic TQFT, the theory cannot be in-
variant under gauging because there is no solution to
(p)−1

2ℓ = −p mod 2ℓ.

B. Constraints on TQFTs

So far, we have explicitly constructed (spin) TQFTs
that have a unique local vacuum and are invariant under

gauging a Z(1)
N one-form symmetry for some particular

N . We now prove that such TQFTs do not exist for
the values of N that have not been realized in the last
subsection. This means that

11 For the expressions to be well-defined, we pick an even solution
to p2 +1 = 0 mod ℓ. If the solution p is odd, we can get an even
solution by redefining p to p+ ℓ.



9

Theorem 5. There exists a (spin) TQFT, that has a
unique local vacuum and is invariant under gauging a

Z(1)
N one-form symmetry up to a gravitational countert-

erm eiΩ(X), if and only if N = k2ℓ for some integers k
and ℓ and −1 is a quadratic residue of ℓ (or equivalently
ℓ is a product of Pythagorean primes up to a factor of
two). If such a (spin) TQFT exists, eiΩ(X) = 1 for every
simply-connected smooth spin 4-manifold X.

We now present a brief sketch of the proof, while the
details are fleshed out in appendix C.

In general, the Z(1)
N one-form symmetry can act un-

faithfully on line operators i.e. some symmetry surface
operators link trivially with all line operators. Denote

the unfaithful subgroup by Z(1)
M . Then, we have N = Mk

for some integers M and k. If the theory is a TQFT,

after gauging the Z(1)
N one-form symmetry, the Ẑ(1)

k sub-

group of the dual Ẑ(1)
N one-form symmetry necessarily

acts unfaithfully on line operators because their symme-
try surface operators admit topological boundary condi-
tions provided by the topological line operators charged

under the original Z(1)
N one-form symmetry. Using these

topological boundary conditions, we can unlink the dual

Ẑ(1)
k symmetry operators and any line operator. Since

the TQFT is invariant under gauging the Z(1)
N one-form

symmetry, the unfaithful subgroup of the dual Ẑ(1)
N one-

form symmetry should be Ẑ(1)
M , which should include the

unfaithful Ẑ(1)
k one-form symmetry as a subgroup. This

implies that M is divisible by k and N = k2ℓ for some
integer ℓ.

In a TQFT, symmetry operators of an unfaithful one-
form symmetry admit topological boundary conditions
[101]. Since these operators admit topological boundary
conditions, they can break without changing any corre-
lation functions.

In our case, this means that we can cut open the sym-

metry surface operators of the unfaithful Z(1)
M one-form

symmetry and shrink them to local operators. Con-
sider placing the TQFT on X = S2 × S2 and turn-
ing on the background gauge field B = (B1, B2) ∈
H2(S2 × S2,ZM ) = Z2

M for the unfaithful Z(1)
M one-form

symmetry. By shrinking the symmetry operators to local
operators at their intersections, we argue that the parti-
tion function takes the form

Z[B1, B2] = Z[0, 0] exp

(
2πip

M
B1B2

)
. (38)

The partition function Z[0, 0] on S2 × S2 is a positive
number because of unitarity [101].

Using the fact that the TQFT is invariant under gaug-

ing the Z(1)
N one-form symmetry (upto a gravitational

counterterm), we show that the partition function (38)

obeys a constraint

1

kℓ

kℓ∑
b1,2=1

Z[b1, b2] exp

(
2πi

ℓ
(b1C2 + b2C1)

)

=
1

k

k∑
b1,2=1

Z[ℓb1 + C1, ℓb2 + C2]× eiΩ(S2×S2) ,

(39)

where C = (C1, C2) ∈ H2(S2 × S2,Zℓ) = Z2
ℓ and

eiΩ(S2×S2) is a phase independent of (C1, C2). First line
of the equality is the partition function of the TQFT af-

ter gauging the unfaithful Z(1)
M one-form symmetry with

the dual Z̃(1)
ℓ background gauge field C turned on. The

same partition function can also be obtained from the

Z(1)
N -gauged theory by gauging the Ẑ(1)

k subgroup of the

dual Ẑ(1)
N one-form symmetry with the background gauge

field C for the dual Ẑ(1)
M /Ẑ(1)

k one-form symmetry turned

on. Since the Z(1)
N -gauged TQFT share the same parti-

tion function as the original TQFT up to a gravitation
counterterm eiΩ(X),

Z[B] = (SZ)[B]e−iΩ(X) , (40)

we have the equality (39).
In the end, the partition function (38) together with

the constraint (39) implies that −1 is a quadratic residue

of ℓ. We also learned that eiΩ(S2×S2) = 1. Similar rea-
soning holds on every simply-connected smooth spin 4-
manifold X. This leads to the same constraint on ℓ and
gives eiΩ(X) = 1. This concludes the proof for theorem
5.

C. General Duality Invariant TQFTs

It is straightforward to extend the results to more gen-
eral non-invertible symmetries associated to the invari-
ance of T−p′

S gauging, including the triality symmetry.
Generalizing the argument used in the proof of theorem

5, in appendix C we prove the following theorem:

Theorem 6. There exists a (spin) TQFT, that has a

unique local vacuum and is invariant under T−p′
S gaug-

ing a Z(1)
N one-form symmetry up to a gravitational coun-

terterm eiΩ(X), if and only if N = k2ℓ for some integers
k and ℓ and there exists a solution p to

p(p+ p′) + 1 = 0 mod ℓ . (41)

If such a (spin) TQFT exists, eiΩ(X) = 1 for every
simply-connected smooth spin 4-manifold X.

When N obeys the condition, we can explicitly con-
struct examples of spin TQFTs that are invariant under

T−p′
S gauging of the Z(1)

N one-form symmetry. This spin

TQFT is a Zk gauge theory stacked with a Z(1)
N one-

form SPT as in (35), where the parameter p is given by
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the solution of (41). Using (41), it is straightforward to
check that the theory as a spin TQFT is invariant under

gauging the Z(1)
N one-form symmetry and eiΩ(X) = 1 on

simply-connected smooth spin 4-manifold X.

IV. LATTICE EXAMPLES

As an application of the analysis of the previous sec-
tion, let us study (3+1)d ZN lattice gauge theory in the
Villain formulation [114], which is defined on a 4d Eu-
clidean hyper-cube lattice. The action is

SQ =
1

2g2

∑
plaquette

(
∆m(1) −Nn(2)

)2
, (42)

where m(1) is the integer one-form gauge field on each
link, while n(2) is the integer two-form gauge field on each
plaquette. There is an integer valued gauge redundancy

m(1) → m(1) +∆k(0) +Nk(1) ,

n(2) → n(2) +∆k(1) ,
(43)

that effectively makes the one-form gauge field a ZN

gauge field. This theory has an electric Z(1)
N one-form

global symmetry that shifts m(1) by a flat integer gauge
field. By performing a Poisson resummation on n(2) in
(42), we obtain a dual description of the theory in terms
of an integer gauge field n̂(2) on the plaquettes of the
dual lattice. After introducing the Stueckelberg fields
m̃(1) and ñ(2), we obtain

SSQ =
2πi

N

∑
link

m(1)∆ñ(2)+

4π2g2

2N2

∑
plaquette

(
∆m̃(1) −Nñ(2) − n̂(2)

)2
.

(44)

By comparing the second term in (44) with (42), we see
that the duality maps the theory at coupling g2 to the

one at coupling N2/4π2g2 with the electric Z(1)
N one-form

symmetry being gauged [115–120]. At the self-dual cou-
pling g2∗ = N/2π, this implies that the theory is invari-

ant under gauging the electric Z(1)
N one-form symmetry

and therefore has a non-invertible duality symmetry [9].
Consequently, we can apply theorem 5 to infer that the
ZN lattice gauge theory at the self-dual coupling should
either be gapless or spontaneously break the duality sym-
metry unless N is of the form N = k2ℓ, with −1 being a
quadratic residue modulo ℓ. All values of N ≤ 60 where
duality invariant SPTs or TQFTs are not ruled out are
listed in Table I.

The schematic phase diagram of the ZN lattice gauge
theory as a function of N and coupling g is summarized
in Figure 6, with the vertical line at g−2

∗ N = 2π de-
marcating the self-dual coupling. This phase diagram
is supported by Monte-Carlo simulations [121]. When

N ≤ 4, at the self-dual coupling, the duality symmetry is
spontaneously broken leading to two local vacua: one is

trivial and preserves the Z(1)
N electric one-form symmetry,

and the other one supports a deconfined ZN TQFT that

spontaneously breaks the electric Z(1)
N one-form symme-

try. See appendix D for more discussion regarding the
spontaneous breaking of non-invertible symmetries. On
the other hand, when N ≥ 5, the duality symmetry is
preserved and the theory flows to the gapless Maxwell
theory (U(1) gauge theory) at a particular coupling

SMaxwell =
1

2e2

∫
F ∧ ⋆F , e2 =

2π

N
. (45)

The coupling above is fixed by matching the duality
symmetry across the RG flow. The Maxwell theory at

e2 = 2π/N is invariant under gauging the Z(1)
N subgroup

of the U(1)(1) electric one-form symmetry thanks to the
electromagnetic duality [9]. Thus, the advocated phase
diagram is consistent with the constraints stated in the-
orem 5.

FIG. 6. Schematic Phase Diagram of ZN Lattice Gauge the-
ory. Solid and dashed lines represent first order phase tran-
sitions. The vertical line at coupling g2∗ = N/2π is duality
invariant. At weak coupling, the theory is in the Higgs phase
i.e. it flows to a ZN TQFT in the IR and at strong cou-
pling, the theory is in the confining phase i.e. the vacuum
is trivial. For N ≤ 4, the Higgs and confining phases are
separated by a first order phase transition at the self-dual
coupling g2∗ = N/2π where the duality symmetry is sponta-
neously broken. For N ≥ 5, the two phases are separated
by an intermediate gapless coulomb phase which flows to a
Maxwell theory and at the self-dual coupling g2∗ = 2π/N the
IR Maxwell theory has e2 = 2π/N .

More generally, one can consider a broader class of
lattice gauge theories by introducing a θ term on the lat-
tice. One concrete realization is the Cardy-Rabinovici
model [122, 123] or its generalization [124, 125], which
is a U(1) lattice gauge theory that couples to charge N
electric matter and charge 1 magnetic matter.12 The

12 For simplicity, we consider only a version of the Cardy-Rabinovici
model where both bosonic and fermionic matter is present. Oth-
erwise, the duality group in general differs from SL(2,Z) [126].
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lattice model is parameterized by a complex coupling
τ . We will work with a formal continuum description of
the Cardy-Rabinovici model given in [127].13 In the for-
mal continuum description, the Cardy-Rabinovici model
is described as a continuum U(1) gauge theory

1

2e2

∫
F ∧ ⋆F +

iNθ

8π2

∫
F ∧ F , (46)

at coupling τ = 2πi/Ne2 + θ/2π with a sum over inser-
tions of charge N Wilson lines and charge 1 ’t Hooft lines.
The sum is weighted by the matter action. In the contin-
uum approximation, this theory has a SL(2,Z) duality
generated by the S and T duality transformation. The
S duality maps τ → −1/τ and swaps the electric and
magnetic matter. Since the charges of electric and mag-
netic matter are different, the duality maps the theory at

coupling τ to the one at −1/τ with the Z(1)
N electric one-

form symmetry gauged. The T duality maps τ → τ + 1
and turns the magnetic matter to dyonic matter with
magnetic charge 1 and electric charge N .
The model has a duality symmetry at τ = i, which

leads to the same constraint as in the (3+1)d ZN lattice
gauge theory at the self-dual coupling.

More interestingly, at τ∗ = eπi/3, because of the S du-
ality the model is invariant under the ST−1 gauging of

the electric Z(1)
N one-form symmetry and therefore has a

triality symmetry. Note that if the theory Q is invariant
under ST−1 operation, the theory T−1Q is invariant un-
der T−1S operation. According to theorem 6, the model
either is gapless or spontaneously breaks the triality sym-
metry unless N = k2ℓ for some integers k and ℓ such that
there exists a solution to p(p+1)+1 = 0 mod ℓ. Even ifN
obeys the condition, we can still exclude the possibility of
triality invariant TQFTs using the mixed triality-gravity
anomaly. In [128], Hayashi and Tanizaki showed that on
a spin manifold X, the model at the complex coupling
τ∗ = eiπ/3 has a mixed triality-gravity anomaly given by

ZST−1Q[X] = ZQ[X] exp

[
− iπ

3
σ(X)

]
. (47)

In particular, we can pick X to be the simply-connected

smooth spin 4-manifold K3 whose signature is −16. We
then have ZST−1Q[K3]/ZQ[K3] = e−2πi/3. However,
theorem 6 states that any triality invariant TQFT with
a unique local vacuum has ZST−1Q[X]/ZQ[X] = 1 on
simply-connected smooth spin 4 manifold X. Therefore,
we can deduce that the theory at τ∗ = eiπ/3 cannot flow
to a triality symmetry preserving TQFT. Note that this
is a stronger result than that of [128], wherein it is shown
that the theory cannot be in a SPT phase.

A heuristic calculation of the free-energy of dyons [122]
suggests the following scenario for the Cardy-Rabinovici
model at τ∗ = eπi/3. When N is small, the triality sym-
metry is spontaneously broken leading to three vacua: a
Higgs vacuum (a ZN TQFT that spontaneously breaks

the Z(1)
N one-form symmetry), a confined vacuum (a triv-

ial vacuum that preserves the Z(1)
N one-form symmetry)

and a oblique confined vacuum (a Z(1)
N one-form SPT)

[129]. The triality symmetry permutes these three vacua.
When N is large, the theory flows to the triality invariant
gapless Maxwell theory. By matching the triality sym-
metry, we can fix the coupling of the Maxwell theory to
be the triality symmetric point [13]

SMaxwell =
N

4π

√
3

2

∫
F ∧ ⋆F +

N

4π

i

2

∫
F ∧ F . (48)

These two scenarios are both consistent with the con-
straint stated in theorem 6.
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Appendix A: Gauss Sums of Intersection Forms

Let X be a smooth simply connected 4-manifold, with the intersection form I : H2(X;Z) × H2(X;Z) → Z. The
intersection form I is a bi-linear symmetric form. We are interested in computing its normalized Gauss sum given by

G(I, p,N) =
1

N rk(I)/2

N∑
xi=1

exp

(
2πip

2N
xiIijxj

)
, (A1)

where rk(I) is the rank of I. The normalized Gauss sum can be interpreted as the partition function of a ZN two-form
gauge theory when pN is even (see appendix B for more details). In this appendix, we will focus on the case that has

13 We can also work with the self-dual lattice models constructed
in [124, 125] which have the SL(2,Z) duality as an exact duality

on the lattice.
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even pN and p co-prime to N .
Note that the intersection form I may be definite or indefinite. Let E8 be the intersection form of the E8 manifold

and H be the intersection form of S2 × S2, then by combining Donaldson’s theorem with Hasse-Minkowski theorem
we have the following result [130]

Theorem. The only bi-linear symmetric forms that can be realized as intersection forms of a smooth simply connected
4-manifold are

⊕ a[+1] , ⊕ b[−1] , ⊕±mE8 ⊕ nH ; (A2)

where a, b,m, n are positive integers.

By the theorem above, the task of computing the Gauss sum (A1) for a general intersection form reduces to
computing the Gauss sum for [+1], [−1], E8 and H.
To prepare for the calculation below, define

εN =

{
1 if N ≡ 1 mod 4

i if N ≡ 3 mod 4
. (A3)

Let us also review the Jacobi symbol ( an ), which is defined for any integer a and any positive odd integer n. The
Jacobi symbol factorizes into the product of the Legendre symbols(a

n

)
=

(
a

s1

)r1 ( a

s2

)r2

· · ·
(

a

sk

)rk

, (A4)

where n = sr11 sr22 · · · srkk is the prime factorization of n. The Legendre symbols is defined for any integer a and any
odd prime s as

(a
s

)
=


0 if a = 0 mod s

1 if a ̸= 0 mod s and a = x2 mod s for some integer x

−1 if a ̸= 0 mod s and there is no such x

(A5)

The Gauss sum for I = [+1] is [131]

G([+1], p,N) =

εN

(
p/2
N

)
odd N

e
πi
4 ε−1

p

(
2N
p

)
even N

. (A6)

It is valued in 4th root of unity when N is odd and 8th root of unity when N is even. Taking its complex conjugate
we obtain the Gauss sum for I = [−1]. For H, the Gauss sum is unity

G(H, p,N) =
1

N

N∑
x1,x2=1

exp

(
2πip

2N
2x1x2

)
= 1 . (A7)

For E8, the Gauss sum is also unity [128]

G(E8, p,N) = 1 . (A8)

Since [+1], [−1], H and E8 have signature +1, −1, 0 and +8 respectively, the normalized Gauss sum for the intersection
form I of a smooth simply connected 4-manifold X can be summarized a function of the signature σ(X) of the 4-
manifold

G(I, p,N) =


[
εN

(
p/2
N

)]σ(X)

odd N[
e

πi
4 ε−1

p

(
2N
p

)]σ(X)

even N
. (A9)

Since the normalized Gauss sum is valued in 8th root of unity and by Rokhlin’s theorem the signature of the intersection
form I of a spin manifold is divisible by 16, the Gauss sum is always unity on a spin-manifold.
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We now study two special cases. First, consider the case when p2 = −1 mod N and N is odd. This situation arises

only if all the prime factors of N are 1 modulo 4, and thus εN = 1. Since p/2 =
[
(2)−1

N (p+ 1)
]2

mod N , we have(
p/2
N

)
= 1. Combining these two facts, we find that the normalized Gauss sum is unity:

G(I, p,N) = 1 when p2 ≡ −1 mod N and N is odd . (A10)

Next, consider the case when p(p + 1) = −1 mod N . This is possible only when N is odd. Using the following
properties of the Jacobi symbol (

ab

n

)
=
(a
n

)( b

n

)
,
(a
n

)2
= 1 ,

(
1

n

)
= 1 , (A11)

we find that (
p/2

N

)
=

(
2

N

)( p

N

)
=

(
2

N

)(
(p+ 1)2

N

)
=

(
2

N

)
. (A12)

Therefore,

G(I, p,N) =

[
εN

(
2

N

)]σ(X)

when p(p+ 1) = −1 mod N . (A13)

Appendix B: Partition Function of ZN 2-form Gauge Theory

In this appendix, we compute the partition function of a (3+1)d ZN 2-form gauge theory in the presence of the

background gauge field B for the Z(1)
N one-form symmetry. For simplicity, we assume the underlying manifold X is

simply connected and thus H2(X,Z) has no torsion classes.
The partition functions of a (3+1)d ZN 2-form gauge theory is

Z[B] =
1√

|H2(X,ZN )|

∑
b∈H2(X,ZN )

exp

[
2πi

∫
X

(
p

2N
P(b) +

1

N
b ∪B

)]
. (B1)

When N is even, p ∼ p + 2N and P(b) : H2(X,ZN ) → H4(X,Z2N ) is the Pontryagin square map. When N is odd,
p ∼ p+ 2N ∈ 2Z and P(b) = b ∪ b : H2(X,ZN ) → H4(X,ZN ). In both cases pN is even. Let us define

L ≡ gcd(p,N), q ≡ p

L
, K ≡ N

L
, J ≡ qKL

2
. (B2)

If q and K are both odd, L has to be even because pN = qKL2 is even. Thus, J is always an integer. To evaluate
the partition function, we split b into a ZL cochain b0 and ZK cocycle b1:

b = Kb0 + b1 . (B3)

The gauge symmetries are

b0 → b0 + δα0 + Lβ0 − β1 , b1 → b1 + δα1 +Kβ1 . (B4)

The cocycle conditions are

δb1 = 0 mod K , δb0 = −δb1/K mod L ≡ −Bock(b1) mod L ; (B5)

where Bock(b1) is the Bockstein homomorphism applied to the cocycle b1. The second cocycle condition ensures that
δb = δ(Kb0 + b1) = 0 mod N . Now substituting (B3) into (B1), we obtain

Z[B] =
1√

|H2(X,ZN )|
×

∑
b1∈H2(X,ZK)

exp

[
2πi

∫
X

(
q

2K
P(b1) +

1

N
b1 ∪B

)] ∑
b0∈C2(X,ZL)
δb0=−Bock(b1)

exp

[
2πi

∫
X

(
qK

2
P(b0) +

1

L
b0 ∪B

)]
.

(B6)
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The second sum can be simplfied using the Wu formula, P(b) = b ∪ ν2(X) mod 2, where ν2(X) = w2(X) + w1(X) ∪
w1(X) is the second Wu class of the underlying manifold X and wi(X) is the ith Stiefel-Whitney class. Summing
over b0 then gives

Z[B] =
|H2(X,ZL)|√
|H2(X,ZN )|

×

∑
b1∈H2(X,ZK)

exp

[
2πi

∫
X

(
q(1−K)

2K
P(b1) +

1

K
b1 ∪

1

L
(B + Jν2(X))

)]
δ ((B + Jν2(X)) mod L) .

(B7)

We reorganized the exponents using the Wu formula so that each term is independently well-defined. The first term is
well-defined because qK(1−K) is always even. The second term is well-defined when the delta function is non-zero.
We can complete the square in the exponent by a change of variable

b̃1 = b1 + (1 +K) (q)
−1
γ(K)K

B + Jν2
L

, (B8)

where the notation (α)−1
β denotes the inverse of α in the ring Zβ for co-prime integers α and β, and

γ(K) =

{
1, odd K

2, even K
. (B9)

When q = 0, we define (q)−1
γ(K)K = 0. The exponents in the sum now becomes

exp

[
2πi

∫
X

(
q(1−K)

2K
P(b̃1)−

(1−K) (q)
−1
γ(K)K

2K
P
(
B + Jν2

L

))]
; (B10)

The remaining sum over b̃1 is related to the normalized Gauss sum for the intersection form I via∑
b̃1∈H2(X,ZK)

exp

[
2πi

∫
X

q(1−K)

2K
P(b̃1)

]
=
√

|H2(X,ZK)|G(I, q(1−K),K) . (B11)

Summing over b1 then leads to

Z[B] =
√
|H2(X,ZL)|G(I, q(1−K),K) exp

[
−2πi

∫
X

(1−K) (q)
−1
γ(K)K

2K
P
(
B + Jν2

L

)]
δ ((B + Jν2) mod L) .

(B12)
We now discuss two situations when the formula simplifies. When the underlying manifold X has a trivial second

Wu class ν2(X), (B12) simplifies to

Z[B] =
√
|H2(X,ZL)|G(I, q,K)δ (B mod L) exp

[
−2πi

∫
X

(q)
−1
K

2K
P
(
B

L

)]
. (B13)

In the special case of L = 1, (B12) simplifies to

Z[B] = G(I, p,N) exp

[
−
∫
X

2πi (p)
−1
γ(N)N

2N
P (B)

]
. (B14)

When N is odd, we pick an even (p)−1
N for the expression to be well-defined. This can always be achieved by redefining

(p)−1
N to (p)−1

N +N .

Appendix C: Details of TQFT Argument

In this appendix, we provide more details of the proof of theorem 5 and theorem 6.
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1. Duality Symmetry

Consider a (3+1)d (spin) TQFT Q that has a unique vacuum and a Z(1)
N one-form symmetry. We will prove that

the TQFT cannot be invariant under gauging the Z(1)
N one-form symmetry up to a gravitational counterterm eiΩ(X)

unless N = k2ℓ with k, ℓ ∈ Z and −1 is a quadratic residue of ℓ. Furthermore, if the TQFT is invariant under gauging,
the gravitational counterterm eiΩ(X) = 1 on every simply-connected smooth spin 4-manifold X.

The Z(1)
N one-form symmetry is generated by surface operators Ug. To detect the one-form charge of a line operator

L, we link the surface operators Ug with the line operator L. If the correlation function, where Ug and L form a
Hopf link, differs from the one, where the link is trivial, we say the surface operator Ug links nontrivially with the
line operator L. Otherwise, we say Ug and L link trivially with each other.

In general, the Z(1)
N one-form symmetry can act unfaithfully on line operators in the sense that some symmetry

operators Ug link trivially with all line operators.14 The unfaithful one-form symmetry forms a Z(1)
M subgroup of the

Z(1)
N one-form symmetry where M ∈ Z and k = N/M ∈ Z. In this case, all line operators transform with a kth root

of unity, instead of a Nth root of unity, under the Z(1)
N one-form symmetry.

We now gauge the Z(1)
N one-form symmetry by coupling the theory to a dynamical ZN two-form gauge field

b ∈ H2(X,ZN ). This leads to a dual Ẑ(1)
N one-form symmetry, generated by the Wilson surface operator

Û = exp(2πi
∮
b/N), in the gauged theory Q/Z(1)

N . Here, we add a hat to the dual symmetry group to distinguish it
from the original symmetry group.

Line operators charged under the Z(1)
N one-form symmetry become non-gauge-invariant in the gauged theory Q/Z(1)

N .
To make them gauge invariant, we attach an open Wilson surface operator to them. Recall that all line operators

transform only with a kth root of unity under the Z(1)
N one-form symmetry. Therefore, only the Wilson surface

operators generated by ÛM = exp(2πi
∮
b/k) can end on these charged lines. The charged lines are topological,

based on the assumption that Q is a TQFT, so they provide a topological boundary condition to the Wilson surface
operators ending on them. Using these topological boundary conditions, we can unlink any Hopf link between the

surface operators generated by ÛM = exp(2πi
∮
b/k) and any line operator. Thus, the Ẑ(1)

k subgroup, generated by

ÛM = exp(2πi
∮
b/k), of the dual Ẑ(1)

N one-form symmetry acts unfaithfully in the gauged theory Q/Z(1)
N .

The unfaithful subgroup of the dual Ẑ(1)
N one-form symmetry can be larger than Ẑ(1)

k . If the TQFT is invariant

under gauging, the unfaithful subgroup in the gauged theory Q/Z(1)
N should be Ẑ(1)

M , which should include Ẑ(1)
k as a

subgroup. It implies that N = k2ℓ for some integer ℓ.
We now derive a constraint on ℓ. Consider placing the theory Q on S2 × S2, which has H2(S

2 × S2,Z) = H2(S2 ×
S2,Z) = Z2 and an intersection formH. We can turn on the background gauge field (B1, B2) ∈ H2(S2×S2,ZM ) = Z2

M

for the unfaithful Z(1)
M subgroup one-form symmetry. It amounts to inserting B1 and B2 number of basic Z(1)

M symmetry
operators wrapping around the two S2 respectively. According to Proposition 1 of [101], any surface operator in a
TQFT that links trivially with all line operators admits a topological boundary condition. In our TQFT Q, it implies

that the symmetry operators of the unfaithful Z(1)
M subgroup one-form symmetry can be opened up topologically

without changing the correlation functions. On S2 ×S2, opening up the (B1, B2) number of symmetry operators and
shrinking them leaves us with B1B2 number of identical local operators O at the intersections. Since the TQFT has
a unique local vacuum, these local operators must be a multiple of the identity operator, i.e. O = λ1 and therefore
the partition function is ZQ[B1, B2] = λB1B2ZQ[0, 0]. Because of the identification B1,2 ∼ B1,2 +M , the coefficient λ
obeys

ZQ[B1 +M,B2]

ZQ[B1, B2]
= λMB2 = 1 . (C1)

Solving for λ, we get

ZQ[B1, B2] = ZQ[0, 0] exp

[
2πip

M
B1B2

]
, p ∈ Z . (C2)

The fact thatQ is invariant under gauging the Z(1)
N one-form symmetry imposes a constraint on ZQ[B1, B2]. Starting

from the theory Q, we can gauge the Z(1)
M subgroup one-form symmetry and obtain the theory Q/Z(1)

M , which has a

14 An unfaithful symmetry operator can still have non-trivial corre-
lation functions associated to other topological invariants, such

as intersections, triple linkings and quadruple linkings of surfaces
and etc. [105, 106].
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dual Z̃(1)
M and a Z̃(1)

k one-form symmetry. We put a tilde on the symmetry group of the theory Q/Z(1)
M . The dual Z̃(1)

M

one-form symmetry is generated by the Wilson surface operators of the Z(1)
M two-form gauge field. Turning on the

background gauge field (C1, C2) ∈ H2(S2×S2,ZM ) for the Z̃(1)
ℓ subgroup of the Z̃(1)

M one-form symmetry leads to the

following partition function for the Q/Z(1)
M theory on S2 × S2 that can be computed with the formula for partition

functions (C2) and (B13)

ZQ/Z(1)
M

[C1, C2] =
1

M

M∑
b1,2=1

ZQ[b1, b2] exp

[
2πi

ℓ
(b1C2 + b2C1)

]

=
1

M

kℓ∑
b1,2=1

ZQ[0, 0] exp

[
2πip

kℓ
b1b2 +

2πi

ℓ
(b1C2 + b2C1)

]

= ZQ[0, 0]× L exp

[
−
2πi(q)−1

K

K

kC1

L

kC2

L

]
δ(kC1,2 mod L) .

(C3)

where L = gcd(p, kℓ), K = kℓ/L, q = p/L. Note that the Gauss sum equals unity for the intersection pairing on
S2 × S2 as shown in the appendix on Gauss sums. On the other hand, we can also start from the gauged theory

Q/Z(1)
N and gauge the Ẑ(1)

k subgroup of the Ẑ(1)
N one-form symmetry to obtain the theory Q/Z(1)

M . The Z̃(1)
k one-form

symmetry of Q/Z(1)
M is the dual symmetry generated by the Wilson surface operators of the Ẑ(1)

k two-form gauge field.

The Ẑ(1)
M /Ẑ(1)

k = Z(1)
ℓ part of the Ẑ(1)

M one-form symmetry of Q/Z(1)
N becomes the Z̃(1)

ℓ ⊂ Z̃(1)
M one-form symmetry of

Q/Z(1)
M . We then have another expression for ZQ/Z(1)

M

[C]

ZQ/Z(1)
M

[C1, C2] =
1√
k

k∑
b1,2=1

ZQ/Z(1)
N

[ℓb1 + C1, ℓb2 + C2] . (C4)

Recall that the partition functions before and after gauging are identical up to a gravitational counterterm eiΩ(X)

which is a pure phase. On S2 × S2, this gives

ZQ[B1, B2] = ZQ/Z(1)
N

[B1, B2]e
−iΩ(S2×S2) . (C5)

Together with (C2) and the formula (B13), we obtain

ZQ/Z(1)
M

[C1, C2] =
1

k

k∑
b1,2=1

ZQ[0, 0]e
iΩ(S2×S2) exp

[
2πipℓ

k
b1b2 +

2πip

k
(b1C2 + b2C1) +

2πip

kℓ
C1C2

]

= ZQ[0, 0]e
iΩ(S2×S2) × L exp

[
2πip

kℓ
C1C2 −

2πi(q̃)−1

K̃

K̃

pC1

L̃

pC2

L̃

]
δ(pC1,2 mod L̃) ,

(C6)

where L̃ = gcd(pℓ, k), K̃ = k/L̃, q̃ = pℓ/L̃.
On S2 ×S2, the partition function ZQ[0, 0] is positive [101].

15 Hence, equating (C3) and (C6), we get the following
constraints. First of all, to match the magnitudes of the two partition functions, we have

Lδ (kC1,2 mod L) = L̃δ
(
pC1,2 mod L̃

)
, L ≡ gcd(p, kℓ) , L̃ ≡ gcd(pℓ, k) . (C7)

It implies that L = L̃ = gcd(p, k) and therefore ℓ, p̂ ≡ p/gcd(p, k), k̂ ≡ k/gcd(p, k) are all co-prime to each other.
Once these conditions are obeyed, the delta functions in (C3) and (C6) both become trivial. Next, we match the

phases of the two partition functions. Since eiΩ(S2×S2) is independent of (C1, C2), we have

eiΩ(S2×S2) = 1 . (C8)

15 This is because S2 × S2 is the double of an open four-manifold
χ which may be embedded inside S4. In particular this means
that the partition function of Q on S4 which is necessarily non-

zero by unitarity, may be viewed as the inner-product of the
state defined by χ and the state defined by the complement of χ.
Therefore χ defines a non-zero state and the partition function
on S2 × S2 is the norm of a non-zero vector and so positive.
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Matching the remaining phases that depend on (C1, C2) leads to the constraint

−
(p̂)−1

k̂ℓ

k̂ℓ
k̂2 =

p̂

k̂ℓ
−

(p̂ℓ)−1

k̂

k̂
p̂2 mod 1 (C9)

We can multiply the equation by k̂ℓ and treat it as an equation modulo ℓ.16 The second term on the right-hand side
dropped out and the constraint simplifies to

(p̂)−1

k̂ℓ
k̂2 + p̂ = 0 mod ℓ (C10)

If we further multiply the equality by (p̂)−1

k̂ℓ
and still treat the equality as an equality modulo ℓ, we get

(k̂(p̂)−1

k̂ℓ
)2 + 1 = 0 mod ℓ . (C11)

The constraint implies that −1 is a quadratic residue of ℓ. The condition holds if and only if every odd prime factor
xi in the prime factorization of ℓ

ℓ = 2y0xy1

1 xy3

3 · · ·xym
m , (C12)

is 1 modulo 4 and the power of 2 in the prime factorization is y0 = 0, 1. This completes the first part of the proof.
The foregoing derivation remains unmodified if we replace the spacetime manifold S2 × S2 by any other simply-

connected smooth spin 4-manifold X. On such manifolds, by opening up the unfaithful Z(1)
M symmetry operator and

shrinking them to the intersection points, we can fix the partition function to

ZQ[B] = ZQ[0] exp

[
2πip

M

BT IB

2

]
, p ∈ Z , (C13)

where B ∈ H2(X,ZM ) = Zn
M is the background gauge field for the unfaithful Z(1)

M one-form symmetry and I is the
intersection form of the 4-manifold X. Here, p is an integer because the intersection form of a spin manifold is even.
Note that ZQ[0] is positive on any simply-connected smooth spin 4-manifold [102]. Generalizing (C3) and (C6), we
have the equality

1

M rk(I)/2

M∑
b=1

ZQ[b] exp

[
2πi

ℓ
bT IC

]
=

1

krk(I)/2

k∑
b=1

ZQ/Z(1)
N

[ℓb+ C] . (C14)

Substiting (C13) and

ZQ[B] = ZQ/Z(1)
N

[B]e−iΩ(X)
(C15)

into (C14) leads to the same constraint on ℓ as before and since the Gauss sum for the intersection forms of X is
unity, we have eiΩ(X) = 1 on every simply-connected smooth spin 4-manifolds. This concludes the proof. Since the
proof only uses spin 4-manifolds, which have a trivial second Stiefel-Whitney class, we cannot determine whether the
TQFT is a spin TQFT or a non-spin TQFT.

2. Triality Symmetry and More General Non-invertible Symmetry

We now generalize the constraint on duality invariant TQFTs to TQFTs that preserves more general non-invertible
symmetry including the triality symmetry. Consider a (3+1)d (spin) TQFT Q that has a unique local vacuum and a

Z(1)
N one-form symmetry. We will prove that the TQFT cannot be invariant under T−p′

S gauging the Z(1)
N one-form

symmetry upto a gravitational counterterm eiΩ(X) unless N = k2ℓ with k, ℓ ∈ Z and there exists a solution p ∈ Z
such that

p(p+ p′) + 1 = 0 mod ℓ . (C16)

16 If we multiply the equation (C9) by k̂ℓ and treat it as an equation modulo k̂, we get a trivial equality. Since k̂ and ℓ are co-prime,
the equality (C9) is equivalent to (C10).
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Furthermore, if the TQFT is invariant under the T−p′
S gauging, the gravitational counterterm eiΩ(X) = 1 on every

simply-connected smooth spin 4-manifold X. When N is even and p′ = ±1 or when N is odd and p′ = ±(1+N), the
non-invertible defects constructed by half-gauging the theory leads to the triality defects.

The proof for these more general T−p′
S symmetries follows the same reasoning as in the duality case. We will directly

work on simply connected smooth spin manifolds X. (C13) and (C14) still holds but now due to the invariance under

T−p′
S gauging we have

ZQ/Z(1)
N

[B] = ZQ[B] exp

[
2πip′

N
(kB)T I(kB)

]
eiΩ(X) . (C17)

Combining this relation with (C13) and (C14), we get the same constraint as in (C7) so ℓ, p̂ ≡ p/gcd(p, k), k̂ ≡
k/gcd(p, k) are all co-prime to each other and we further derived

p̃(p̃+ p′) + 1 = 0 mod ℓ . (C18)

where p̃ = k̂(p̂)−1

k̂ℓ
. Again, because the Gauss sum for the intersection forms of a simply connected smooth spin

4-manifold X is unity, we learned that eiΩ(X) = 1. This concludes the proof.

Appendix D: Spontaneous Symmetry Breaking

While the main focus of our analysis is on theories with a unique vacuum state on S3, it is also possible to
spontaneously break duality symmetries leading to multiple vacuum states. In this case there is no constraint on
N . Here we briefly summarize some simple examples of this phenomenon. We also note that spontaneous duality
symmetry breaking is realized in ZN lattice gauge theory for small N as discussed in section IV.

We can construct an elementary gapped example of spontaneously breaking the duality defect D by starting from

ZN topological gauge theory (i.e. Dijkgraaf-Witten theory). This theory has a Z(1)
N one-form symmetry under which

the Wilson lines are charged. In the presence of a background gauge field B the partition function on a simply
connected four-manifold X is:

ZDW[B] =
1√

|H2(X,ZN )|

∑
c∈H2(X,ZN )

exp

[
2πi

N

∫
X

c ∪B

]
=
√

|H2(X,ZN )|δ(B mod N) . (D1)

Performing the S gauging operation replaces the partition function above by

SZDW[B] =
1

|H2(X,ZN )|
∑

b,c∈H2(X,ZN )

exp

[
2πi

N

∫
X

b ∪ (c+B)

]
. (D2)

The equation of motion for b forces c = −B, and as a consequence the theory obtained after gauging is trivial

SZDW[B] = Ztrivial[B] = 1 . (D3)

This gauging procedure is reversible: gauging a Z(1)
N one-form symmetry in the trivial theory takes us back to the

original Dijkgraaf-Witten theory.

We can now use these results to construct a theory which is self-dual under gauging Z(1)
N one-form symmetry for all

values of N . We consider a theory Q which is the direct sum of the Dijkgraaf-Witten theory and the trivial theory:17

ZQ ≡ ZDW ⊕ Ztrivial . (D4)

By construction, Q has two local ground states and correspondingly two topological local operators corresponding
to the identity operator in each of the sectors above. According to the discussion above the S operation exchanges
these two summands. This implies that the theory Q has a duality defect D which permutes the two topological local
operators.

17 The direct sum of d-dimensional theories assigns to a d− 1 man-
ifold a Hilbert space which is the direct sum of the Hilbert space
assigned to each summand, and assigns to a closed d manifold

the sum of the partition functions. See references [132, 133] for
additional details.
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Physically, the construction above can occur at a first order phase transition with a spontaneously broken duality
symmetry. In this case the symmetry defect D describes a domain wall connecting the two local vacua which are
hence related by the gauging operation S. In particular, this is exactly the phase transition which occurs in self-dual
ZN lattice gauge theory for N ≤ 4. (See section IV.)

The construction above may be straightforwardly generalized to produce myriad examples of spontaneously broken

duality symmetry. Indeed, given any theory G with Z(1)
N one-form symmetry, we can consider the direct sum:

ZQ ≡ ZG ⊕ ZSG , (D5)

which again realizes spontaneously broken duality symmetry. Similarly, we can construct gapped or gapless phases
realizing spontaneous symmetry breaking for the more general non-invertible symmetries arising from invariance under
T−p′

S. For instance, a spontaneously broken triality symmetry leads in general to three local vacua connected by
sequential gauging and stacking operations. This occurs in the Cardy-Rabinovici model at τ∗ = eπi/3 for small N .
(See section IV.)
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[13] Y. Choi, C. Córdova, P.-S. Hsin, H. T. Lam, and S.-H. Shao, (2022), arXiv:2204.09025 [hep-th].
[14] D. S. Freed, G. W. Moore, and C. Teleman, (2022), arXiv:2209.07471 [hep-th].
[15] J. Kaidi, K. Ohmori, and Y. Zheng, (2022), arXiv:2209.11062 [hep-th].
[16] D. S. Freed, (2022), arXiv:2212.00195 [hep-th].
[17] E. H. Lieb, T. Schultz, and D. Mattis, Annals Phys. 16, 407 (1961).
[18] M. Oshikawa, Physical Review Letters 84, 3370 (2000).
[19] M. B. Hastings, Physical Review B 69 (2004), 10.1103/physrevb.69.104431.
[20] G. Y. Cho, C.-T. Hsieh, and S. Ryu, Physical Review B 96 (2017), 10.1103/physrevb.96.195105.
[21] C.-M. Jian, Z. Bi, and C. Xu, Physical Review B 97 (2018), 10.1103/physrevb.97.054412.
[22] D. V. Else and R. Thorngren, Physical Review B 101 (2020), 10.1103/physrevb.101.224437.
[23] W. Ye, M. Guo, Y.-C. He, C. Wang, and L. Zou, SciPost Physics 13 (2022), 10.21468/scipostphys.13.3.066.
[24] L. Bhardwaj, Y. Lee, and Y. Tachikawa, JHEP 11, 141 (2020), arXiv:2009.10099 [hep-th].
[25] M. Koide, Y. Nagoya, and S. Yamaguchi, PTEP 2022, 013B03 (2022), arXiv:2109.05992 [hep-th].
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