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We propose a general procedure for extracting the running coupling constants of the underlying
field theory of a given classical statistical model on a two-dimensional lattice, combining tensor
network renormalization (TNR) and the finite-size scaling theory of conformal field theory. By
tracking the coupling constants at each scale, we are able to visualize the renormalization group
(RG) flow and demonstrate it with the classical Ising and 3-state Potts models. Furthermore,
utilizing the new methodology, we reveal the limitations due to finite bond dimension D on TNR
applied to critical systems. We find that a finite correlation length is imposed by the finite bond
dimension in TNR, and it can be attributed to an emergent relevant perturbation that respects the
symmetries of the system. The correlation length shows the same power-law dependence on D as
the “finite entanglement scaling” of the matrix product states.

I. INTRODUCTION

The universality of critical phenomena is one of the
most intriguing and important concepts in statistical
physics. The renormalization group (RG), proposed by
Wilson [1–3], provides a conceptual framework to com-
prehend and characterize this universality.

In the RG framework, a universality class of critical
phenomena is governed by an RG fixed point in the “the-
ory space”. Theory space is the abstract space of all
possible models or theories that can describe a physical
system. Each point in this space represents a unique
combination of the parameters of the theory, or more
concretely, the corresponding Hamiltonian or action. In
the context of the RG, we explore this “theory space” by
starting from a specific point in the theory space and ap-
plying the RG transformations. These transformations
effectively move us through the theory space, changing
the values of the parameters as we coarse-grain the sys-
tem. Importantly, models within the same universality
class converge to an identical position through the RG
transformations. This allows for diverse critical phenom-
ena to be comprehended in terms of perturbations to the
fixed-point Hamiltonian and their respective scaling be-
havior.

This theoretical approach has directly facilitated the
development of concrete schemes for the calculation of
critical exponents. A prime example is the ϵ-expansion
for the ϕ4 theory in 4 − ϵ dimensions [4, 5]. While the
practical utility of such a scheme for calculating critical
exponents may appear to be limited, it is imperative to
underscore that the RG framework establishes the con-
ceptual foundation for understanding the universality of
critical phenomena.

In particular, the fixed point displays conformal invari-
ance in two dimensions, thereby simplifying the associ-
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ated theory which is described by a conformal field the-
ory (CFT). The effective Hamiltonian near the RG fixed

point Hamiltonian, denoted ĤCFT, can be expressed as
follows:

Ĥ = ĤCFT +
∑
j

gj

∫ L

0

dx Φ̂j(x), (1)

In this expression, Φ̂j(x) represents a scaling operator
with a scaling dimension xj , and gj denotes the cor-
responding coupling constant. In two dimensions, the
running coupling constants gj are renormalized as gj ∝
L2−xj as functions of a scale l = ln(L/a). In general,
there are only a few RG-relevant coupling constants with
xj < 2, which increase as the scale l increases.
There also exists RG-irrelevant coupling constants

with xj > 2 that decrease as the scale l increases. Despite
their occasional significance, the principal characteristics
of critical phenomena can be outlined primarily by con-
sidering the limited number of RG-relevant coupling con-
stants. Differential equations, termed RG equations, fre-
quently describe the evolution of these running coupling
constants as functions of the scale l. Field theory meth-
ods frequently serve as the basis for deriving these RG
equations.
However, it is worth noting that the exact determina-

tion of RG equations may not always be feasible when the
corresponding field theory is not solvable. Moreover, the
application of RG to lattice models has generally been
challenging for quantitative calculations. While offer-
ing an intuitive understanding of RG, the “block spin
transformation” method falls short as a practical com-
putational method for lattice models. Overall, early RG
schemes for lattice models saw limited success, the no-
table exception being Wilson’s numerical renormalization
group for impurity problem [3].
Subsequently, density matrix renormalization

group(DMRG) [6] emerged as a highly effective numeri-
cal algorithm for one-dimensional quantum many-body
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systems. Despite its name, DMRG is typically employed
as a numerical algorithm with less emphasis on RG flows
in the “theory space.”

More recently, the development of tensor network
renormalization(TNR) [7–12] opened a way to implement
numerical schemes for a wide range of lattice models in
a manner more faithful to the original concept of RG.
Notably, it is possible to obtain a fixed-point tensor after
multiple iterations of TNR steps. This fixed-point tensor
encapsulates critical information about the infrared (IR)
fixed point, including conformal data.

Regarding RG flow, there have been numerous previ-
ous studies[8, 10, 11, 13, 14]. Yet, a generic and quantita-
tive framework for calculating RG flows remains elusive,
primarily due to challenges in maintaining the correla-
tion between the changes in numerically obtained tensor
networks and the RG flow within the ’theory space.’

In this paper, we first propose an efficient and quan-
titative scheme to extract the RG flow numerically from
TNR, discussed in Sec. III. This involves comparing the
finite-size spectrum of the transfer matrix with CFT.
Concrete examples, such as the numerical results of the
Ising and 3-state Potts models, are employed to validate
the theoretical predictions. Our method also provides an
efficient and accurate estimation of the critical point, ex-
tending the ’Level Spectroscopy’ technique previously de-
veloped for Berezinskii-Kosterlitz-Thouless (BKT) tran-
sitions [15, 16].

Leveraging this methodology, we uncover the effects of
finite bond dimension D on TNR at criticality in Section
IV. The finite-bond approximation of tensors constrains
the effective correlation length, preventing the attain-
ment of a ’true fixed point tensor’ corresponding to a
nontrivial RG fixed point through repeated TNR proce-
dures. While this phenomenon was reported in earlier
studies [7–12], it has been often overlooked. Our numer-
ical results suggest that the finite bond-dimension effects
can be attributed to an emergent relevant perturbation
that respects the symmetry of the lattice model. Further-
more, we demonstrate that the finite correlation length
that is imposed by the finite bond dimension scales in
the same way as in matrix product states (MPS).

We note that some of the methods and observations
discussed in this paper were previously reported in our
earlier publication [16], where they were applied to the
classical XY model. The goal of the present paper is
to illustrate the more widespread applicability of this
approach and deliver a more comprehensive analysis of
the finite bond-dimension effects.

Sample codes necessary to reproduce the figures pre-
sented in this paper, along with introductory reviews on
TRG and TNR, are accessible via Jupyter notebooks at
the following GitHub repository: https://github.com/
dartsushi/Loop-TNR_RGflow.

FIG. 1. A schematic picture of the tensor network renormal-
ization. The effective local Boltzmann weight at n-th RG
step T (n) is decomposed into the two three-leg tensors and
recombined as T (n+1). The effective system size enlarges by√
2 each RG step. The typical bond dimension and the maxi-

mum number of RG steps employed in this paper are D ≤ 40,
and RG steps ≤ 30, respectively.

II. REVIEW ON TENSOR NETWORK
RENORMALIZATION AND CONFORMAL

FIELD THEORY

A. Tensor network renormalization

The tensor network is a numerical technique used
to represent the partition function of statistical mod-
els. The partition functions of two-dimensional statistical
models with a system size of L can be expressed through
the contraction of L2 tensors. Each tensor represents a
local Boltzmann weight, and its dimensions correspond
to physical degrees of freedom. For instance, the local
tensor of the Ising model on the square lattice is a four-

leg tensor T (1)
ijkl = eβ(sisj+sjsk+sksl+slsi). The tensor net-

work representation often provides an efficient method
for simulating complex systems.
However, the exact contraction of L2 tensors is gener-
ally impracticable for larger system sizes due to the con-
straints imposed by the high-dimensional Hilbert space.
TNR aims to circumvent this issue by utilizing the prin-
ciples of renormalization group theory. During each step
of the RG process, T (n) is coarse-grained to T (n+1) via
a series of decompositions and recombinations, as illus-
trated in Fig. 1. Starting from the local tensor T (1), we

can simulate a system size of L =
√
2
n
after n RG steps.

The process of coarse-graining in TNR involves numerical
truncation, reducing the number of degrees of freedom
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while preserving essential physics. Consequently, TNR
facilitates efficient numerical simulation of complex sys-
tems.

B. Critical phenomena under conformal invariance

The following sections mainly discuss the Ising and 3-
state Potts models on the square lattice. The energy
(classical Hamiltonian) of the Ising and 3-state Potts
models are

EIsing = −
∑
⟨i,j⟩

sisj − h
∑
i

si, (2)

EPotts = −
∑
⟨i,j⟩

δsi,sj , (3)

where si = ±1(Ising) and si = 0, 1, 2(3-state Potts). The
first terms and h represent the nearest-neighbor interac-
tions and the magnetic field. Employing the temperature
T , the Boltzmann weight is defined as e−E/T , where we
set the Boltzmann constant to unity. Our primary fo-
cus in the main text is the Ising model, while a detailed
discussion of the 3-state Potts model is provided in the
appendix. The Ising model reaches its critical point at
(T, h) = (Tc, 0), where Tc = 2/ ln (1 +

√
2). At this crit-

icality, physical quantities like the spin-spin correlation
function are governed by the Ising CFT, which comprises
three primary operators: the identity operator I, mag-
netic operator σ, and energy operator ϵ.

In the context of the lattice model, a shift from the
critical temperature and the application of a magnetic
field correspond to the perturbative insertion of ϵ and σ
into the effective Hamiltonian. As a result, σ is odd in the
Z2 spin-flip, while I and ϵ are even. Given the operator
structure of the CFT, certain quantities are consequently
fixed.

The two-point correlation function is defined as

⟨Φi(ri)Φj(rj)⟩ =
δi,j

|ri − rj |2xi
,

where Φi represents a primary operator, and xI = 0,
xσ = 1

8 , and xϵ = 1 are the scaling dimensions. In a
similar vein, the three-point correlation function adopts
a universal form, represented as

⟨Φi(ri)Φj(rj)Φk(rk)⟩ =
Cijk

|ri − rj |∆
k
ij |rj − rk|∆

i
jk |rk − ri|∆

j
ki

,

where Cijk is an operator product expansion(OPE) co-
efficient, and ∆k

ij = xi + xj − xk. The non-zero OPE
coefficients are given as follows:

CIII = CIσσ = CIϵϵ = 1, (4)

Cσσϵ =
1

2
. (5)

The permutation of the indices does not change the OPE
coefficients[17].(For further details of CFT, we suggest

readers see Ref. [18].) The collection of information on
the scaling dimension xi and Cijk, referred to as the CFT
data, is crucial to understanding critical phenomena. As
such, determining the CFT from a numerical standpoint
is of paramount importance.

III. COMPUTATION OF FIELD-THEORY DATA
AND RG FLOW FROM TNR

A. Scaling dimensions

For simplicity, let us consider a classical statistical
model on the square lattice with nearest-neighbor inter-
actions only. Then the local Boltzmann weight can be
represented by a tensor T with four open indices, and
the partition function is given by contraction of a tensor
network which consists of the tensor T .
More specifically, the partition function Z(Lx, Ly) for

the system of the size Lx×Ly is given by the contraction
of the network of Lx × Ly identical tensors T .
Under a single step of TNR, the length scale repre-

sented by a single tensor is renormalized by
√
2. After N

steps, the renormalized tensor becomes T (L), which rep-

resents the length scale L =
√
2
N
. As T (L) is equivalent

to the L×L contracted tensor network up to truncation
errors, contractions of the horizontal and vertical legs
yield the partition function Z(L,L) in periodic bound-
ary condition (PBC). Similarly, contracting only the legs
in the x-direction gives the L-stacks of the transfer ma-
trix in y-direction. Since one can regard the transfer
matrix as the imaginary-time evolution operator of cor-
responding one-dimensional quantum systems, its eigen-
values λn(L) are related to the energy levels En(L) of
the quantum system as λn(L) = exp (−LEn(L)). For
convenience, we define the rescaled energy levels xn(L)
by En(L)− E0(L) = 2πxn(L)/L[19] to obtain

λn(L)

λ0(L)
= exp(−2πxn(L)). (6)

Exactly at the criticality, this rescaled energy level xn(L)
coincides with the scaling dimension xn of the in the
thermodynamic limit (L→ ∞) [20–22].
If the system is off-critical and without a spontaneous

symmetry breaking, the rescaled energy level of the “first
excitation” is asymptotically proportional to the system
size as ∆L/(2π), where ∆ is the inverse correlation length
(excitation gap) in the thermodynamic limit.
Summarizing these observations, naively speaking, we

can judge whether the system is critical or not by look-
ing at the asymptotic behavior of the rescaled energy
levels xn(L). If they grow linearly in L, the system is
off-critical. If they approach to constants, the system is
critical, and the scaling dimensions of the operators can
be read off from the asymptotic values of xn(L) in the
thermodynamic limit. While this can be a useful guide,
there are corrections from RG-irrelevant perturbations,
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and more importantly, due to the limitation of a finite
bond dimension, as we will discuss later.

B. Operator product expansion coefficients

Operator product expansion is another fundamental
concept in field theory and statistical mechanics [23, 24].
Since OPE coefficients determine the structure of the
field theory, their computation is quite important.
Numerical computation of OPE coefficients [25, 26] has
not been so straightforward compared to that of scaling
dimensions. Here, we present a simpler way to compute
them, which is applicable to TRG [7], HOTRG [27], and
Loop-TNR [10].

As explained in the previous section, the renormalized
tensor T (N) contracted in x-direction is a transfer matrix
in the y-direction. While the eigenvalues of the trans-
fer matrix correspond to the energy or scaling dimension
of the primary operators, the eigenvectors thereof are
the wavefunctions of the corresponding “primary states”
|ψn(L)⟩. This is graphically represented below.

Note that the tensor has been rotated for ease of viewing.
We do not change the contracted index. Likewise, we
can compute the wavefunctions of the system size 2L as
depicted below.

|ψn(L)⟩ and |ψn(2L)⟩ are one-leg and two-leg tensors, re-
spectively. Thus, one can calculate the overlaps |ψα(2L)⟩
and |ψβ(L)⟩ ⊗ |ψγ(L)⟩ by contracting the indices.
In CFT, the overlap ⟨ψα(2L)|ψβ(L)ψγ(L)⟩ is propor-

tional to the “pants diagram” of path integrals [28–30],
and the OPE coefficient and the overlap are related as

Aαβγ

AIII
= 2∆α−2∆β−2∆γCαβγ , (7)

where Aαβγ , ∆, and I are ⟨ψα(2L)|ψβ(L)ψγ(L)⟩, the
scaling dimension, and the identity operator, respec-
tively. In most cases, the identity operator corresponds
to the ground state. We benchmark our method by the

ψα ψβ , ψγ Cαβγ 22∆β+2∆γ−∆αAαβγ/AIII

I σ, σ 1 0.8938
σ σ, I 1 0.9473
I ϵ, ϵ 1 0.9966
ϵ ϵ, I 1 0.9968
ϵ σ, σ 0.5 0.5007
σ σ, ϵ 0.5 0.2705

TABLE I. The numerically obtained OPE coefficients of the
Ising CFT from TRG. The bond dimension and the system
size are D = 56 and L = 16

√
2(9 RG steps), respectively.

critical Ising model. Table. I shows the numerically ob-
tained OPE coefficients by TRG [7] at L = 16

√
2 and

D = 56. Naturally, there are finite-size corrections to
Eq. (7). Since Eq. (7) is exact in the thermodynamic
limit, using a very large system size Lmight appear desir-
able. However, as we will discuss later in Sec. IV, correc-
tions due to the finite bond-dimension effect appear for
system sizes larger than a correlation length ξ(D)[31]. As
reported in Ref. [30], the finite-size effects are significant
for Cσσϵ and CϵϵI . Nevertheless, even with the moder-
ate size L = 16

√
2, the obtained values CIϵϵ = 0.9966

and Cϵσσ = 0.5007 are rather close to exact CFT results.
While we tested our method by the simplest algorithm,
Levin and Nave’s TRG, the method for calculating OPE
is straightforwardly applicable to other TRG and TNR
algorithms, such as HOTRG [27].

C. Level Spectroscopy

As we have mentioned earlier, the rescaled energy lev-
els xn(L) in Eq. (6) would be independent of the scale L
and give the scaling dimensions of the corresponding op-
erators, if the system were exactly described by a CFT.
However, the rescaled energy levels of a lattice model
generally depend on the system size L, as the effective
Hamiltonian of the system contains perturbations to the
CFT as in Eq. (1).
The rescaled energy levels in a finite-size perturbed

CFT are given as [20, 21]

xn(L) = xn + 2π
∑
j

Cnnjgj(L), (8)

where gj(L) scales as ∝ L2−xj . Comparing Eq. (6)
from TNR and Eq. (8) from the conformal perturba-
tion theory, we can obtain the running coupling constants
gj(L) at each scale from the finite-size effect δxn(L) =
xn(L)− xn.
An immediate application of this observation is an ac-

curate determination of the critical point. While such
a framework is dubbed “level spectroscopy” was devel-
oped for BKT transition, which is notoriously difficult
for standard finite-size scaling analysis, first for quantum
spin systems in one dimension [15] and recently extended



5

for classical statistical systems in two dimensions using
TNR [16], the basic idea is also applicable to more con-
ventional critical phenomena such as in the Ising model.

The RG fixed point for the two-dimensional Ising
model has two relevant operators, the energy density ϵ
and the magnetization density σ. The coupling constant
gϵ for ϵ is proportional to the deviation of the tempera-
ture from the critical point, and also scaled ∼ L in the
small coupling limit gϵ ≪ 1 because xϵ = 1. Thus

gϵ(L) ∼ α(T − Tc)L, (9)

when gϵ(L) ≪ 1. Likewise, the coupling gσ is propor-
tional to the magnetic field h and scaled ∼ L15/8 because
xσ = 1/8.

Although the Ising critical phenomena are mostly de-
scribed by the two relevant coupling constants gϵ and
gσ, more accurate description can be obtained by includ-
ing irrelevant perturbations. Including the leading irrele-
vant operators, namely the irrelevant operators with the
smallest scaling dimension permitted by the symmetries,
we obtain

H = H∗
Ising +

∫ L

0

dx[gσσ(x) + gϵϵ(x)

+ gT 2T 2
cyl(x) + gT̄ 2 T̄ 2

cyl(x)], (10)

where Tcyl and T̄cyl are the holomorphic and anti-
holomorphic parts of stress tensor on a cylinder [21]. The
holomorphic part Tcyl of the stress tensor on a cylinder
is related to that on the infinite plane Tzz(z) via the
conformal mapping z = e2πw/L, where w = τ + ix and
0 ≤ x < L. More explicitly, Tzz(z) transforms as

Tcyl(w) =

(
2π

L

)2 (
z2Tzz(z)−

c

24

)
. (11)

This leads to

Tcyl(x) =
2π

L

( ∞∑
n=−∞

Lne
2πix/L − c

24

)
, (12)

where c is the central charge characterizing the CFT, and
Ln’s are generators of the Virasoro algebra defined by

Tzz(z) =

∞∑
n=−∞

Ln

zn+2
, (13)

in terms of the holomorphic part Tzz of the energy-
momentum tensor on the infinite plane. Inserting the
above Tcyl and integrating over 0 ≤ x < L with an appro-
priate regularization, the gT 2-term of the perturbation is
given as [32]∫
dx T 2

cyl(x) = L2
0 −

c+ 2

12
L0 + 2

∞∑
n=1

L−nLn +
c(22 + 5c)

2880

Only the first and second terms affect the energy levels,
and the contributions to xσ(L) and xϵ(L) are calculated

to be − 7
768gT 2 and 7

48gT 2 respectively. The computa-

tion of the contributions from T̄ 2 is exactly the same,
and we denote their sum as g. These operators are the
leading irrelevant operators for the Ising model on the
square lattice. Although they break the continuous ro-
tation symmetry (which corresponds to the Lorentz in-
variance in the Minkowski space-time), they are allowed
on the square lattice, which is invariant only under the
discrete C4 rotation. The calculation of xσ(L) and xϵ(L)
is straightforward, and they are shown in Table. II [33].
While the exact critical point is known for the Ising

model on the square lattice, let us demonstrate the de-
termination of the critical point from the TNR spectrum
without using prior knowledge of the critical point (but
utilizing the CFT data, assuming that we identify the
universality class). Since we are interested in the critical
point at zero magnetic fields, we can set gσ ∝ h = 0. The
simplest way to determine the critical point is to look at
the lowest rescaled energy level xσ(L) in the lowest order
of the relevant coupling constant gϵ, ignoring the irrel-
evant perturbation g. Within this approximation, the
shift δxσ(L) = xσ(L) − xσ vanishes at the critical point
T = Tc where gϵ = 0. Away from the critical point,
δxσ(L) is non-zero and grows proportionally to L because
gϵ(L) scales as L. Because of this, we can identify the
critical point with the temperature where δxσ(L) = 0 is
observed in the TNR spectrum. However, this estimate
suffers from the corrections due to the leading irrelevant
perturbations T 2

cyl and T̄
2
cyl. Since they have scaling di-

mension 4, the corresponding coupling constant is renor-
malized as g ∝ L−2. This leads to an error of O(L−2) in
the naive estimate of the critical point using δxσ(L) = 0.
We can improve the accuracy by removing the effects

of the leading irrelevant perturbation g. This can be
done by combining the shifts of the rescaled energy levels
δxσ(L) and δxϵ(L) as

δxcmb ≡δxσ(L) +
1

16
δxϵ(L)

= πgϵ + (ασ
σ +

1

16
ασ
ϵ )g

2
σ + (αϵ

σ +
1

16
αϵ
ϵ)g

2
ϵ .

(14)

Note that the first-order correction in the irrelevant cou-
pling g is canceled out. Now we can identify the criti-
cal point by finding the temperature for which δxcmb ∝
gϵ(L) = 0. Having eliminated the effects of the leading
irrelevant perturbation T 2

cyl, T̄
2
cyl, the dominant error is

now caused by the next-leading irrelevant operator with
scaling dimension 6 and thus should be scaled as L−4.
In practice, the determination of the critical point can

be efficiently implemented as follows. First, we pick up
one temperature from each phase: T+ > Tc and T

− < Tc,
and calculate the combined shift δxcmb at these tem-
peratures. The phase of the system can be confirmed
by observing the growth of δxcmb as the system size in-
creases because it increases/decreases if the system is in
the high-temperature/low-temperature phase (if the ini-
tial choice of the temperature turns out to be wrong,
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FIG. 2. Example of estimating the transition temperature
using Loop-TNR. We set T− = 2.66 and T+ = 2.68 as an
initial estimate. The level-crossing temperature T ∗(L) is lin-
early fitted to extrapolate the transition temperature. The
insert shows how we compute T ∗(L) for various system sizes.

change the temperature and restart the process). Next,
linear interpolations of the combined shift between the
two temperatures T± are made, and the crossing of the
lines for system sizes L and

√
2L is found, as shown in

the insert of Fig. 2. We denote the temperature where
the two lines cross as T ∗(L). Because of the second-order
contribution O(gϵ

2) in Eq. (14), the crossing temperature
T ∗(L) obtained by the linear interpolation deviates from
the true critical point Tc as T ∗(L) − Tc ∝ gϵ ∝ L, when
gϵ ≪ 1[34]. The critical point Tc is estimated by fitting
T ∗(L) by a linear function of L as T ∗(L) ∼ Tc+const.L.
While the “extrapolation” to L = 0 used here might look
unusual, this procedure is done to remove the effect of
the nonlinearity due to O(gϵ

2) in Eq. (14), and the con-
dition δxcmb = 0 itself is accurate for Tc up to the error of
O(L−4) due to the next-leading irrelevant perturbations.
An example of the estimate of Tc with the above pro-
cedure with the choice of the temperatures T+ = 2.68
and T− = 2.66 and with system sizes 16 ≤ L < 64
is depicted in Fig. 2. The final estimate of the critical
point is T est

c = 2.269177. Remarkably, even with the
choice of two temperatures differ by 10−2 and the rela-
tively low bond-dimension D = 20, the estimated critical
point is quite accurate: T est

c − Tc = −8.11 × 10−6. This
is thanks to the suppression of the error to O(L−4) by
eliminating the contributions from the leading irrelevant
operators. Once the critical point is estimated with good
accuracy with this procedure, the accuracy can be further
improved by choosing T± closer to the estimated critical
temperature and then applying the same procedure.

model operator Rescaled energy level

Ising model xσ(L)
1
8
+ ασ

σg
2
σ + πgϵ + αϵ

σg
2
ϵ − 7

768
πg

xϵ(L) 1 + ασ
ϵ g

2
σ + αϵ

ϵg
2
ϵ + 7

48
πg

TABLE II. The finite-size scaling dimension of the Ising
model. α is a constant determined from the second-order
perturbation. Since gT2 and gT̄2 decay in the same manner,
we write them as g.

D. Renormalization Group flow

The comparison between the TNR spectrum (6) and
the conformal perturbation theory (8) can also be used to
extract running coupling constants and their scale depen-
dence, enabling a visualization of the RG flow. While this
was shown for the BKT transition in the XY model [16],
here let us demonstrate the method for the Ising model.
This will also be useful to investigate the finite bond-
dimension effects in detail, as we will discuss in Sec. IV.
The extraction of running coupling constants in the Ising
model is again based on the shifts of the rescaled energy
levels in Table II, and it is useful to consider the com-
bined shift (14) also for this purpose. Given gσ and gϵ
are small in the vicinity of criticality, we neglect g2ϵ for
h = 0 and redefine two relevant coupling constants as

gt = πgϵ and gh =
√
(ασ

σ + 1
16α

σ
ϵ )gσ for convenience.

In this way, the combined shift Eq. (14) simply gives gt
when h = 0 and gh

2 when T = Tc, in the lowest order
of gt, gh. Using these relations, we can read off the rele-
vant coupling constants gt or gh from the TNR data, as
shown in Fig. 3(b). As we have discussed in the previous
subsection, the effects of the leading irrelevant perturba-
tions T 2

cyl, T̄
2
cyl with scaling dimension 4 are eliminated in

the combined shift (14), and thus the finite-size correc-
tion is now of O(L−4), due to the next-leading irrelevant
operators with scaling dimension 6. This O(L−4) scaling
is indeed observed in Fig. 3 near the critical point for
small system size L when relevant perturbations are still
negligible. Since it is safe to say that these contributions
disappear after five RG steps, we can conclude that the
origin of gt and gh are purely from ϵ and σ after six steps.

The right panel illustrates the scale-dependence of the
coupling constants gt and gh. It is nothing but the RG
flow of the Ising critical point, and we conclude that we
succeed in calculating the RG flow of the celebrated Ising
fixed point.

There is one thing to note on the left panel of Fig. 3.
While the combined shift (14), which is an estimator for
|gh|2, scales as L3.75 at L < 103, it starts to flatten and
scales as L at L > 103. This behavior has a rather simple
origin. Since the magnetic perturbation is relevant, the
system has a finite correlation length or equivalently, a
non-zero gap ∆. This implies that the rescaled energy
levels are proportional to L for sufficiently large system
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FIG. 3. (Left panel) The system size dependence of δxcmb = δxσ +δxϵ/16 for h = ±10−5(purple and green), T = 1.0001Tc(red)
and T = 0.9999Tc(blue). The purple and green dots are on top of each other, and “+” denotes the data with a negative sign.
After removing the L−2 irrelevant perturbations, the next leading L−4 perturbation shown with a blue dotted line appears.
The data was obtained via Loop-TNR with a bond dimension of D = 24, which was deemed sufficient for the finitely-correlated
systems being considered. (Right panel) The resulting renormalization group flow. Only data after six steps are exhibited,
where the L−4 perturbations disappear.

size L ≫ ∆−1, as mentioned in Sec. IIIA. As a con-
sequence, the shift (14) also grows proportionally to L.
In this regime, the conformal perturbation theory breaks
down (higher-order contributions are important), and we
no longer identify the shift (14) with |gh|2. This should be
distinguished from the L-linear behavior of the combined
shift (14) observed for L > 10 with h = 0 and T ̸= Tc,
which corresponds to the renormalization of gt ∝ L be-
cause of xϵ = 1. The L-linear behavior due to the gap
is observed in the non-perturbative regime δxϵ,σ ≫ xϵ,σ,
whereas the L-linear behavior due to the scaling is ob-
served in the perturbative regime δxϵ,σ ≪ xϵ,σ.

IV. FINITE BOND-DIMENSION EFFECTS

Let us examine the impacts of a finite bond-dimension
D on TNR from the perspective of our method. In any
computation that employs tensor networks, it is neces-
sary to restrict the bond dimension to a finite value D
due to the increasing storage requirements and computa-
tional costs associated with larger bond dimensions. The
finiteness of the bond dimension inevitably leads to a loss
of information in each step of renormalization after a cer-
tain number of iterations. Although TNR can nominally
handle arbitrary large systems, and the TNR-type calcu-
lations are often used to study extremely large systems,
we have to be careful about the limitations due to the
finite bond dimension.

The limitation of the finite bond dimension D on the
MPS is characterized by the finite (maximum) correlation
length ξ(D) of the MPS [35–37]. The correlation length
of MPS is known to obey the scaling law

ξ(D) ∼Dκ, (15)

κ =
6

c(1 +
√

12
c )
. (16)

While the TNR-type calculation of two-dimensional sta-
tistical systems appears rather different from the MPS
applied to one-dimensional quantum systems, the emer-
gence of the finite correlation length ξ(D) obeying the
similar scaling law (15) was reported in Ref. [38] for a
HOTRG calculation of the critical Ising model in two
dimensions. The exponent κ for the Ising model was
estimated to be approximately 2, which is close to the
MPS exponent (16) κ = 2.03425 . . . for the Ising CFT
with central charge c = 1/2. A similar emergence of the
finite correlation length ξ(D) was also reported in our
TNR finite-size scaling study of the two-dimensional XY
model [16], with the MPS exponent (16) for c = 1.
In the following, using our TNR finite-size scaling

methodology, we will demonstrate that the emergence of
the finite correlation length due to the finite bond dimen-
sion in TNR can be attributed to an emergent relevant
perturbation (Sec. IVA). Furthermore, we present evi-
dences for the scaling (15) with the MPS exponent (16)
in TNR of Ising and 3-state Potts models (Sec. IVB).
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FIG. 4. Shift |δxσ(L)| for the Ising model at T = Tc, h = 0
computed by Loop-TNR with D = 32. There is little finite-D
effect for small system sizes L < 256. The emergent pertur-
bations of ϵ and σ appear at L ∼ 256 and L ∼ 104, scaling
as L and L15/4. The induced gap by finite-D goes towards
constant at L > 105 as denoted with the purple dotted line.

A. Emergent relevant perturbation

If a finite correlation length emerges in the TNR, it
would be natural to identify the renormalized tensor
with a Hamiltonian for the system away from the criti-
cal point, that is, an RG fixed-point (CFT) Hamiltonian
perturbed with relevant operators

HFB(D) = H∗
CFT +

∑
i

∫ L

0

dxgi(D,L)Φi(x,D), (17)

where HFB is the effective Hamiltonian of the finite-D
system and Φi(x,D) are the scaling operators represent-
ing the perturbations. In this view, we expect relevant
perturbations to emerge in order to mimic the finite cor-
relation length imposed by the finite bond dimension.

To demonstrate the emergence of the relevant pertur-
bation, we investigate the system-size dependence of the
shift in the rescaled energy levels δxσ. In Fig. 4, we
show the absolute value of the shift |δxσ| as a func-
tion of the system size L used in calculating the transfer
matrix spectrum in TNR exactly at the critical point
h = 0, T = Tc. The conformal perturbation theory in
Eq. (8) implies that the shift xσ contains contributions
from the irrelevant perturbations. Since the leading ir-
relevant operators at the critical points are T 2

cyl and T̄
2
cyl

with scaling dimension 4, we expect δxσ(L) decays as
L−2. (This is to be contrasted with Eq. (14) and Fig. 3,
in which the contributions from T 2

cyl and T̄
2
cyl are elimi-

nated.) The expected L−2 behavior in the shift δxσ(L)
is indeed observed for small system sizes L < 256. For
larger system sizes, however, |δxσ(L)| starts to increase,
deviating from the conformal perturbation theory scal-
ing L−2. We identify the finite bond-dimension D effects
as the origin of this deviation. More remarkably, we can
observe a clear scaling behavior of the deviation. That
is, the shift |δxσ(L)| scales with the system sizes as L
and L15/4 for 256 < L < 104 and 104 < L, respectively.
Compared with the off-critical cases in Fig. 3, we realize
that these scalings are identical to those induced by the
thermal and magnetic perturbations. In other words, the
relevant perturbations emerge in the TNR calculation.
Let us first discuss the L15/4 scaling of the shift, ob-

served for L > 104. This can be understood as the effect
of an emerging magnetic perturbation h. Although the
magnetic perturbation h is forbidden by the Z2 spin-flip
symmetry, the symmetry could be broken by the limita-
tions in the machine precision. Once the spin-flip sym-
metry is broken, the magnetic field h, which is a rele-
vant perturbation, is effectively generated. Even if the
effective magnetic field h is extremely small, it will be
enhanced at each RG step and eventually dominates the
system at sufficiently large length scales. This is what we
observe for L > 104. This phenomenon should be related
to machine precision and not intrinsic to the algorithm.
If we are interested in a Z2 symmetric system, we can
impose the symmetry at each step of TNR in order to
avoid this effect.
In contrast, the L scaling observed for 256 < L < 104

is more intrinsic. The most relevant perturbation allowed
under the Z2 symmetry to the critical Ising fixed point
is the thermal operator. Thus, we expect that the finite
bond dimension effect can be mimicked by the thermal
perturbation ϵ to the fixed-point Hamiltonian H∗

CFT. If
this is the case, the effective coefficient gϵ grows propor-
tionally to L as the system size L is increased, because the
thermal operator ϵ has the scaling dimension 1. Accord-
ing to Eq. (8), this will lead to a correction proportional
to L in the rescaled energy level δxσ(L). This is indeed
supported by the numerical result shown in Fig. 4.
In general, the finite-D effect in TNR would be de-

scribed in terms of the emergence of relevant perturba-
tion(s) to the fixed-point Hamiltonian, which induces the
finite correlation length ξ(D). In addition to the emer-
gence of the relevant operator ϵ in the critical Ising model
discussed above, a similar emergence of the relevant op-
erator is observed in the critical 3-state Potts model, as
demonstrated in Appendix A.

B. Scaling of the emergent correlation length

Now let us demonstrate that the finite correlation
length ξ(D) induced by the finite bond dimension D in
TNR obeys the same scaling (15) and (16) as in the MPS,
as suggested in Refs. [16, 38].
In Fig. 5, we demonstrate the scaling of the corre-
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FIG. 5. (a) The scaling of the shift δxσ in TNR of the Ising model at the critical point, for various bond dimensions
D = 4, . . . , 28. The vertical axis is scaled as L2δxσ so that it is constant when L ≪ ξ(D). When L ≪ ξ(D), the shift is
dominated by the emergent relevant perturbation ϵ; this is confirmed by the scaling L2gϵ ∝ L3. The horizontal axis is scaled
as L/ξ(D), where the correlation length ξ(D) is hypothesized as in Eqs. (15) and (16). The collapse of the data for different
bond dimensions is strong evidence of the hypothesized scaling of the correlation length ξ(D). The blue dotted line indicates
L/ξ(D) = 1. We set ξ(D) = 2.0Dκ so that L/ξ(D) = 1 becomes the crossover scale between the finite-size scaling regime
and the finite-D scaling regime. (b) Similar scaling analysis of the shift δxϵ in TNR of the 3-state Potts model at the critical
point, for various bond dimensions D = 16, . . . , 40 with ξ(D) = 0.067Dκ. The scaled shift L0.8δxϵ behaves as a constant in the
finite-size scaling regime L/ξ(D) < 1, whereas it scales as L3.2 in the finite-D scaling regime L/ξ(D) > 1, as expected from the
CFT analysis (see Appendix A for details). The data for different bond dimensions collapse again, giving compelling evidence
for the scaling of the correlation length (15) and (16)

lation length induced by the finite bond dimension in
TNR of the critical Ising and the 3-state Potts models.
In Fig. 5(a), we plot the shift δxσ in the Ising model
obtained by the TNR of the Ising model at the critical
point, which was also studied in Fig. 4, with the sev-
eral different bond dimensions D = 4, . . . , 28. Here, we
rescaled the vertical axis as L2δxσ so that the constant
behavior is observed for system size smaller than the cor-
relation length, where the leading irrelevant perturbation
(which causes δxσ ∝ L−2) is dominant. The deviation
from the constant at larger system sizes L can be at-
tributed to the emergent relevant perturbation ϵ induced
by the finite bond dimension D, as discussed in the pre-
vious subsection. This is confirmed by the L3 scaling (L2

times δxσ ∝ gϵ ∝ L). Most importantly, the horizontal
axis is the rescaled system size L/ξ(D) using the hypoth-
esized correlation length ξ(D) = aDκ given by Eqs. (15)
and (16). The collapse of the data for different bond
dimensions strongly supports our hypothesis on the cor-
relation length. Note that we roughly fit the prefactor a
so that the cross-over occurs at L = ξ(D).

In order to confirm the finite-D scaling of the correla-
tion length and its universality, we have also studied the

3-state Potts model at the critical point. As an exam-
ple, in Fig. 5(b), we plot the shift of the rescaled energy
level corresponding to the energy operator ϵ in the 3-
state Potts model. For this shift δxϵ, the contribution
from the leading irrelevant operator is ∼ L−4/5, and the
dominant contribution from the emergent relevant per-
turbation ϵ is expected to be proportional to gϵ

2 ∝ L12/5.
(See Appendix A for details). We rescaled the vertical
axis as L0.8δϵ so that it is constant in the finite-size scal-
ing regime L < ξ(D). The horizontal axis is again the
rescaled system size L/ξ(D), with the correlation length
ξ(D) defined in Eqs. (15) and (16) with the central charge
c = 4/5 for the 3-state Potts model. The data for dif-
ferent bond dimensions again show a collapse, providing
compelling evidence for our hypothesis on the correla-
tion length scaling. For L/ξ(D) > 1, the data fits well
the expected behavior L0.8 × gϵ

2 ∝ L0.8 × L2.4 = L3.2.

V. CONCLUSION AND DISCUSSION

In the first part of the paper, we discussed a method
for computing the coupling constants using renormalized
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tensors based on the finite-size scaling theory of CFT. By
plotting the resulting values at each scale, we were able
to visualize the RG flow, and we confirmed that the the-
oretical RG flows, as shown in Fig. 3, are consistent with
the Ising and XY models. Our method has the advan-
tage of being able to extract both ultraviolet and infrared
information, making it a valuable tool for investigating
gapped and crossover systems.

In the second part of the paper, applying the method-
ology developed in the first part, we explored the impact
of finite bond-dimension D on the RG flow. The finite-
ness of the bond-dimension results in a finite correlation
length ξ(D), or equivalently in a non-zero gap in the
energy spectrum of the corresponding one-dimensional
quantum system. We find that this gap formation can
be attributed to the emergence of a relevant perturbation
enforced by the finite bond dimension. This is demon-
strated by the RG flow of the emergent relevant coupling.

The finite-size scaling of TNR shows a crossover at
L ∼ ξ(D), above which the system is governed by the
finite correlation length. The correlation length ξ(D)
induced by the finite bond dimension in TNR shows
the same scaling (15), (16) as the correlation length of
MPS. While such scaling in TNR was suggested earlier
in Refs. [16, 38], in this paper, we presented more con-
vincing evidence.

Although we do not have a mathematical proof for the
scaling of ξ(D) in TNR at this point, it may be natural
from the following point of view. Besides the construc-
tion of the transfer matrix by contracting horizontal legs,
the renormalized tensor obtained in TNR can give the
corner transfer matrix by contracting the upper and left
legs. The same finite-D scaling (15), (16) as in MPS
was observed in corner transfer matrix renormalization
group (CTMRG) [39–41]. Moreover, the entanglement
spectrum for the half-bipartition of the system of length
2L can be related to a contraction of four renormalized
tensors of linear size L [42], as shown in Fig. 6. These
relations are suggestive of the identical scaling of ξ(D) in
MPS, CTMRG, and TNR as we have observed.

Our study highlights the importance of considering
the impact of the finite bond dimension in the TNR-
type approach. In particular, a direct study of the
thermodynamic limit with TNR would be prone to
errors due to the finite correlation length ξ(D) imposed
by the finite bond dimension. As a resolution of this
problem, we have demonstrated that accurate data for
the thermodynamic limit can be extracted by finite-size
scaling of TNR spectra obtained for system sizes smaller
than ξ(D), combined with conformal field theory. Even
with this limitation, the tractable system size is greatly
increased from ∼ logD with exact diagonalization to
ξ(D) ∼ Dκ in TNR.

FIG. 6. (Left panel) A schematic picture of the reduced
density matrix ρA for a bipartition of the system in the path
integral picture. The uncontracted legs correspond to the
indices of the reduced density matrix. (Right panel) Each of
the four quadrants of the space-time in the left panel may be
replaced by the renormalized tensor in TNR with appropriate
boundary conditions.

Note added When this work was almost completed, a
closely related work [43] based on a HOTRG study of the
Ising model appeared. It is quite similar in spirit to this
work, combining finite-size scaling and HOTRG. Their
estimate of the correlation length ξ from the transfer
matrix eigenvalue, and the determination of the critical
point based on the finite-size scaling of ξ, are essentially
equivalent to our analysis of δxσ discussed in Sec. III C.
Utilizing the knowledge of Ising CFT, we have further im-
proved the accuracy by analyzing δxcmb which removes
the effects of the leading irrelevant operators. The error
in the estimated transition temperature T est

c we obtained
in Sec. III C is about 10−5, which is larger than theirs
(10−7 ∼ 10−6). However, our estimate is based on the
data at two temperatures T± separated by 10−2 and can
be further improved by taking more data points. The
MPS scaling (15) and (16) of the correlation length in
TNR we have discussed is also supported by them.
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Appendix A: Finite-Entanglement scaling of the
Three-State Potts model.

1. Model

We can further verify the emergence of relevant per-
turbations by applying it to the three-state Potts model.
It is a natural extension of the Ising model to the Z3

symmetry, and the Hamiltonian is

H = −
∑
⟨i,j⟩

δsi,sj , (A1)

where si takes 0, 1, and −1. It has a phase transition
of Z3 symmetry breaking at Tc = 1/ log(1 +

√
3). The

critical theory of the 3-state Potts model is another type
of the minimal model M(6, 5) with c = 4

5 [18, 44]. A set
of primary operators are shown in Table. III.

As opposed to the Ising model, there are off-diagonal
operators as Φ 2

5 ,
7
5
, Φ 7

5 ,
2
5
and Φ3,0, Φ0,3(currents).

Let us first examine the RG flow in a gapped sys-
tem. Similar to the Ising model, the phase transition

is identified by spontaneous symmetry breaking. The
high-temperature phase is a trivial phase, whereas the
low-temperature region is Z3 symmetry breaking phase.
Thus, the fixed-point tensor is a stacking of three states
with their Z3 charge 0, −1, and 1.

2. Construction of the effective Hamiltonian

The RG flow can be seen by investigating the scaling
dimensions. For instance, we can take the spin operator
σ = Φ 1

15 ,
1
15

and plot the value of δxσ = xσ(L)− 2
15 . Simi-

larly, as in the Ising model, there is competition between
irrelevant and relevant operators: X = Φ 7

5 ,
7
5
and ϵ =

Φ 2
5 ,

2
5
. The thermal operator separates the Z3 symmetry-

breaking phase from the trivial one. The finite-size cor-
rections of X and ϵ to xσ are L−0.8 and L1.2, respectively.
The fusion rules are σ × σ = 1 + ϵ + σ + X + Y + Z,
ϵ × ϵ = 1 + X, and ϵ × σ = σ + Z. Hence, δxσ has the
following form:

δxσ = 2πcσσXgX

(
L

2π

)−0.8

+ 2πcσσϵgϵ

(
L

2π

)1.2

.

(A2)

On the other hand, the perturbation of ϵ appears as a
second-order term for δxϵ because the fusion rule says
ϵ× ϵ = 1 +X. Consequently, δxϵ can be computed as

δxϵ = 2πcϵϵXgX

(
L

2π

)−0.8

+ αg2ϵ

(
L

2π

)2.4

, (A3)

where α is a constant determined from the second-order
calculation.
Figure. 7 shows the computed δxσ by TNR. As ex-

pected, it exhibits the competition between irrelevant
and relevant operators. The sign of gϵ is the opposite
between two phases, which is a manifest indication of
the RG flow in the opposite direction due to the thermal
operator. xσ has doubly degenerate states with Z3 charge
±1. In the low-temperature phase, these two states flow
to xσ(L) → 0, and the fixed point tensor becomes three-
fold degenerate. As for the irrelevant perturbation, there
seems to be a discrepancy between δxσ in Fig. 7 and
Eq. (A2). The data points are scattered for small sys-
tem sizes and not precisely on the fitting lines. This is
due to the leading irrelevant operator we have not con-
sidered. We can identify it as T 2

cyl + T̄ 2
cyl as followings.

Just as we did in the left panel of Fig. 3, the contribu-
tions from gX can be eliminated by combining δxσ and
δxϵ. The OPE coefficients for the 3-state Potts model
are known, and the ratio of the two OPE coefficients is
cϵϵX/cσσX = 36[45–49]. Thus, the origin of the ”scatter-
ing” shall be observed by plotting 36δxσ − δxϵ.
Figure. 8 displays the result for the high-temperature

phase. It is now obvious that the scattering of Fig. 7
comes from the L−2 perturbation denoted with the red
dotted line. Also, it has a conformal spin s because it

https://doi.org/https://doi.org/10.1016/0550-3213(84)90269-4
https://doi.org/https://doi.org/10.1016/0550-3213(84)90269-4
https://doi.org/https://doi.org/10.1016/S0550-3213(85)80004-3
https://doi.org/https://doi.org/10.1016/S0550-3213(85)80004-3
https://doi.org/https://doi.org/10.1016/0370-2693(85)90366-1
https://doi.org/https://doi.org/10.1016/0003-4916(89)90275-3
https://doi.org/https://doi.org/10.1016/0003-4916(89)90275-3
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FIG. 7. The size dependence of the (a)δxσ and (b)δxϵ at T = 0.999995Tc and T = 1.000005Tc. The pink and green dotted lines
denote L−0.8, (a)L1.2, and (b)L2.4 fittings respectively. For the low-temperature phase, the sign of δxσ is negative at L > 100.
The dip on the left panel around L ∼ 102 corresponds to the zero point of Eq. (A2). (b) The finite-size effect to the xϵ suffers
less from T 2

cyl + T̄ 2
cyl in amplitude. The scaling of Eq. (A3) is clearly observed.

flips a sign at each step and s ≡ 4 (mod 8) [50]. As a
result, we can conclude the irrelevant operator has the
conformal weights as (h, h̄) = (4, 0) and (0, 4), which are
T 2
cyl and T̄ 2

cyl. Finally, the effective Hamiltonian of the
critical 3-state Potts model on the square lattice can be
constructed as

H = H∗
Potts +

∫ L

0

dx
[
gXΦ 7

5 ,
7
5
(x) + gT (T

2
cyl + T̄ 2

cyl)
]
.

(A4)

3. Finite-Entanglement scaling

At the critical temperature of the Ising model, the
finite-D effect proves to be a perturbation from the ther-
mal operator. Let us verify it for the critical 3-state
Potts model. Due to the irrelevant perturbations from
T 2
cyl + T̄ 2

cyl, the finite-D effects are clearer for xϵ(L) as

seen in Fig. 7(b). This is shown in Fig. 5 of the main
text. Here, we demonstrate that δxσ(L) also shows the
universal behavior with L/ξ(D). Figure. 9 shows the
rescaled correction to δxσ(L). For L > ξ(D), the pertur-
bation grows as L2 denoted by a gray line, which means
that the emergent perturbation scales as L1.2. Compared
with Eq. (A2), it is clear that the emergent perturbation
is from the thermal operator. However, as the system size
increases, the second-order perturbation becomes pre-
dominant as shown with a pink line. As ϵ is the most
relevant operator that is permitted by symmetry, it sup-
ports our conjecture stated in the main text.
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FIG. 8. 36δxσ − δxϵ for the high temperature phase. “+” is
used when the sign is negative. The red dotted line denotes
the L−2 fitting while the light green one is just a relevant L1.2

contribution from ϵ. Loop-TNR rotates the lattice by π
4

at
each RG step, and the tilted system is plotted with the blue
dots.

FIG. 9. Rescaled δxσ by ξ(D) = Dκ at the critical temper-
ature. The resulting data collapse onto a universal function
that is independent of L/ξ(D). If L/ξ(D) < 1, the system
is in the FSS region, while if L/ξ(D) ≥ 1, it is in the FES
region. In the FES region, the scaling of the first-order and
second-order perturbations are indicated by a gray and pink
line, respectively. xσ is computed as an average value of the
first and second excitation energy.
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