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Plasmon-enhanced optical nonlinearity in graphene nanomeshes
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Department of Electrical and Computer Engineering,
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Using the density-matrix formalism, we show that graphene nanomeshes (GNMs) — graphene
sheets patterned with anitdots — have large plasmon-enhanced nonlinear optical response. GNMs
can be designed to behave as quasi-one-dimensional plasmonic crystals in which plasmons with large
propagation lengths are efficiently excited. The associated third-order Kerr and third-harmonic-
generation susceptibility can be as high as 10−7 and 10−9 m2V−2, respectively, over the mid-to-
near-infrared frequency range. Furthermore, carrier-density tuning in GNMs can flip the propagation
direction of plasmonic waves and enables bidirectional switching of optical signals.

I. INTRODUCTION

Nonlinear optics offers a promising platform for con-
trolling and manipulating light at the nanoscale for
nanophotonic applications [1–5]. Nonlinear optics relies
on matter-mediated photon–photon interactions, which
are intrinsically very weak. Hence, realizing nonlinear
nanophotonics requires new materials and structures that
will enhance nonlinear optical effects.

Graphene, the two-dimensional allotrope of carbon, of-
fers a promising plasmonic platform for optoelectronic
and photonic applications [6–8]. Being a semimetal,
graphene has a lower electronic density of states and
a lower number of free carriers per atom than metals
[9]. As a result, plasmons in graphene are found in
a lower frequency range (mid-to-near-infrared) than in
metals (near-infrared to ultraviolet) [10–13]. This makes
graphene a more suitable platform for applications in the
telecom spectrum [6–8]. Another advantage of graphene
with respect to metals is that the graphene carrier density
and, consequently, its optoelectronic properties, can be
electrically tuned by an external gate voltage. Graphene
supports electrically tunable sheet carrier densities of up
to ns = 1014 cm−2, or equivalently, the Fermi energies of
up to EF = ℏvF

√
ns ≈ 1.2 eV, with the Fermi velocity

vF = 106 ms−1 [14–16].
Graphene and its nanostructures strongly interact with

light and are a fitting class of materials for nonlinear op-
tics applications [17, 18]. It is therefore not surprising
that graphene nonlinear optics and graphene plasmonics
have both been very active areas of research in recent
years [6, 19, 20]. A proven way to enhance light–matter
interaction and nonlinear response is by integration of
graphene with systems that support photonic resonances
[1, 21–27]. An alternative is through plasmonic field
enhancement combined with quantum confinement [28],
which is attractive because of electrical tunability of the
carrier density (and thus plasmonic resonances) by a back
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gate. For example, plasmon-enhanced Kerr nonlinearity
of small graphene nanoislands with sub-10-nm features
could be as large as 10−11 m2V−2, almost four orders
of magnitude greater than in graphene sheets [18, 29].
However, the synthesis of sub-10-nm nanoislands with
precise geometry, size, and edge termination, which is re-
quired for the control of their plasmonic response [18],
is very challenging and makes these systems difficult to
envision in integrated nanophotonics applications.

In contrast, the synthesis of graphene sheets and in-
tegration of them into nanophotonics and nanoelectron-
ics are mature, well-developed processes [30, 31]. How-
ever, launching propagating plasmonic waves in graphene
is challenging in practice because the wavevectors of
graphene plasmons are much larger than the wavevector
of the free-space electromagnetic waves with the same
frequency. Owing to the wavevector mismatch, graphene
plasmons cannot be simply excited by free-space light.
Fortunately, one can launch propagating plasmonic waves
in graphene sheets and ribbons patterned with periodi-
cally distributed antidots (holes). The periodicity aids
with momentum conservation, which enables plasmon ex-
citation. Successful plasmon excitation in these struc-
tures has been experimentally demonstrated [32–36].

In this paper, we show that graphene nanomeshes
(GNMs) — graphene sheets patterned with antidots —
offer a promising core material for nonlinear optics ap-
plications. Figure 1 shows the schematic of our proposed
graphene nanomesh sitting on the hexagonal boron ni-
tride (hBN) substrate. The GNM can be fabricated by
etching a rectangular antidot superlattice out of the sup-
ported graphene sheet. The antidot diameter is d and
superlattice periods are a and 10a along the x- and y-
axes, respectively. We chose a periodicity of a = 100 nm
and the antidot diameter of d = 30 nm. Fabrication of
such antidot superlattices is entirelty feasible using ex-
isting experimental techniques [30, 37]. We show that
properly designed GNMs support plasmonic waves with
long propagating lengths in the mid- to near-infrared fre-
quency range. Owing to the plasmonic field enhance-
ment, GNMs have a dynamically tunable, broadband,
and strong nonlinear plasmonic response. The GNM
third-harmonic-generation and third-order Kerr suscep-
tibilities can be as high as 10−9 and 10−7 m2V−2, re-
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FIG. 1. Schematic of a graphene nanomesh, placed on
an hBN substrate. Incident light with in-plane TM polar-
ization (meaning nonzero electric-field component along the
plasmon-propagation direction) causes linear as well as third-
order nonlinear optical responses. (Inset) The unit cell of the
rectangular superlattice: the lattice constants along the x-
and y-axes are a and 10a, respectively. The antidot diameter
is d.

spectively. The latter values far exceed the Kerr suscep-
tibilities of 10−13–10−11 m2V−2 reported in other two-
dimensional systems such as [38], black phosphorus [39],
tin sufide [40], and tellurium-based devices [41]. Our find-
ings reveal the capability of quasi-one-dimensional GNMs
for nonlinear nanophotonic applications, particularly bi-
directional switching and modulation of optical signals.

The rest of the paper is organized as follows. In Sec.
II, we overview the theoretical model and discuss the
dominant scattering mechanisms in the different carrier-
density ranges. In Sec. III, we focus on the plasmonic
and optical properties of the GNMs. We conclude in Sec.
IV.

II. THEORETICAL MODEL

The plasmonic excitations of the GNM in Fig. 1(a) are
calculated using the density-matrix approach [17, 42, 43]
in response to a TM-polarized incident light guided along
the x-direction. The time evolution of the electronic den-
sity matrix ρe(t) in the Schrödinger picture reads:

dρe(t)

dt
=− i

ℏ
[He + VSCF(t), ρe(t)] +

[ρe(t)− ρ0]

τF
. (1)

Here, ρ0 is the equilibrium density matrix, He is the
unperturbed electronic Hamiltonian, VSCF(t) is the self-
consistent field, and τF denotes the electron relaxation
time. To accurately calculate τF , we account for elec-
tron scattering via intrinsic phonons, ionized impurities,
surface optical (SO) phonons of the hBN substrate, and
antidot-edge roughness (AER). For the GNMs of inter-
est, the antidot area is less than 1% of the unit cell area.

Given the relatively tiny area of antidots, we could ac-
curately approximate the GNM bandstructure with the
graphene bandstructure. Hence, the energy dispersion is
approximated as linear and isotropic Ekl = ℏvF |k|, with
l = 1 and l = −1 for the conduction and valence bands,
respectively. We perturbatively solve Eq. (1) for the
density matrix via a similar procedure as in Ref. [17],
and calculate the surface polarization P (s,ps), with s and
ps denoting the response order and the corresponding
harmonic, respectively. Next, we calculate the macro-
scopic quantities such as the linear dielectric function
ε, loss function σabs = −Im{1/ε} (which measures field
enhancement), and the sth-order pths -harmonic nonlinear
susceptibility with respect to the external field (χ(s,ps)).
We obtain the plasmon dispersion by seeking the peaks
of the loss function. The plasmon propagation length
(Lp) equals 1/∆q, where ∆q is the half width at half
maximum of the loss-function peak in the wavevector di-
rection [13]. The numerical procedure to solve Eq. (1),
calculation of scattering rates and optical properties are
given in Appendices A and B. While the derivations of
most relevant scattering rates were published previously
in [10], the electron scattering rate from antidot edge
roughness (AER) is new and had not been published be-
fore; details of this derivation can be found in Appendix
B 1.

In order to have pronounced plasmonic effects, we
need to efficiently couple the diffracted wave and plas-
mon modes and excite plasmon modes with sufficiently
long propagation length. To start, it is necessary to have
a nonzero component of the electric field along the and
plasmon wave vector (see Appendix A); if the sheet were
considered a planar plasmonic waveguide, incident light
would have to be TM polarized. While our calculation
does not require a specific way of achieving such exci-
tation, it could be achieved, for example, by free-space
TEM light at oblique incidence. Furthermore, optimizing
the plasmon propagation length, and, consequently, the
plasmonic field enhancement, requires a thorough knowl-
edge of the contributing plasmon damping pathways. A
key damping pathway is Landau damping, which hap-
pens when a plasmon decays to generate an electron–
hole pair. Increasing EF pushes the onset of Landau
damping toward higher frequencies [11, 12]. To com-
pletely switch off the Landau damping up to the tele-
com frequency range, the Fermi energy should be ∼ 1
eV (or ns = 7 × 1013 cm−2) [11]. As mentioned ear-
lier, graphene’s carrier density can be electrically tuned
to these high values by a back-gate bias voltage.

In the absence of Landau damping, other important
electron scattering mechanisms are intrinsic phonons,
ionized impurities, AER, and surface optical (SO)
phonons of the hBN substrate. Electron scattering with
intrinsic phonons increases parabolically with electron
energy (see Appendix B). Therefore, at room temper-
ature and high Fermi energies of interest (∼ 1 eV),
screened intrinsic phonons become the dominant dissi-
pative mechanism and significantly diminish the plasmon
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propagation lengths. However, screened intrinsic-phonon
scattering decreases with decreasing temperature, and so
does its detrimental effect on Lp. Figure 2 shows the
electron scattering rates, τ−1(E), for different scattering
mechanisms for EF = 1 eV at 77 K. τ−1 is calculated
as a function of energy with respect to the bottom of
the conduction band. We chose very conservative values
for the relevant scattering parameters. We assume the
impurity density 4 × 1011 cm−2, an order of magnitude
larger than in the typical graphene-on-hBN devices [44].
The AER is assumed to be exponentially correlated, with
an rms roughness of 2 nm and a correlation length of 3
nm. As can be seen, AER scattering is the dominant
dissipative mechanism for EF = 1 eV. However, at lower
values of the Fermi energy, other scattering mechanisms
dominate. The inset of Fig. 2 shows the electron relax-
ation time τF ≡ τ(EF ) as a function of the Fermi energy.
At low carrier densities, ionized impurities are the dom-
inant scattering source. If we increase the carrier den-
sity up to intermediate values, SO phonons become the
major scattering mechanism. At high carrier densities,
as seen earlier, AER scattering is the major dissipative
mechanism. AER scattering rate increases with carrier
density but changes negligibly with temperature. Given
the conservative values used to calculate τF , the electron
relaxation time is ∼ 0.8 ps for EF ≈ 1 eV.

III. PLASMONIC AND OPTICAL RESPONSE
OF GRAPHENE NANOMESHES

Given the electron relaxation time, we can calculate
the plasmon propagation length. Figure 3 shows the nor-
malized plasmon propagation length Lp/a along the x-
direction as a function of frequency for different Fermi
energies. Since the highest optical phonon mode of hBN
is 195 meV, we are interested in the frequencies greater
than about 200 meV in order to avoid plasmon suppres-
sion due to the coupling between plasmons and the sub-
strate SO phonons [10]. With increasing frequency, Lan-
dau damping kicks in and hinders plasmon propagation,
and requires higher carrier densities to counter. In Fig.
3, the dips in Lp/a mark the onset of Landau damping.
For EF = 1 eV, Landau damping is negligible in the fre-
quency range of interest, and we have Lp/a between 8 to
17, with an average value of 11.8. These long plasmon
propagation lengths imply efficient diffraction coupling
and excitation of plasmonic waves. In contrast to what
is happening in the x-direction, plasmons barely travel
two lattice constants (20a) in the y-direction and decay
too fast to benefit from the periodic pattern. Since plas-
mons experience the GNM in the y-direction the same as
an unpatterned graphene sheet, the diffraction coupling
is extremely weak to launch plasmons in this direction.
In other words, our designed GNM behaves as a quasi-
one dimensional (quasi-1D) plasmonic crystal. The 2D
GNM with antidots behave as quasi-1D plamonic crys-
tals by virtue of different periodicity along different axes.
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FIG. 2. Electron relaxation rates for different scattering
mechanisms vs energy with respect to the bottom of the con-
duction band for a doped GNM with EF = 1.0 eV at 77 K. For
the GNM, a = 100 nm and d = 30 nm. The active scattering
mechanisms are intrinsic phonons (LA/LO phonons), ionized
impurities, antidot-edge roughness (AER), and surface opti-
cal (SO) phonons of the hBN substrate. The impurity density
is 4 × 1011 cm−2. The AER is assumed to be exponentially
correlated with an rms roughness of 2 nm and a correlation
length of 3 nm. (Inset) The GNM electron relaxation time as a
function of the Fermi energy. At low (blue-shaded), interme-
diate (magenta-shaded), and high (red-shaded) EF , ionized
impurities, SO phonons, and AER are the dominant scatter-
ing mechanisms, respectively. The color of a region in the
inset corresponds to the color of the scattering-rate curve for
the dominant mechanism in the main panel.
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FIG. 3. Normalized plasmon propagation length for different
Fermi energies. For lower Fermi energies, Landau damping
occurs at lower frequencies and results in a massive decrease
in the plasmon propagation lengths.
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A key advantage of quasi-1D plasmonic crystals over 2D
ones is that plasmonic waves are launched coherently in
the predetermined direction.

Now, given the appropriately designed GNM, we can
investigating its optical properties by calculating the loss
function (σabs). Figure 4(a) shows the loss function as a
function of EF and frequency. The bright narrow strips
correspond to plasmon resonances. A plasmon is excited
when the difference between the wavevector of the illu-
mination and the wavevector of the plasmon is an integer
multiple of a reciprocal-lattice vector’s magnitude (i.e.,
2πn/a, with n denoting the diffraction order). For each
diffraction order, there is a plasmon branch comprising a
pair of bright narrow strips: forward-propagating (FWD)
and backward-propagating (BKWD) modes along the x-
direction. (The splitting of forward and backward prop-
agation comes from the asymmetry with respect to the
polarization of the input light. There are terms involving
a dot product between the plasmon wave vector and the
in-plane electric field that is key for higher-order field
induction; see Eqs. (A4) and (A6) in Appendix A.1.
If plasmons are excited by free-space light, this would
require oblique incidence.) The analytical plasmon dis-
persion is n = ξaω2, where ξ = ℏ2ϵ0ϵb/(e2EF ) and ϵb
denotes the background relative permittivity. (The back-
ground permittivity is defined as the average of the val-
ues for the top and bottom dielectrics. In our case, as
the top half-domain is air, ϵb = 1+ϵhBN

2 [10].) Based on
the analytical plasmon dispersion, the frequency sepa-
ration of two consecutive branches (e.g., n and n + 1)
equals ∆ω =

(√
n+ 1−

√
n
)
/
√
ξa, which decreases at

higher diffraction orders as well as higher Fermi ener-
gies. Within a branch and for a fixed Fermi energy, the
BKWD and FWD modes are separated by δω, with the
BKWD mode occurring at a smaller frequency. In the
limit of δω ≪ ω, δω is independent of frequency and
equals (2πcξ)−1. For the Fermi energies and frequencies
of interest (EF ∼ 1 eV), δω is ∼ 5 meV.

After characterizing the plasmonic response of the
GNM, we calculate its nonlinear optical response. Fig-
ures 4(b)–(d) show the loss function, third-order Kerr
susceptibility (χ(3,1)), and THG susceptibility (χ(3,3)) for
the FWD modes as a function of frequency and for a
fixed EF . For EF = 1 eV, χ(3,1) and χ(3,3) are as high
as 10−7 and 10−9 m2V−2, respectively. The loss function
in Fig. 4(b) quantifies plasmonic field enhancement, and
can be as high as 300–400 at resonance. While plasmon
enhancement increases the GNM optical nonlinearity to
unprecedented large values, its effect is narrowband. Ow-
ing to the long propagation length of plasmons, the loss-
function peaks at plasmon resonances are narrow and,
therefore, plasmons significantly enhance the nonlinear
optical response but over a narrow frequency range. The
solution to broaden the nonlinear optical response is tun-
ing the plasmon resonances by changing the carrier den-
sity by changing the back-gate voltage. The gray-shaded
areas in Figs. 4(b)–(d) represent the corresponding quan-
tities calculated for Fermi energies in the range of 0.85

to 1.05 eV, or, equivalently, the carrier density range of
5 × 1013 to 8 × 1013 cm−2. By tuning the carrier den-
sity over this small range, very large optical nonlinearity
(as high as 10−7 m2V−2 for χ(3,1) and 10−9 m2V−2 for
χ(3,3)) is achieved over a broad frequency range. The
tunable, broadband, and strong nonlinear plasmonic re-
sponse makes GNMs an excellent platform for the mod-
ulation of optical signals.

It should be noted that the GNM-on-hBN device also
provides high modulation speed. In case of our graphene-
based nanomesh, because the carrier mobility is excep-
tionally high, the modulation speed is not limited by the
carrier transit time. In fact, the limiting factor is the
parasitic response of the device. For instance, the exper-
imentally measured values for the unity-power gain fre-
quencies, fmax, of graphene-hBN devices are ∼ 10 GHz
[45, 46].

In addition to modulation applications, GNMs offer
impressive capabilities for switching applications. Fig-
ures 4(e)-(g) show the GNM σabs, χ

(3,1), and χ(3,3) as a
function of the Fermi energy at the fiber-optics frequency
(ω = 0.8 eV, or equivalently, 1.55µm) and for both FWD
and BKWD modes. (See Supplementary Material for
breakdown into real and imaginary parts. [47]) For a
given diffraction order and frequency, the FWD mode is
excited at a lower Fermi energy. By fine-tuning the Fermi
energy, which is readily achieved by a back gate, not only
could we control the strength of the GNM plasmon and
nonlinear optical responses, but we could also determine
the direction of the plasmonic wave. The latter capabil-
ity enables bi-directional switching of optical signals by
small changes in the Fermi level, basically moving the
system between FWD and BKWD peaks. It should be
emphasized that, given their frequency separation of ∼ 5
meV and carrier-density separation of ∼ 3× 1012 cm−2,
the FWD and BKWD modes can be completely resolved.

It is worth emphasizing that the above calculations
were all done for graphene on hBN. For completeness, we
also calculated third-order response of graphene on two
other common substrates, the polar SiO2 and the non-
polar diamondlike carbon (DLC) [10], and all third-order
susceptibilities are comparable to one another. (See Sup-
plementary Material for the role of different substrates.
[47]) The main reason is that the AER scattering is the
dominant scattering mechanism in all systems (it over-
shadows SO scattering in SiO2, and DLC has no SO scat-
tering). Therefore, the susceptibilities of the nanomesh
do not change drastically on different substrates. How-
ever, SO phonon modes are critical in determining the
operating- frequency range, given that SO phonon modes
set the lower limit of the excitation frequency. Fur-
thermore, the energy separation between the FWD and
BKWD modes depends on the substrate (see Sec. III for
a δω estimate).
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and backward-propagating (red) modes.

IV. CONCLUSION

In summary, we showed that GNMs have a large
plasmon-enhanced nonlinear optical response. We de-
signed a GNM that behaves as a quasi-one-dimensional
plasmonic crystal in which plasmons with large propa-
gation lengths are efficiently excited. The periodicity of
the GNM can be optimized for efficient diffraction cou-
pling at given frequencies. We showed that the GNM
has tunable, broadband, and strong nonlinear plasmonic
response. The third-order Kerr and THG susceptibility
can be as high as 10−7 and 10−9 m2V−2, respectively,
over the mid- to near-IR range. Moreover, by fine-tuning
the carrier density, we could also switch the direction of
the plasmonic wave. These findings suggest the GNM as
a core material for integrated nanophotonic applications,
particularly for switching and modulation of optical sig-
nals.
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Appendix A: Calculation of the GNM nonlinear
plasmonic response

1. The self-consistent-field approximation

Here, we use the perturbation theory to calculate the
graphene nanomesh (GNM) third-order susceptibility.
We assume an incident field as Vinc(t) = V eiq1·r−iωt. r is
the position vector in the x–y plane. The GNM periodic
pattern diffracts the incident light. If a diffracted mode
couples with a plasmon mode, the self-consistent field
reads VSCF(t) = VSCFe

iq̃·r−iωt, where q̃ is the wavevec-
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tor of the excited plasmon corresponding to ω and q. The
induced carrier density can be written as

n(r, z, t) = δ(z)
∑
s,ps

n
(s,ps)
ind eps(iq̃·r−iωt), (A1)

where s is a natural number, denoting the perturba-
tion order and ps is the harmonics order. Given the
expansion of the induced carrier density, the inhomoge-
neous wave equation for the induced potential energy,

V
(s,ps)
ind (z), reads(

∂

∂2z
+ (iQps

)2
)
V

(s)
ind (psω, z) = − −e

εbε0
n(s,ps)δ(z).

(A2)

where (iQps)
2 = εb(psω)2

c2 − |psq̃|2. In the nonretarded
regime, we can assume Qps ≈ |psq̃|. By solving the above

equation for V
(s,ps)
ind (z), we obtain

V
(s,ps)
ind (z) =

e2

εb(psω)ε0

e−Qps |z|

2Qps

n(s,ps). (A3)

Since we assumed that the quasi-two-dimensional (quasi-
2D) system is lying in the z = 0 plane, we calculate all
quantities at z = 0 and, to simplify the notation, from
now on we drop the z argument. We also assume incident
in-plane polarization to be along the x-axis. By knowing

that −eE
(s,ps)
ind = −i(psq̃)V

(s,ps)
ind , we rewrite Eq. (A3) in

terms of the electric fields:

E
(s,ps)
ind =

−i(psq̃) · ex
εb(psω)ε0

P (s,ps)

2Qps

(
e

q̃

)s

E
s+ps

2 E∗ s−ps
2 ,

(A4)

where we defined polarization as

P (s,ps) =
−en(s,ps)

VSCF

s+ps
2 V ∗

SCF

s−ps
2

. (A5)

(Note the q̃ · ex term stemming from the incident field’s
in-plane polarization along the x-direction.) From Eq.
(A4), one can simply obtain an expression for the non-
linear optical susceptibility in response to the incident
field:

χ(s,ps) =
−i(psq̃) · ex
εb(psω)ε0

P (s1+s2)(p1ω1 + p2ω2)

2ε̃(s,ps)Qps

(
e

q̃

)s

,

(A6)

where ε̃(s,ps) ≡ ε(q̃, ω1)
s+ps

2 ε∗(q̃, ω1)
s−ps

2 and q̃(ω) is the
diffracted wavevector that results in the maximum loss

function among all the diffracted wavevectors. The sur-
face polarization P (s1+s2), needed to obtain the linear as
well as nonlinear susceptibility is calculated next, based
on a master-equation formalism.

2. The master-equation formalism

We assume He to be the unperturbed Hamiltonian
of free electrons in the GNM lattice, with its eigenkets
and eigenenergies being represented by |kl⟩ and ϵkl, re-
spectively. k is the in-plane electron wave vector and
l is the band index. The sth-order and pths -harmonic
induced charge density and polarization in the second-
quantization representation are

n
(s,ps)
ind =

1

A

∑
k,l′,l

⟨c†klck+psq̃l′⟩(s,ps)(kl|k + psq̃l
′),

P (s,ps) = − e

A

∑
k,l′,l

⟨c†klck+psq̃l′⟩(s,ps)(kl|k + psq̃l
′)

VSCF

s+ps
2 V ∗

SCF

s−ps
2

,

(A7)

where c and c† are the electronic creation and destruction
operators, respectively, and (k′l′|kl) ≡ ⟨k′l′| exp[−i(k −
k′) · r]|kl⟩. Now, we derive a quantum-master equation
and perturbatively solve it for the higher order coher-

ence terms, i.e., ⟨c†klck+psq̃l′⟩(s,ps). The total Hamilto-
nian within the self-consistent-field approximation is

H(t) = He + VSCF(t), (A8)

where VSCF(t) =
∑

k,l′,l VSCFe
−iωt(k+q̃l′|kl)c†k+q̃l′ckl+

h.c. In the Schrödinger picture, the equation of motion
for the density matrix is

dρe(t)

dt
= − i

ℏ
[He, ρe(t)]−

i

ℏ
[VSCF(t), ρe(t)]

− 1

τF
[ρe(t)− ρe(0)],

(A9)

where τF is the electron relaxation time. Now, we use
a perturbative approach to solve Eq. (A9) for the den-
sity operator. The perturbation expansion of ρe(t) is∑

sps
ρ
(s,ps)
e e−i(psω)t+h.c. By substituting the perturba-

tion expansion of the density matrix into Eq. (A9), using
the mean-field approximation, and seeking the harmonic

solutions, the equation of motion for ⟨c†klck+psq̃l′⟩(s,ps)

would be
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ℏpsω1⟨c†klck+psq̃l′⟩(s,ps) = (ϵk+psq̃l′ − ϵkl)⟨c†klck+psq̃l′⟩(s,ps) − iℏ
τF

⟨c†klck+psq̃l′⟩(s,ps)

+ VSCF

∑
k′mm′

tre

{[
c†k′+q̃m′ck′m, ρ(s−1,ps−1)

e

]
c†klck+psq̃l′

}
(k′ + q̃m′|k′m)

+ V ∗
SCF

∑
k′mm′

tre

{[
c†k′−q̃m′ck′m, ρ(s−1,ps+1)

e

]
c†klck+psq̃l′

}
(k′ − q̃m′|k′m).

(A10)

By discretizing the Brillouin zone and employing the
vectorial form, Eq. (A10) could be solved numeri-
cally. It should be noted that the quartic terms of cre-
ation/destruction operators can be simplified to multi-
plication of two quadratic terms via Wick’s theorem and
mean-field approximation [10].

Appendix B: Scattering Rates

To accurately calculate τF , we account for electron
scattering via intrinsic phonons, ionized impurities, SO
phonons of the hBN substrate, and antidot edge rough-
ness (AER). The expression for the SO-phonon and
ionized-impurity scattering rates are provided in Ref.
[10]. The screened intrinsic phonon scattering rate reads
[16]:

Γm(E) =
8

π

D2
ph

ϱvs

E2

ℏ3v3F

∫ 1

0

ΘBG

T

x4
√
1− x2

(exΘBG/T − 1)2
dx (B1)

where T is the lattice temperature and ΘBG =
2EF vs/(vF kB) is the Bloch-Gruneisen temperature.
Dph = 25 eV is the deformation potential and vs =
2× 104 ms−1 denotes the sound velocity in graphene.

1. Antidot Edge Roughness: Interaction
Hamiltonian and Scattering Rate

Here, we derive the interaction Hamiltonian and scat-
tering rate of electrons and antidot edge roughness
(AER) in a quasi-2D electronic system. The charge den-
sity can be assumed as

ρ = −ensδr(z), (B2)

where ns is the surface carrier density. The carrier den-
sity’s variation due to the edge roughness of an antidot
centered at the origin with radius of r0 = d/2, in the
cylindrical coordinates, is

δρ(r, z) = δr(θ)
∂n

∂r
= −ensδr(θ)δr(r − r0)δr(z), (B3)

where δr(θ′) denotes the edge roughness of the antidot.
The electric potential due to δρ(r) of the antidot is

δΦ0(r) =
−ens

4πεsκb

∫∫∫
d2r′dz′

1

|r − r′|
δr(θ′)δr(r′ − r0)δr(z

′).

(B4)

The 0 subscript denotes that the antidot is centered at
the origin. Taking the Fourier transform of δΦ0(r) yields

δΦ0(q) ≡
1

A

∫∫
δΦ(r)eiq·rd2r

=
−ens

4πεsκb

2π

qA

∫
dθ′r0δr(θ

′)eiqr0 cos θ′
.

(B5)

The edge roughness function, δr(θ′), is a periodic func-
tion with a periodicity of 2π. The Fourier series of δr(θ′)

is
∑

n ∆ne
inθ′

. Substituting δr(θ′) with its Fourier se-

ries and incorporating eiqr0 cos θ′
=

∑
m imJm(qr0)e

imθ′

in the above equation, we obtain

δΦ0(q) =
−ens

4πεsκb

2π

qA

∑
nm

r0∆ni
mJm(qr0)

∫
dθ′einθ

′
eimθ′

=
−ens

εsκb

π

qA

[
r0∆0J0(qr0) + 2

∞∑
n=1

r0∆ni
nJn(qr0)

]
.

(B6)

In a similar way, it can be shown that the electric poten-
tial induced by the edge roughness of an antidot centered
at R0 is δΦR0

(q) = eiq·R0δΦ0(q). However, assuming
the same edge roughness for all the antidots results in an
overestimation of the effective electric potential. To fix
this, we substitute δr(θ′) in Eq. (25) with δr(θ′ + θr).
θr is a random angle with uniform distribution in the
[−π, π] range. Now, we rewrite Eq. (26) for an arbitrary
θr:

δΦR0(q, θr) = eiq·R0
−ens

εsκb

π

qA
×

[
r0∆0J0(qr0) + 2

∞∑
n=1

r0∆ni
nJn(qr0) cos(nθr)

]
. (B7)
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To obtain the effective electric potential induced by the ensemble of the antidots, we calculate the rms value of
ΦR0

(q, θr) :

δΦ0(q, θr) =
−ens

εsκb

π

qA

[
r0∆0J0(qr0) + 2

∞∑
n=1

r0∆ni
nJn(qr0) cos(nθr)

]
. (B8)

Therefore, the effective electric potential is

δΦeff(q) =

√∑
R0

|eiq·R0δΦ0(q, θr(R0))|2 =

√
nAD

A

e2ns

εsκb

π

q

[
r0∆0J0(qr0) + 2

∞∑
n=1

r0∆ni
nJn(qr0)

]
, (B9)

where nAD denotes the sheet density of antidots. Given the effective electric potential induced by the ensemble of the
antidots, the transition rate from an eigenstate |k′l′⟩ to another eigenstate |kl⟩ via AER scattering is

S(kl,k′l′) =
2π

ℏ
nAD

A

[
πe2ns

εsκb|ε(k − k′, ω = 0)|
1

|k − k′|

]2 [
r0∆0J0(qr0) + 2

∞∑
n=1

r0∆ni
nJn(qr0)

]
|(k′l′|kl)|2δr(ϵkl − ϵk′l′).

(B10)

In graphene, ϵkl = lℏvF k and |(k′l′|kl)|2 = (1 + cosα)/2, with α being the angle between k and k′. Assuming an

exponential correlation function for the edge roughness function, |∆n|2 = (πd/2)−1∆2Λ(1 + 4n2

d2 Λ2)−1, where ∆ and

Λ are the rms roughness and the correlation length, respectively. The expression for ∆n is accurate for e−πr0/Λ ≪ 1.
The AER scattering for the exponentially correlated antidot edge roughness reads

Γab/em
m (kl) =

nAD

8πℏ

(
πe2ns

εsκbκ∗

)2
k

ℏvF

∫
dα

[d∆0J0(kd sin
α
2 )]

2 + 2
∑∞

n=1[d∆nJn(kd sin
α
2 )]

2

(2k sin α
2 + qTF)2

1− cos2 α

2
, (B11)

where qTF represents the Thomas-Fermi screening wavevector [12].
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in graphene at infrared frequencies, Phys. Rev. B 80,
245435 (2009).

[12] E. Hwang and S. D. Sarma, Dielectric function, screening,
and plasmons in two-dimensional graphene, Phys. Rev.
B 75, 205418 (2007).

[13] F. Karimi and I. Knezevic, Plasmons in graphene
nanoribbons, Phys. Rev. B 96, 125417 (2017).

[14] Z. Fang, Y. Wang, A. E. Schlather, Z. Liu, P. M. Ajayan,
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