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(Dated: July 13, 2023)

We studied the exciton properties in double layers of transition metal dichalcogenides (TMDs)
with a dielectric spacer between the layers. We developed a method based on an expansion of
Chebyshev polynomials to solve the Wannier equation for the exciton. Corrections to the quasi-
particle bandgap due to the dielectric environment were also included via the exchange self-energy
calculated within a continuum model. We systematically investigated hetero double-layer systems
for TMDs with chemical compounds MX2, showing the dependence of the inter- and intralayer ex-
citons binding energies as a function of the spacer width and the dielectric constant. Moreover, we
discussed how the exciton energy and its wave function, which includes the effects of the changing
bandgap, depend on the geometric system setup.

I. INTRODUCTION

The wide variety of two-dimensional (2D) materials
with different properties has opened up the possibility of
atomic scale heterogeneous integration and combination
of different layers, thus creating new hybrid structures
that exhibit totally new physics and allow unique func-
tionalities. A relevant perspective review paper in 2013
named this mixing of isolated layers into stacked het-
erostructures as van der Waals heterostructures1. Such
layer-stacked junctions have been intensively explored in
the past decade, presenting novel optoelectronics and col-
lective quantum phenomena that, in turn, one shows to
be a highly tunable material platform to design new high-
performance nanoelectronic devices tailored to a specific
purpose based on the layers’ compounds choice2–6.

A promising research area within optoelectronics in
semiconductor 2D materials and its layered structures
is related to the fact that they support the formation of
excitons – bound electron-hole pairs – and excitonic com-
plexes with binding energies more than an order of mag-
nitude greater than conventional semiconductors, i.e., on
the order of hundreds of meV, and small Bohr radius in
the range of several manometers7–14. It stems from the
reduced dimensionality and the associated reduced di-
electric screening that, in turn, leads to strong Coulomb
interactions between the charge carriers. Consequently,
the energy levels are renormalized, the quasiparticle
bandgap is modified, and the exciton binding energy can
be tuned by changing the environment15–17. Therefore,
an alternative to control the strength of the Coulomb
interaction via structural, sizable, and dielectric environ-
ment is engineering the van der Waals stacking4,17–19,
and consequently, the interlayer electrostatic coupling
between the constituents, leading to a weakening or
strengthening of the Coulomb binding by increasing or

decreasing the spatial separation between the electron
and the hole.

Owing to the interplay between the layer-dependence
control and the highly sensitive excitonic effects in
van der Waals materials, allowing the existence of
a huge amount of different combinations of inter-
layer and intralayer excitons in homostructures and
heterostructures20–23, aligned with numerous different re-
ported techniques to deal with excitonic complexes and
even Bose-Einstein condensate of excitons24, motivates
further exploration of methods to compute exciton prop-
erties given the richness of possibilities to create and con-
trol them.

In this work, we present a simple yet efficient and accu-
rate method, being less computationally demanding than
the Bethe-Salpeter framework from first-principles and
Monte Carlo approaches and with accurate convergence
in comparison with other semi-analytical methodologies
based on 2D hydrogenic excitonic basis25–28, to solve the
excitonic Wannier equation within the effective mass ap-
proximation by using a basis expansion of the eigenstate
wave function into the Chebyshev’s polynomials. Results
for the dependence of the exciton energy levels (binding
energies) and associated wave functions on the layer sepa-
ration and dielectric constant of dielectric spacers are ob-
tained for interlayer and intralayer excitons in different
combinations of double-layer transition metal dichalco-
genides (TMDs) composing heterostructures.

The paper is organized as follows. In Sec. II, we present
the theoretical framework used to solve the excitonic
Wannier equation, deriving, in Appendix A, from the
Poisson equation for double-layer system separated by
a spacer the appropriate intralayer and interlayer elec-
trostatic potential contributions, and in Sec. IIA we
demonstrate the solution of Wannier equation for exci-
tons by expanding the excitonic wave function in Cheby-
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shev polynomials to obtain the binding energies and wave
function in real and momentum spaces. Sec. II B is de-
voted to explaining the procedure to find the bandgap
correction for double-layer semiconductors taking into
account the found electrostatic interaction and starting
from the monolayer bandgap. Results for heterostruc-
tures are discussed in Sec. III, comparing them with the
previously reported results. Finally, in Sec. IV, we sum-
marize our main findings.

II. METHODOLOGY

We investigate two semiconductor monolayers sepa-
rated by a spacer with width d and dielectric constant
ϵ2. The substrate (z < −d) and superstrate (z > 0) have
dielectric constants ϵ3 and ϵ1, respectively, as depicted
in Fig. 1(a). Here, we consider different TMDs semicon-
ductors represented by the symbol MX2, where M is a
metal [molybdenum (Mo) or tungsten (W )] and X is a
chalcogenide [selenium (Se) or sulfur (S)]. Homo and
heterostructures are formed by taking the same or dif-
ferent TMDs in the double-layer system, respectively. In
Fig. 1(b), we depict the energy gap values for the four
investigated TMDs here. Note that the resulting hetero-
bilayers lead to a type II band alignment29 that strongly
favors the formation of interlayer excitons30. To correctly
predict the exciton energies, determined as the difference
between the bandgap and the magnitude of the exciton
binding energy, we consider the effects of the dielectric
geometry on the carrier-carrier interaction as the solu-
tion of the corresponding Poisson equation. We use the
Wannier equation in the effective mass approximation to
calculate the exciton energy, which was proven to coin-
cide with a microscopic model31. For the bandgap, we use
the exchange self-energy32 within the continuum model.

The carrier-carrier interaction was derived from the
Poisson equation in Appendix A with the geometry pre-
sented in Fig. 1(a) for both intralayer Vii and interlayer
Vij ̸=i potentials, defined as the interaction between carri-
ers in the same (intra) layer or in adjacent (inter) layers,
and respectively given by [22]

Vii(q) =
−e2

qϵ0 [ϵ1 + riq + ϵ2Gj(q)]
, (1a)

Vij ̸=i(q) = Vii(q) [cosh(qd)−Gj(q) sinh(qd)] , (1b)

where

Gj(q) =
cosh(qd)(ϵ3 + rjq) + ϵ2 sinh(qd)

ϵ2 cosh(qd) + sinh(qd)(ϵ3 + rjq)
, (2)

with ri being the screening length of each 2D layer and
i = {1, 2}. Fig. 2(a) shows a comparison between dif-
ferent interactions in momentum space: Rytova-Keldysh
[RK - Eq. (A22)], Coulomb, interlayer [Vi ̸=j - Eq. (1a)]
and intralayer [Vii - Eq. (1b)] potentials. Although they
converge to the same value in the long-wavelength limit,
i.e. when q ≈ 1/d, the interlayer potential deviates from

FIG. 1: (Color online) (a) Schematic illustration of the double
layered TMDs, separated by a spacer of dielectric constant
ϵ2 (−d ≤ z ≤ 0) and width d, immersed in two materials
of dielectric constants ϵ1 (z > 0) and ϵ3 (z < −d). This
structure sustains both intralayer and interlayer excitons. (b)
Band alignment as measured from the vacuum between the
four TMDs considered in this work. The bandgap energies
and their alignments were obtained from DFT calculations in
Ref. [29].

the RK and intralayer potentials. Fig. 2(b) emphasizes
the difference between the intralayer and RK interactions
magnitudes, showing a difference of almost 15% between
them for a short spacer width.

A. Chebyshev method

The carrier-carrier interaction in the classical regime
will diverge in the infrared limit, which must be handled
to solve the Wannier equation numerically in momentum
space. Here, we use the method developed by Chawla and
Kumar33 to analytically remove this infrared divergence
of the kernel by expanding in Chebyshev polynomials and
analytically integrating out the divergence via Cauchy
principal value.
We start with the Wannier equation in momentum

space:

Epψ(p) +

∫
dp′

(2π)2
V (p− p′)ψ(p′) = Eψ(p), (3)

that also corresponds to a simplified version of the Bethe-
Salpeter equation in the ladder approximation, when ne-
glecting the exchange term for a two-band system in the
effective mass regime. Decomposing Eq. (3) in partial
waves, we have

Epψℓ(p) +
1

2π

∫ ∞

0

dp′p′Vℓ(p, p
′)ψℓ(p

′) = Eψℓ(p), (4)
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FIG. 2: (Color online) (a) Comparison between different
carrier-carrier potentials in momentum space: RK (solid blue
curve), Coulomb (dashed green curve with rhombus symbols),
intralayer (dashed orange curve with circular symbols), and
interlayer (dashed red curve) interactions. The interlayer
[Eq. (1a)] and the intralayer [Eq. (1b)] potentials were cal-
culated considering r1 = r2 = r = 44.68 Å and d = 7.15 Å.
When q is of the order of 1/r, the Coulomb potential deviates
from the other three and a negligible difference between the
intralayer and the RK potentials is observed. The interlayer
potential shows a strong screening that is due to the term
proportional to e−qd of Gj(q) in Eq. (2) when q ≈ 1/d. (b)
The relative difference between the intralayer and the RK po-
tentials, which can be as high as 15% the shorter the spacer
width d.

with the interaction given by

Vℓ(p, p
′) =

1

2π

∫ 2π

0

dϕV (p− p′, ϕ) cos(ℓϕ). (5)

Now, we consider the hyperbolic conformal mapping

u =
ξp− 1

ξp+ 1
, (6)

with u ∈ [−1, 1] and ξ being a scale parameter, and ex-
pand the momentum space wave function in Chebyshev
polynomials Tn, such as

ψℓ(u) = f(u)
∑
n

cn,ℓTn(u), (7)

where f(u) is a function used to speed up the conver-
gence. The choice of f(u) shall be discussed later on.
Writing the integrand of Eq. (4) in terms of u, one has

1

2π

∫ ∞

0

p′dp′Vℓ(p, p
′)ψℓ(p

′) =

1

ξ2

∫ 1

−1

du′
Vℓ(u, u

′)ψℓ(u
′)(1 + u′)

π(1− u′)3
. (8)

From the electrostatic nature of the RK potential, one
of the numerically slow-step in solving Eq. (4) comes from

the 1/q infrared singularity, that we shall demonstrate
how it can be analytically removed. Now, introducing
the expansion given by Eq. (7) in Eq. (8), one obtains

In,ℓ(u) =
1

ξ2

∫ 1

−1

du′
Vℓ(u, u

′)(1 + u′)

π(1− u′)3
f(u′)Tn(u

′), (9)

where now the 1/q infrared singularity appears explicitly
when u = u′:

In,ℓ(u) =
1

ξ2

∫ 1

−1

du′
Kℓ(u, u

′)Tn(u
′)

u− u′
, (10)

with the kernel being set to

Kℓ(u, u
′) =

Vℓ(u, u
′)(1 + u′)

π(1− u′)3
f(u′)(u− u′), (11)

which vanishes for u = u′. By a careful analysis of
Eq. (11), one has that a convenient choice for the function
f(u) is

f(u) =
1− u3

1 + u
, (12)

which removes the pole at u = 1 in the kernel and will
be used to compute the exciton eigenstates in Sec. III.
Now, we use Chawla and Kumar’s method33 to com-

pute the integral in Eq. (10). Decomposing the kernel,
Eq. (11), in Chebyshev polynomials, one gets

Kℓ(u, u
′) ≈

M∑
j=0

bj(u)Tj(u
′), (13)

where bj(u)’s are the expansion coefficients. Analytically
integrating Eq. (10), one obtains

In,ℓ(u) =
1

2ξ2

M∑
j=0

bj(u)
[
λj+n(u) + λ|j−n|(u)

]
, (14)

where the λk(u) function is defined in the Appendix
B and can be obtained recursively. Replacing back in
Eq. (8), we have that

∞∑
n=0

[h(u)f(u)Tn(u) + In,ℓ − Ef(u)Tn(u)] cn,ℓ = 0, (15)

where

h(u) =
ℏ2

2µξ2

(
1− u

1 + u

)2

. (16)

Truncating the expansion at a maximum value n = N ,
we can solve Eq. (15) as a linear homogeneous system
(generalized eigenvalue problem) by choosing N + 1 dif-
ferent values for u. For this, we can choose the zeros of
the TN+1 Chebyshev polynomial.
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B. Bandgap engineering

The quasiparticle band structure of 2D materials de-
pends on the dielectric environment6. To account for
this dependence, we employ the Semiconductor Bloch
Equations (SBE)34 for the heterostructure depicted in
Fig. 1(a). We neglect the tunneling between the MX2

layers due to the presence of a dielectric spacer between
them. The single particle Hamiltonian for the charge
carriers in each layer can be described by the following
massive Dirac equation35

Ĥ0,i = τiℏvF,iσ · pi + σz∆
0
s,τ , (17)

whose the mass term ∆0
s,τ , corresponding to the bare

“bandgap”, depends on the spin (s) and valley (τ) in-
dexes for each layer i. vF,i denote the Fermi velocity of
the layer i and σz is the z Pauli matrix component.
In order to take into account the corrections to the

bandgap, we employed the procedure derived in Ref. [32]
by considering the aforementioned gapped Dirac equa-
tion, the electron-electron interaction, and a dipole cou-
pling with light. It is well-known that TMDs have a
strong spin-orbit coupling (SOC) originating from the d
orbitals of the metal atoms and, consequently, it induces
a spin splitting of bands in monolayer,36 as illustrated
in Fig. 3. Thus, by applying Heisenberg’s equation to
the polarization operator, we arrive at the following ex-
change self-energy expression for each layer j, derived
by neglecting the four operators’ corrections in a Clus-
ter Decomposition Scheme analogous to the Hartree-Fock
decomposition, such as32,34,37

Σj
sτ (k) =

∫
dq

4π2
Vjj(q)nsτ (k− q)

4ℏ2v2Fk · q+ (∆0
s,τ )

2

4Esτ
jkE

sτ
jq

,

(18)
from which we can calculate the dressed bandgap as

∆j
sτ = ∆j

sτ,0 +Σj
sτ (k = 0), (19)

where ∆j
s,τ denotes the energy difference between the

conduction and valence bands with the same s and τ
indexes for each layer j at the K point, the intralayer
potential Vjj is given by Eq. (1a), nsτ is the valence elec-
tronic density, and Esτ

jk is the eigenvalue of the massive
2D Dirac Hamiltonian. The intralayer interaction de-
pends on the dielectric environment through the spacer
width d, the dielectric constants ϵi, and the monolayer
screening lengths ri. As our goal is to study the depen-
dence of the exciton properties on the system geometry,
we fit the monolayers screening length r0 to reproduce
the experimental exciton energy of the suspended mono-
layer for each MX2 as described in Appendix C.
Using the r0’s given in Table II in Appendix C, we

obtain the bare bandgap ∆j
sτ,0 from Eq. (19) for each

material and spin-valley combination for the suspended
monolayer, i.e. for ϵ1 = ϵ2 = ϵm = 1 and d → ∞. The
obtained values are presented in Table I. With the fitted
values of r0 and ∆0

sτ , we can solve Eq. (18) for different

FIG. 3: (Color online) Schematic illustration of the lowest
conduction (CB) and valence (VB) bands of monolayer TMDs
in the vicinity of the K (red curves) and K′ (blue curves)
points, emphasizing the band splitting due to SOC and spin
flipping for each band in the opposite valley due to the inver-
sion symmetry. The up (red) and down (blue) arrows stand
for spin-up and spin-down states. SOCCB (SOCVB) corre-
sponds to the energetic split of the conduction (valence) band.

geometric setups and study the dependence of the ∆j
sτ ,

i.e. the spin/valley dependent transition energy at the
K point. The assumed bandgaps, Fermi velocities, and
effective masses for the four investigated TMDs (MoS2,
MoSe2, WS2, WSe2) were extracted from Refs. [29,35,38]
obtained via ab initio calculations (see Table II). Ref-
erence [29] performed DFT calculations for 24 different
TMD monolayers and their 552 bilayer heterostacks, in
which they compared the obtained parameters with ex-
perimental ones, showing that the validity of DFT calcu-
lation is consistent with the experimental measurements,
especially in the accurate capturing of the band structure
features. For that, they assumed a many-body perturba-
tion GW theory to investigate both monolayer and bi-
layer TMDs, yielding band gap values in good agreement
with both experimental and previously reported theoret-
ical results, as can be cross-checked with the following
references: [11,39–47].

In Fig. 4(a), we show that the mutual electrostatic
screening between two monolayers can decrease the value
of ∆j

sτ by 50 meV as the interlayer separation decreases
to 7.15 Å. In Fig. 4(b), we show the dependence of ∆j

sτ on
the spacer dielectric constant. The huge renormalization
of the bandgap due to the electron-electron interaction11

is weakened by the spacer dielectric screening, and as
the dielectric constant is increased, the transition energy
approaches the bare value ∆sτ,0. In Figs. 4(a) and 4(b), it
was assumed the MoS2/MoSe2 heterostructure, however
qualitatively similar results are expected for the other
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FIG. 4: (Color online) K−K transition energies of both spins
for MoS2 at the MoS2/MoSe2 heterostructure with respect to
the changes (a) in the interlayer separation d in a suspended
sample with ϵ1 = ϵ2 = ϵ3 = 1, and (b) in the spacer dielectric
constant ϵ2 with a fixed interlayer distance d = 7.15 Å and
external dielectric constants ϵ1 = ϵ3 = 1. Cyan and red curves

correspond to up
(
∆MoS2

↑,τ

)
and down

(
∆MoS2

↓,τ

)
spin results,

respectively. The solid lines in (a) represent a monolayer limit
(d→ ∞) of the MoS2.

different TMD layer compound combinations.

III. RESULTS

Based on the formalism presented in the previous sec-
tions, in the current section, we shall discuss the exciton

TABLE I: Ab initio bandgaps29, Fermi velocity35 and calcu-
lated bare bandgaps using Eq. (19) and the fit r0’s given in
Table II in Appendix C for the four investigated TMDs and
different combinations of spin and valley indexes.

Materials ∆↑ (eV) ∆↓ (eV) vF (eV · Å) ∆0
↑(eV) ∆0

↓(eV)
MoS2 2.71 2.85 2.76 1.29 1.39
MoSe2 2.37 2.55 2.53 1.18 1.32
WS2 2.96 3.30 3.34 1.35 1.61
WSe2 2.63 3.01 3.17 1.14 1.40

FIG. 5: (Color online) Binding energies (EB) of the intralayer
A excitons, referred to as an electron-hole pair lying in the
MoS2 layer, by taking different layer compounds in the TMD
heterostructure formation. Red solid, green dashed, and blue
dotted curves correspond to MoS2−MoSe2, MoS2−WSe2, and
MoS2 − WS2 double-layers, respectively. Panels (a) and (b)
show the dependence of EB on the separation distance of the
layers d, by assuming ϵ1 = ϵ2 = ϵm = 1, and on the dielectric
constant ϵm, by assuming a fixed interlayer distance of d =
41 Å and dielectric constants of the substrate and superstrate
as ϵ1 = ϵ2 = 1, respectively. An enlargement as an inset in
panel (b) emphasizes the small energetic difference between
the binding energies for the MoS2−MoSe2 heterojunction and
the other two, MoS2−WSe2 and MoS2−WS2, double-layers.

wave functions and energies, as well as the binding ener-
gies, for different combinations of double-layer TMD het-
erostructures. For that, we solve the truncated Eq. (15)
using the carrier-carrier potentials given by Eq. (1a) for
the case of intralayer excitons and by Eq. (1b) for the
interlayer excitons. All system parameters assumed here
for each one of the four investigated TMDs that com-
poses the double-layer are expressed in Tables I and II,
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FIG. 6: (Color online) Binding energies (EB) of the inter-
layer excitons in the MoSe2 layer by taking different layer
compounds in the TMD heterostructure formation. Red solid
and cyan dashed curves correspond to MoSe2 − WS2 and
WS2 − MoSe2, respectively, with the interlayer exciton be-
ing formed by the electron (hole) of the first (second) re-
ferred compound. Panels (a) and (b) show the dependence
of EB on the separation distance of the layers d, by assuming
ϵ1 = ϵ2 = ϵm = 1, and on the dielectric constant ϵm, by as-
suming a fixed interlayer distance of d = 41 Å and dielectric
constants of the substrate and superstrate as ϵ1 = ϵ2 = 1,
respectively. An enlargement as an inset in panel (b) empha-
sizes the energetic difference between the binding energies for
the MoSe2 −WS2 and WS2 −MoSe2 double-layers.

as, for instance, the effective masses, material’s bandgap,
and the 2D material screening length r0 that was fitted
to give the exciton binding energy as explained in Ap-
pendix C. It is worth mentioning that tunneling effects of
the charge carriers between the two layers are neglected
here, i.e. we consider the approximation that the elec-
tron and hole wave functions of each TMD layer do not
overlap.

Figures 5(a) and 5(b) show the binding energy of
the intralayer A excitons, which are formed when the
electron-hole pair lies on the MoS2 layer, as a function of
the separation distance (spacer width) d and the dielec-
tric constant of the spacer ϵm, respectively. Results for
three different layer compounds in the heterostructure
formation are shown: (red solid curve) MoS2 − MoSe2,
(green dashed curve) MoS2 − WSe2, and (blue dotted
curve) MoS2 − WS2. As a consequence of the fact that
MoSe2 has the larger r0 value (see Table II) of the four
investigated TMD layers, it was already expected that it
would screen more effectively the electron-hole interac-
tion by the charge-image effect. As verified in Fig. 5(a),

FIG. 7: (Color online) Exciton energy dependency on (a)
the layer separation and (b) the dielectric media ϵm for the
MoSe2-WSe2 heterostructure. IXi denotes the i-th interlayer
exciton, such that IX1 (IX2) is formed by the electron from the
lowest conduction band of the first (second) material and the
hole from the highest valence band of the second (first) ma-
terial with result represented by the solid red (dashed cyan)
curve. Solid blue and yellow curves correspond to the in-
tralayer excitons for WSe2 and MoSe2 cases, respectively. (a)
All dielectric constants are held fixed with the value of 1, and
(b) the layer separation is fixed to d = 41 Å. The shaded gray
region corresponds to the continuum.

it lowers the exciton binding energy by almost 20meV,
whereas the WSe2 and WS2 cases present almost identi-
cal binding energies due to their very similar r0 values.
From Fig. 5(b), one notices that the intralayer A exci-
ton binding energies are strongly affected by the spacer’s
dielectric constant ϵm changes, exhibiting an energetic
variation on the order of 300meV when ϵm varies from
1 to 4. Qualitatively similar results were reported in
the TMD monolayer case in Refs. [6,48], being physically
understood by the spatial localization of the interlayer A
exciton depicted in Fig. 5 that lies only in one of the lay-
ers of the double-layer TMD system. Moreover, a small
energetic difference of the order of a few meV is noted
in Fig. 5(b) for the binding energies of the intralayer A
excitons in the MoS2 when one compares the different
investigated heterostructures. It is emphasized by the
enlargement shown as an inset of Fig. 5(b). It reveals
structural independence in the heterostructure formation
on the binding energy as a function of the dielectric con-
stant, i.e. ϵm changes similarly affect the binding ener-
gies regardless of the adjacent TMD layer of the MoS2-
formed heterostructure.

Let us now focus on the interlayer exciton. When
stacking different TMD monolayers, the corresponding



7

Dirac K points in the reciprocal space of each TMD
monolayer will not coincide, and the distance between
the respective K points of each layer depends both on
the relative rotation of the crystallography orientation
and the mismatch of the lattice parameters of each layer.
Here, within the effective mass approximation, we are ig-
noring both effects. Considering only the uppermost va-
lence band and the lowest conduction band of each layer,
there are two different kinds of interlayer excitons for the
type II band alignment case (see Fig. 1): (i) the lowest
conduction band between the two 2D materials hosting
the electron, whereas the hole is hosted in the valence
band of the adjacent layer that possesses the highest en-
ergy, and (ii) the opposite formation, i.e. the highest
conduction band between the TMD monolayers hosting
the electron, whereas the hole is hosted in the valence
band of the adjacent layer that possesses the lowest en-
ergy. If the corresponding exciton binding energy has a
magnitude smaller than the conduction band offset, this
will result in an excitonic resonance, as the exciton en-
ergy lies inside the conduction band.

Results for these two mentioned kinds of interlayer
excitons in double-layer heterostructures composed by
MoSe2 and WS2 compounds are shown in Fig. 6. The
solid red (dashed cyan) curve corresponds to the in-
terlayer exciton formed by an electron (hole) from the
MoSe2 (WS2) and a hole from the WS2 (MoSe2). Both
interlayer exciton configurations show a binding energy
increase when the layer separation d decreases, attain-
ing values of almost 400 meV for shorter distances of
the order of 10 Å [see Fig. 6(a)]. Such behavior is eas-
ily understood by the electrostatic interaction nature
of the electron-hole attraction, which is enhanced the
shorter the interlayer distance. One also observes in
Fig. 6(a) that the energetic difference of the binding en-
ergies for the two configurations of interlayer excitons,

i.e. |EMoSe2−WS2

b −EWS2−MoSe2

b |, increases when the
interlayer distance decreases. Knowing that the inter-
layer interaction depends on the layer separation and the
screening parameters r0 of heterostructures’ compounds,
and in addition to that, here we are switching the layers
where the electron and hole are positioned, one can link

this energetic difference |EMoSe2−WS2

b −EWS2−MoSe2

b |
in view of the interlayer exciton formation and the con-
sequent overall strength switching of the role of the elec-
trostatic interaction at each layer. Note that the electro-
static interaction of an electron-hole pair separated by a
dielectric media has its amplitude modulated by the elec-
trostatic screening of the layers damped by the separation
between them. Thus, by exchanging the layer configura-
tion, one leads to dampening/enhancing the screening
of the adjacent layer owing to the layer separation and,
consequently, to an energetic difference in the binding
energy of the exciton. A similar feature is observed in
the case that we fixed the layer separation and vary the
dielectric constants of the environment. This is present
in Fig. 6(b). Note that the interlayer exciton binding
energy exhibits the same tendency as the intralayer one

FIG. 8: (Color online) Exciton energy dependency on (a) the
layer separation and (b) the dielectric media ϵm for the MoS2-
MoSe2 heterostructure. IXi denotes the i-th interlayer exci-
ton, such that IX1 (IX2) is formed by the electron from the
lowest conduction band of the first (second) material and the
hole from the highest valence band of the second (first) ma-
terial with result represented by the solid red (dashed cyan)
curve. Solid blue and yellow curves correspond to the in-
tralayer excitons for MoSe2 and MoS2 cases, respectively. (a)
All dielectric constants are held fixed with the value of 1, and
(b) the layer separation is fixed to d = 41 Å. The shaded gray
region corresponds to the continuum. An enlargement around
small layer separation is shown as an inset of panel (a).

[see Fig. 5(b)] as a function of the spacer dielectric con-
stant ϵm, except for the increased energetic distancing
between the two MoSe2 −WS2 and WS2 −MoSe2 cases
when ϵm assumes high values, as emphasized in the inset
of Fig. 6(b).
In what follows, we study the exciton energy, which is

defined by

Eexc = Ec − Ev − |Eb|, (20)

where |Eb| is the magnitude of the exciton binding energy,
Ec the bottom of the conduction band, and Ev the top of
the valence band associated with the electron and hole,
respectively, that contributes to the exciton formation.
For a bright exciton, this value also corresponds to the
energy of the photon that creates the electron-hole bound
state.
From now on, for an MX2-M

′X′
2 heterostructure, we

define the interlayer exciton IX1 as the bound-state of the
electron from the lowest conduction band of the first ma-
terial and the hole from the highest valence band of the
second material and IX2, as the opposite. In Fig. 7, we
show the evolution of the exciton energies, both intralayer
and interlayer, and the bottom value of the conduction
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FIG. 9: (Color online) (a,b) Intralayer and (c,d) interlayer
exciton wave function for the MoS2-MoSe2 heterostructure as
a function of (a,c) the layer separation and (b,d) the dielectric
constant. The dielectric constants are held fixed at 1 for pan-
els (a) and (c), whereas the value for the interlayer distance
is fixed at d = 41 Å in panels (b) and (d).

band as a function of [Fig. 7(a)] the interlayer spacing
and [Fig. 7(b)] the dielectric constant of the spacer. It
is worth mentioning that we use as a reference energy
level the top of the valence band, considering the band
alignment of Ref. [29]. One can see in Fig. 7(a) that the
intralayer exciton energies (solid blue and yellow curves
for WSe2 and MoSe2, respectively) are very robust with
respect to the layer separation due to the simultaneous
changes of the bandgap and the exciton binding energy,
which cancel each other out, keeping the energies of the
intralayer exciton unaltered. As the interlayer separa-
tion d increases, the value of each intralayer exciton en-
ergy converges to the suspended monolayer value minus
the band alignment energy. For the interlayer exciton
(see solid red and dashed cyan curves for IX1 and IX2,

respectively), we have that the exciton energy increases
due to the weakening of the binding energy, which arises
from the sensitivity of the interlayer interaction with re-
spect to the layer separation. For instance, notice in
Fig. 7(a) that the interlayer exciton IX1 energy (dashed
cyan curve) increases 0.15 eV for d = 50 Å. By Fig. 7(b),
one observes that the intralayer exciton energy is more
sensitive to changes in the dielectric media. By increas-
ing the dielectric constant of the space ϵm, the screening
is enhanced and, therefore, weakening the Coulomb in-
teraction. Although the interlayer exciton binding energy
varies less with respect to the dielectric screening, the gap
correction is more acute, leading to a larger fluctuation
of the interlayer exciton energy.

Similarly to Fig. 7, in Fig. 8 we present results for the
exciton energy for (a) different layer separations and (b)
dielectric media of the spacer, but now for the MoS2-
MoSe2 heterostructure. By comparing Figs.7 and 8, one
observes a similar overall behavior for the interlayer and
intralayer excitons, owing to the screened interaction and
the geometrical disposition of the heterostructure, show-
ing qualitative physical trends that are independent of
the TMD layers composition. Unlike the MoSe2-WSe2
case [see Fig. 7(a)], for the MoS2-MoSe2 case, the lowest
exciton energy for small layer separation is the interlayer
IX1, as emphasized in the inset of Fig. 8(a). As seen
in Fig. 8(b), the dielectric media allows tuning both in-
terlayer and intralayer exciton states, lowering their fre-
quencies as larger the dielectric constant, exhibiting a
more pronounced effect on the interlayer case.

Finally, we explore the spatial distribution of the exci-
ton wave function (see Appendices D and E for the ana-
lytical formulation of the configuration space wave func-
tion and the comparison of the assumed methodology
here with other theoretical methods). Figures 9(a,b) and
9(c,d) show color maps of the intralayer and interlayer
exciton wave functions by varying (a,c) the interlayer dis-
tance d and (b,d) the dielectric constant ϵm of the spacer.
Figure 9(a) depicts no pronounced change in the spatial
distribution of the intralayer exciton wave function when
changing the interlayer distance. This can be linked to
the energetic negligible changes in the binding energy
as shown by the very small energetic scale variation in
Fig. 5(a). On the other hand, as already expected, since
by changing the dielectric constant, the electron-hole in-
teraction should vary, Fig. 9(b) shows different spatial
distributions of the intralayer exciton wave function when
varying the dielectric constant of the spacer. The higher
ϵm value, the lower the electron-hole interaction, and con-
sequently, the binding energy value becomes smaller [see
Fig. 5(b)] and thus the exciton wave function spreads
more, i.e. increasing the exciton size. Figures 9(c,d)
demonstrate that the interlayer exciton wave function is
much more sensitive to changes in the layer separation
[Fig. 9(c)] than the intralayer case [Fig. 9(a)]. This is to
be expected because the Coulomb interaction for inter-
layer exciton gets weaker with the increase of the layer
separation, leading to spreading out the in-plane wave
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function. From Figs. 9(c,d), one notices that the wave
function covers a larger spatial region for the interlayer
case compared to the intralayer case [Figs. 9(a,b)], for
both cases of changing the layer separation (being up to
35 Å in panel (c)) and the interlayer dielectric constant
(being up to 50 Å in panel (d)).

IV. CONCLUSIONS

In summary, we have presented a theoretical frame-
work based on an appropriate expansion for the exci-
tonic wave function basis composed here of the Cheby-
shev polynomials to solve the excitonic Wannier equa-
tion for double-layer heterostructure formed by different
TMDs separated by a dielectric spacer. The employed
method showed a fast convergence and numerical reli-
ability with a computationally cheap scheme, owing to
the recursive relations of the Chebyshev polynomials and
the Chawla-Kumar decomposition that allowed us to in-
tegrate out the infrared divergence of the electron-hole
interaction.

Based on the mentioned theoretical formalism, we ex-
plored the excitonic spectrum for intralayer and inter-
layer exciton configurations and its tunability through
dielectric engineering, which arises from the screened
Coulomb interaction. We reported that there is a ro-
bustness of the intralayer state with respect to the layer
separation, while the interlayer exciton energy increases
due to the binding energy sensitiveness to layer separa-
tion. By changing the dielectric media, the intralayer
exciton energy decreases, although not as sharply as the
interlayer exciton, which has the weakest binding for a
large dielectric constant. Moreover, we also have ob-
tained corrections to the bandgap using the semiconduc-
tor Bloch equations formalism, which enables us to un-
derstand how layer separation and dielectric media affect
the exciton energy. Our findings showed that even the
energetic ordering relative to the intralayer and inter-
layer excitons could be modified by changes in the layer
separation and in the dielectric constant of the spacer.
Therefore, by dielectric engineering of the surrounding
environment, we showed that the excitonic properties in
double-layer van der Waals materials could be modified,
enabling a bandgap control that suits different techno-
logical applications.

We hope that our theoretical framework and results
based on Chebyshev’s polynomial basis for Wannier ex-
citonic complexes will prove useful for the exploration of
optoelectronics properties in different van der Waals ma-
terials with a layer-by-layer stacking and surrounding en-
vironment controlling, and moreover being a simple and
efficient tool for explaining cutting edge experiments in
double layer 2D semiconductors, such as nonlinear opti-
cal susceptibilities.
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Appendix A: RK potential in a heterostructure

In order to derive the RK potential for the chosen het-
erostructures, the Poisson equation has to be solved con-
sidering three dielectric regions separated by two layers
located at z = 0 and z = −d (see Fig. 1). Each layer has
a polarization coefficient denoted by r1 and r2, respec-
tively. Considering a charge Q1 at z = 0, we look for the
potential distribution. The presence of a charge at the
uppermost layer will induce a charge density ρind(r⃗) due
to polarization. Therefore, the equation which we must
solve is

−∇2ϕ(r⃗) =
1

ϵ0
ρ(r⃗). (A1)

Replacing the charge density ρ(r⃗), one gets

−∇2ϕ(r⃗) =
1

ϵ0
(Q1δ(r⃗) + ρind(r⃗)) . (A2)

The induced charge density term is

ρind = σ1δ(z = 0) + σ2δ(z + d)− ∇⃗ · P⃗ , (A3)

where P⃗ is the medium polarization. If we consider that
the medium polarization is linear, we can write the last
term of Eq. (A3) as

∇⃗ · P⃗ = ϵ0χi∇⃗ · E⃗ = −ϵ0χi∇2ϕ(r⃗) , (A4)

which leads to the following partial differential equation

−∇2ϕ(r⃗)=
1

ϵ0

[
Q1δ(r⃗)+σ1δ(z)+σ2δ(z+d)+ϵ0χi∇2ϕ(r⃗)

]
.(A5)

Next, we apply a planar Fourier transform and rearrange
Eq. (A5), which yields for z > 0 to

(1 + χ1)

(
q2 − ∂2

∂z2

)
Φ(q⃗, z) = 0, (A6)
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where q⃗ denotes the planar Fourier components. A pos-
sible solution for Eq. (A6) is

Φ(q⃗, z) = Ae−qz +A′eqz, (A7)

and by noting that in the limit of large z the potential
should tend to zero, resulting to

Φ(q⃗, z) = Ae−qz , z > 0. (A8)

Performing a similar procedure for the surrounded re-
gions associated with the spacer and the substrate, we
obtain, respectively

Φ(q⃗, z) = B sinh qz + C cosh qz , −d < z < 0 , (A9a)

Φ(q⃗, z) = Deqz , −d < z . (A9b)

Using the continuity of the potential, let us now rear-
range Eq. (A5) and integrate it around each of the layers,
leading to a system of equations that allows us to deter-
mine the coefficients of the potential. Thus, rearranging
Eq. (A5), we obtain

−(1+χi)∇2ϕ(r⃗)=
1

ϵ0
[Q1δ(r⃗)+σ1δ(z⃗)+σ2δ(z+d)] , (A10)

and integrating around z = 0, we get∫ +δ

−δ

dz ϵi

(
q2 − ∂2

∂z2

)
Φ(q⃗, z) = −ϵ1

(
∂Φ(q⃗, z)

∂z

)
z=δ

+ ϵ2

(
∂Φ(q⃗, z)

∂z

)
z=−δ

=
Q1

ϵ0
+

Σ1

ϵ0
. (A11)

Next, by evaluating the derivatives and taking the limit
δ → 0, we arrive at

ϵ1qA+ ϵ2qB =
Q1

ϵ0
+Σ1ϵ0. (A12)

The planar Fourier transform of σ1 and Σ1 can be found
by using the in-plane polarization

σ1 = −∇⃗ · P⃗∥ = −r1ϵ0
[
∇2ϕ(r⃗)

]
∥ , (A13)

which leads to

Σ1 = −r1ϵ0q2Φ(q⃗, z = 0) = −r1ϵ0q2A . (A14)

Replacing Eq. (A14) into Eq. (A12), one gets one of the
equations to obtain the coefficients A, B, C, and D [see
below Eq. (A15a)]. Moreover, due to the continuity of the
potential at the interface at z = −d, using Eqs. (A9a),
(A9b), and (A10), and also by taking the limit such that
δ → 0, noting that A = C, one obtains the other two
equations [Eqs. (A15b) and (A15c)] of the system of equa-
tions

(ϵ1q + r1q
2)A+ ϵ2qB =

Q1

ϵ0
, (A15a)

−B sinh(qd) +A cosh(qd) = De−qd, (A15b)

ϵ2 [B cosh(qd)−A sinh(qd)] = (ϵ3 + r2q)De
−qd. (A15c)

Using Eq. (A15c), we can write

De−qd = ϵ2
B cosh(qd)−A sinh(qd)

ϵ3 + r2q
, (A16)

which in turn implies that only A and B are relevant. By
defining the function Gj(q) as

Gj(q) =
cosh(qd)(ϵ3 + rjq) + ϵ2 sinh(qd)

ϵ2 cosh(qd) + sinh(qd)(ϵ3 + rjq)
, (A17)

the solution of the system of equations [(A15a)-(A15c)]
for A and B results in

A =
−Q1

qϵ0 [ϵ1 + r1q + ϵ2G2(q)]
, (A18a)

B = G2(q)
Q1

qϵ0 [ϵ1 + r1q + ϵ2G2(q)]
. (A18b)

The potential in momentum space is then given by

Φ(q⃗, z)=


Aeq(z+d) [cosh(qz) +G2(q) sinh(qz)] ; z < −d,
A [cosh(qz)−G2(q) sinh(qz)] ;−d < z < 0,

Ae−qz; z > 0.

(A19)
Since we are particularly interested in the intralayer
and interlayer effects, we can write explicitly, using
Eqs. (A17), (A18a), (A18b), (A19), and by also doing
some relabeling, the following expressions

Vii(q) =
−e2

qϵ0 [ϵ1 + riq + ϵ2Gj(q)]
, (A20a)

Vi,j ̸=i(q) =
e2 [cosh(qd)−Gj(q) sinh(qd)]

qϵ0 [ε1 + riq + ε2Gj(q)]
, (A20b)

where Vii(q) and Vi,j ̸=i(q) are the intralayer and the in-
terlayer potentials, respectively. A interesting property
of the Gj(q) function [Eq. (A17)] is that

lim
d→∞

Gj(q) = lim
d→∞

eqd(ϵ3 + rjq) + ϵ2e
qd

ϵ2eqd + eqd(ϵ3 + rjq)
= 1. (A21)

Using this result in Eq. (A20a), we arrive at a fairly fa-
miliar result

VRK(q) =
−e2

qϵ0(1 + r̄1q)
, (A22)

where r̄1 = r1/(ϵ1+ϵ2). Equation (A22) is the RK poten-
tial in momentum space. A comparison between the de-
rived intralayer [Eq. (A20a)] and interlayer [Eq. (A20b)]
potentials and the Coulomb potential is shown in Fig. 2.

Appendix B: λ recurrence relations

We define

λi(u) =

∫ 1

−1

du′
Ti(u

′)

u− u′
, (B1)
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TABLE II: Effective masses, screening factor r0, and the
bandgap of each material. The masses are obtained from
Ref. [35] and the screening factors are obtained via a fitting
procedure.

Materials me
35 mh

35 r0 r0
38 ∆K

29(eV) Eb(meV)

MoS2 0.47 0.54 27.04Å 23.45Å 2.71 −753.049

MoSe2 0.58 0.6 35.34Å 26.13Å 2.37 −711.750

WS2 0.27 0.36 20.85Å 16.59Å 2.91 −900.051

WSe2 0.29 0.36 21.80 Å 20.09Å 2.57 −890.052

that obeys the following relations

λ0(u) = ln

∣∣∣∣1 + u

1− u

∣∣∣∣, (B2)

λ1(u) = −2 + uλ0(u), (B3)

λk+1(u)− 2uλk(u) + λk−1(u) = 2
[1 + cos(kπ)]

k2 − 1
. (B4)

Such recurrence relations and definitions are used in the
analytic solution of In,l in Eq. (10) in the Chebyshev
method’s Section IIA.

Appendix C: Fitting procedure

Our goal is to describe the electrostatic effects due to
the geometry presented in Fig. 3, starting from the exci-
ton binding energy and bandgap of suspended monolayer
samples. For this, we consider the experimental A exci-
ton energy EA measured for suspended samples49–52, the
bandgap ∆K calculated in Ref. [29], and the SOC split-
ting of Ref. [35]. The electron and hole of a bright exciton
come from bands with the same spin and valley indexes,
thus, for negative SOCCB (see Fig. 3), the exciton bind-
ing energy is blue-shifted for the same magnitude.

First, we obtain the screening length r0 fitting the
value of the binding energy of Table II for each MX2

by solving the Wannier equation (3) with the RK po-
tential (A22). With this value of r0, we solve the gap
equation (19), also considering the RK potential, to ob-
tain the “bare” transition energy ∆sτ,0, which gives the
transition energy calculated by Ref. [29].

Appendix D: Configuration space wave function

Once Eq. (15) is solved, we can obtain the wave func-
tion in configuration space using the Fourier transform

ψn,ℓ(r) =

∫
d2p eip·rψℓ(p)e

iℓϕ′
. (D1)

By implementing the angular integration, we have that

ψn,ℓ(r, ϕ) =
2

ξ2
eiℓϕ

∑
n

cn,ℓ

∫ 1

−1

du
1 + u

(1− u)3

× Jℓ

(
r

ξ

1 + u

1− u

)
f(u)Tn(u), (D2)

with Jℓ being the Bessel function of order ℓ. A compu-
tationally convenient choice for f(u) is given by

f(u) ≡ (1− u)3

1 + u
, (D3)

since it demonstrated a fast convergence. To understand
the assumed procedure, let’s exemplify with the calcula-
tion of the following quantity F (q) of interest

⟨F ⟩ =
∫
dqqF (q)ψn1

(q)...ψnN
(q). (D4)

To do this, first, we write the above equation in terms of
u

⟨F ⟩ =

∫
duF (q(u))

[
1 + u

(1− u)3
f(u)

]nN

×
∑

j1...jnN

cn1
j1
Tj1(u)...c

nN
jnN

TjnN
(u). (D5)

The next step is to write the integrand of Eq. (D5) in
terms of a single Chebyshev expansion

F (q(u))

[
(1− u)3

1 + u

]nN−1

×
∑

j1...jnN

cn1
j1
Tj1(u)...c

nN
jnN

TjnN
(u)

=
∑
k

bkTk(u). (D6)

To do this, we use the procedure of convolution explained
in Appendix B. After that, we can use the Clenshaw-
Curtis to obtain

⟨F ⟩ =
∞∑
k=0

2b2k
1− (2k)2

. (D7)

Appendix E: Comparison with other methods

In order to corroborate our obtained results in Sec. III,
it is important to compare the Chebyshev method with a
different method for solving the integral equation Eq. (3).
For this purpose, let’s compare the method discussed in
the paper with the more traditional quadrature method:
the Gauss-Legendre quadrature. Let’s rewrite Eq. (3) as

ψℓ(p) =
1

E − Ep

∫ ∞

0

dp′

2π
p′Vℓ(p, p

′)ψℓ(p
′), (E1)

by rewriting the integration as a Gauss-Legendre quadra-
ture and applying a hyperbolic mapping, we have

ψℓ(p) =
1

E − Ep

∑
i

ωi(1 + xi)Vℓ(p, xi)ψℓ(xi)

π(1− xi)3
, (E2)
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TABLE III: The convergence of exciton ground state bind-
ing energy as a function of the number of radial momenta
mesh points Np, obtained with RK potential for the MoS2

from the Gauss-Legendre quadrature method. The number
of angular mesh points is 61. The exciton binding energy of
−753.1meV for Np → ∞ is obtained with a quadratic extrap-
olation, while the Chebyshev Method yields a binding energy
of −753.0meV.

Np Eb (meV)
300 −788.3
400 −778.8
500 −773.3
600 −769.5
700 −768.2
800 −765.4
900 −764.1
1000 −762.9
Np → ∞ −753.1

which is a system of equations in which we search for unit
eigenvalues with different input energies E. Results ob-
tained via the Gauss-Legendre quadrature for the exciton
ground state binding energy of MoS2 for different num-
bers of mesh points for the radial momenta and fixed
angular mesh points are shown in Table III. From Ta-
ble III, one can see that the Chebyshev method, whose
resulting value is Eb = −753.0 meV, agrees with the in-
terpolated Nyström method very well, which is a more
computationally demanding method and for a quadratic
extrapolation (Np → ∞) gives Eb = −753.1 meV, i.e.
showing an energetic difference between the methods of
0.1 meV.

To further validate our method, we also compare the
wave functions for the first four states, i.e. ground,
first excited, second excited, and third excited states,
obtained via the Chebyshev method (solid cyan curves)
and the Gauss-Legendre quadrature (dashed red curves)
in Fig. 10, assuming the RK potential for the interlayer
electron-hole interaction. Figure 10 shows that both
methods are very reliable and generate similar quanti-
tative and qualitative results. However, the Chebyshev
method exhibits some oscillations for large momenta,
where the wave function is in the order of 10−22.

Another good comparison for the binding energy value
could be achieved with variational-like methods such as
the one by Griffin, Hill, and Wheeler (GHW)53,54. Here,
we consider a basis with a set of parameters ζ and calcu-
late the secular equation generated by the inner product
with the Hamiltonian in real space. The basis chosen is

ψn,ℓ(r⃗) = Anr
|ℓ|eiℓϕ

∑
j

cnj e
−ζjr, (E3)

which yields∑
j

[H(ζi, ζj)− S(ζi, ζj)En] c
n
j = 0, (E4)

FIG. 10: (Color online) Comparison of wave functions ob-
tained via (dashed red curves) the Gauss-Legendre quadra-
ture method and (solid cyan curves) the Chebyshev method
for the first four states of the MoS2 exciton using the RK po-
tential. ψi(p) is the i-th excited state for the s-wave. Note
that the y-axis is in log scale, and the number of peaks rep-
resents the number of nodes in the excitonic wave function.

where

H(ζi, ζj) =

∫
drψ∗

n,ℓ(r⃗)Hψn,ℓ(r⃗), (E5a)

S(ζi, ζj) =

∫
drψ∗

n,ℓ(r⃗)ψn,ℓ(r⃗). (E5b)

The set of values for the parameter ζ is chosen in a log-
arithmic grid, such as Ω = Γ−1 ln ζ. Here, we take Γ = 5
and set the interval [−2, 2]. The number of points by
which we subdivide the interval is obtained by trial and
error, which yields N = 48. By choosing this set of
parameters and grid, we arrive at a binding energy of
Eb = 752meV, which shows a good agreement with our
Chebyshev results.

Results obtained via a variational-like approach for
trion binding energies and the corresponding three-body
wavefunctions were reported by K. W. Song et al.55,
which used a decomposition approach of the three-body
wavefunction with a large Gaussian basis set (N = 1820)
multiplied by Hermite polynomials of n-th order, being
characterized by two variational-like parameters related
to the anisotropic 2D Gaussian function, that can be cho-
sen arbitrarily, and one more associated with the total
number of basis functions. E. Hiyama et al.56 also inves-
tigated few-body systems using a variational approach
combining the Gaussian expansion and the Rayleigh-
Ritz-based methods, reporting, for instance, the use of
an 880 basis set to calculate bound and scattering states
of 4H-trimer. In both cases, a large number of expansion
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basis comes from the need to correctly cover the poles
of the Coulomb interaction in k-space, which is overcome
within our Chebyshev method since the kernel divergence

in the integration is performed analytically, and the ma-
trix elements are defined by recursion relations together
with projections on the polynomial basis.
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