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The relevance of the single-band two-dimensional Hubbard model to superconductivity in the
doped cuprates has recently been questioned, based on Density matrix Renormalization Group
(DMRG) computations that found superconductivity over unrealistically broad doping region upon
electron-doping, yet complete absence of superconductivity for hole-doping. We report very similar
results from DMRG calculations on Cu203 two-leg ladder within the parent three-band correlated-

electron Hamiltonian.

The strong asymmetry found in our calculations are in contradiction to

the deep and profound symmetry in the experimental phase diagrams of electron- and hole-doped
cuprate superconductors, as seen from the occurrence of quantum critical points within the super-
conducting domes in both cases that are characterized by Fermi surface reconstruction, large jumps

in carrier density and strange metal behavior.

The mechanism of unconventional superconductivity
(SC) found in the high-T. cuprates and other strongly-
correlated materials remains an outstanding problem in
condensed matter physics, more than three decades after
its discovery. At the heart of the problem is the choice
of the minimal model for the CuO5 planes that can ac-
count for SC. Since the work of Zhang and Rice, who
showed that under certain limits the three-band model
of the CuO4 planes could be reduced to a simpler one-
band Hubbard model [1], the majority of theoretical work
has focused on the single-band Hubbard model, as well
as even simpler approximations such as the ¢-J model.
While cluster variants of dynamical mean-field theory
find SC in the doped single-band model on a square lat-
tice [2-9], density matrix renormalization group (DMRG)
and quantum Monte Carlo (QMC) calculations have de-
tected absence of long-range superconducting order [10-
12].

Accurate description of the band structure of the
cuprates within a one-band correlated-electron Hamil-
tonian requires inclusion of second neighbor hopping ¢’
[13-16]. DMRG calculations have therefore been per-
formed on quasi-one-dimensional cylinders for the ¢-t'-
J model, where '/t negative (positive) corresponds to
hole (electron)-doped regimes. No signature of pairing
is found in the negative ¢/t region [17]. Surprisingly,
strong signature of dominant superconducting pair-pair
correlations is found in the positive ¢'/t region, over a
very broad range of electron-doping [17]. Enhanced pair-
ing correlations in the electron-doped region have been
confirmed from DMRG calculations on related extended
t-J models on one-band 6-leg cylinders [18, 19]. These
results are exactly opposite to experimental observation
in real cuprates, where significantly higher T, over a
much broader doping region is found with hole doping.
The authors of reference 17 have subsequently extended
their calculations to the parameter region with nonzero

third neighbor hopping ¢” [19]. Absence of pairing in the
hole-doped region, and strong pairing tendency over very
broad region of electron-doping persist within the ¢-¢'-¢"-
J model [20]. Quantum Monte Carlo calculations have
claimed long-range superconducting correlations for both
electron and hole doping at finite U in the U-t-t' Hamil-
tonian, with stronger pairing on the hole doped side [21].
DMRG calculations for the same model contradict these
results, however, and only find pairing on the electron-
doped side [22]. The origin of the differences in these
numerical results and the more serious discrepancy from
experimental observations remain not understood.

The single-band model calculations suggest that there
are potential problems with reducing the electronic struc-
ture of the CuO4 planes to Cu-site based effective mod-
els. Clearly a comparison of hole- versus electron-doped
pairing tendencies within the full three-band correlated-
electron Hamiltonian for the cuprates will be more useful
in this context. We report here the results of high pre-
cision DMRG computations on the three-band two-leg
cuprate ladder, over a wide range of hole- and electron-
doping. The corresponding single-band Hubbard ladder
has been widely investigated in the past [23-27]. The
undoped (half-filled) single-band two-leg Hubbard lad-
der has spin-gapped ground state, with spins on the
ladder rungs paired into singlets [28]. Doped holes or
electrons (equivalent since the single-band Hubbard lad-
der has particle-hole symmetry) occupy ladder rungs in
pairs, which is favored over unpaired charge carriers that
would destroy two singlets instead of one. The ground
state of the single-band ladder for weak to moderate dop-
ing consequently has a spin gap and exhibits singlet su-
perconducting correlations with quasi-long-range order
[23-27, 29]. The above result breaks down for the hole-
doped three-band ladder, where a recent DMRG study
has shown that even though a spin gap persists in the
undoped state, superconducting correlations in the hole-



doped decay faster than 1/r, indicating dominance of
charge over pairing correlations at long distances [30].
The decay of pair correlations in this case is caused by
pair-breaking hole hopping between the O ions, and is
strongest when both Coulomb interactions between holes
on the same O and O-O hopping are included [30]. The
doped holes in hole-doped cuprates primarily reside on
oxygen sites; the results for the hole-doped ladder indi-
cate a breakdown of the Zhang-Rice theory [1]. In what
follows we compare hole- versus electron-doped three-
band two-leg ladder within high precision calculations.
We consider the CusO3 two-leg ladder Hamiltonian,
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In Eq. 1 dI \.o creates a hole with spin o on the ith Cu-

site on the A-th leg (A=1,2) of the ladder, p}ﬁg creates a
hole of spin ¢ on the j-th O p orbital. The O-ion can
be located on a rung or either leg of the ladder. Param-
eters tj-p and tqp are the nearest neighbor (n.n.) Cu-O
rung and leg hopping integrals, respectively, while t,,
is the n.n. O-O hopping integral. The phase relations
between the orbitals (see Fig. S1 in Supplemental Mate-
rial [31]) determine the sign convention for the hopping
integrals. We have taken all tj-p as negative, while ¢4,
and t,, alternate signs along the length of the ladder.
Ua (Up) is the Hubbard repulsion between hole pairs on
Cu-d (O-p) orbitals, and Agp = €, — €q is the site-energy
difference between Cu-d and O-p orbitals. We consider
ladders with L rungs and open boundary condition, with
rungs at both terminal ends. Calculations are for ladders
up to L = 96 (192 Cu and 286 O sites) and N holes, with
the undoped state corresponding to one hole per Cu site
(N = 2L). For hole (electron) doping we add (remove)
particles and define the hole (electron) doping fraction
as oy (0e) = N/(2L) —1 (1 = N/(2L)). In the following
we make comparisons of three-band results with those
obtained from single-band Hubbard ladders. The single-
band Hubbard repulsion, and the rung and leg hopping
parameters are written as U, ¢t and t*, respectively. The
single-band doping fraction is written as d.

We set |tqp|=1 (tjp = —1) and take other Hamilto-
nian parameters from recent first-principles calculations,
Agp = 3, Ug = 8, Uy, = {3,4}, and tpp, = {0.5,0.6}
[15, 16]. These parameters are similar to commonly ac-
cepted values [32-34]. We employed an S,-conserving
DMRG algorithm using the ITensor library [35] with real-
space parallelization [36]. We used a maximal bond di-
mension of up to 19000, giving a truncation error of less
than 1x10~7. All results were extrapolated to the limit
of zero truncation error (see [30] for examples of extrap-
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FIG. 1. (Color online) (a) The doping dependence of the

extrapolated spin gaps A, in the infinite-length limit (L —
00). (b) Pair-binding energy E,, as a function of doping (see
text). Circles and squares are for (Up,tpp) = (3,0.5) and
(4,0.6), respectively. A transition to a band state with near-
equal populations of charge-carriers on Cu- and O-sites occurs
at d. larger than that shown here. Lines are guides to the eye.

olation).

The characteristic behavior of the two-leg ladder is de-
termined by its spin gap As. SC can occur only if the spin
gap found in the undoped ladder persists under doping
[26, 29, 37]. We calculated A using finite-size extrap-
olation from ladders of lengths up to L=64. Fig. 1(a)
shows the doping dependence of the L — oo extrapo-
lated A,. For the undoped ladder, the behavior of Ag
against Ug/|tpa| is very similar to that of the spin gap
versus U/t in the single-band Hubbard ladder [23], with
a maximum in Ay for Ug/|tpa| &~ 8 [30]. However, A,
behaves qualitatively differently for the electron versus
hole doped ladders within Eq. 1. For electron doped lad-
ders A, remains large over a wide doping range, while
for hole doping Ag decreases rapidly with doping. The

normalized spin gap As = A4(d.)/As(d. = 0) for the
electron doped ladder is comparable to A, for the single-
band Hubbard ladder with U=8 and ¢+ = ¢ [38]. For the
single-band ladder, A (6 = 0.125) ~ 0.42, and is only
slightly smaller at § = 0.25 [38]; in comparison, for the
electron doped cuprate ladder with Uy = 8, U, = 3, and
top = 0.5, Ag(de = 0.125) = 0.49 and A (5, = 0.25) =
0.45. However, for hole doping, A(d, = 0.125) = 0.14
and As(éh = 0.25) = 0.02. A, increases with increasing
tpp in the undoped three-band model [33]. This effect
can be explained in the undoped case from perturbative
calculations of the effective exchange J between n.n. Cu
spins. About 2/3 of the contribution to J involves t,p,
demonstrating the critical role that the oxygen sublat-
tice plays even in undoped cuprates [39]. Our DMRG
results show that while Ay increases with t,, with elec-
tron doping, A, decreases with ¢y, for hole doping. We
also calculated the finite-size scaled pair-binding energy
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FIG. 2. (Color online) Normalized pair-pair correlation func-
tion P(r) as a function of the rung-rung distance r for 96-rung
ladders with U, = 3 and t,, = 0.5 for several electron dop-
ings d. and hole dopings dx. Solid, dashed, and dotted lines
are power laws r~*, r~2, and 7“71/27 respectively. Circles,
squares, diamonds, and up triangles correspond to electron
dopings . = 0.0625, 0.0833, 0.125, and 0.25, respectively.
Right and left triangles are for the hole-doped ladder with dy,
= 0.0625 and 0.125, respectively[30]. Lines are guides to the
eye.

E,b for both hole- and electron-doping, defined as in [40],

Epp =2E(Ny —1,N,) — E(Ny =1, Ny — 1) — E(Ny, ())

2
The calculated pair-binding energies, shown in Fig. 1(b),
are consistent with the calculated A;.

The doped single band two leg ladder belongs to
the Luther-Emery universality class, with gapped spin
degrees of freedom and a single gapless charge mode
[25, 26, 29, 41]. For the three-band cuprate ladder we
define the local charge density operator n; for the jth
unit cell as the sum of the charge density operators for
the two Cu sites on a rung, the rung O, and two leg
O sites. The charge correlation function is defined as
C(r) = (ninj — (n;)(n;)), where r = |i — j| is the rung-
rung distance. We define the superconducting pair-pair
correlation function P(r) = %((AZAJ) + (AiAD), where

Al = \/—(dj 1 sz2 f dz,l,id;z’r) creates a spin singlet
pair between Cu sites on the ith rung. In the Luther-
Emery universality class, charge and pairing correlations
decay as power laws in the long distance limit, with
asymptotic behavior C(r) ~ r~%¢ and P(r) ~ r~ /Ko,
respectively. While true long-range superconducting or-
der is absent in a one-dimensional system, for K, > 1
pair correlation decay with distance is slower than that
of charge correlation and there is quasi-long range super-
conducting order. Conversely, for K, < 1 charge corre-
lations dominate over superconducting quasi-long range
order.

The direct approach to determine if superconducting
correlations follow a power-law decay with distance in-
volves fitting P(r) against r. To reduce finite-size ef-

FIG. 3. (Color online) The local charge density profile on a
96-rung ladder with U, = 3 and tp, = 0.5 for electron dopings
de = (a) 0.0833, (b) 0.125, and (c) 0.25. The curves are fits to
Eq. 3. Dotted and dashed lines represent no and n(L/2). (d)
Amplitude of Friedel oscillations at L/2, dn (see text), as a
function of ladder length L. The lines are linear fits. Circles,
squares, and diamonds correspond to . = 0.0833, 0.125, and
0.25, respectively.

fects caused by the open boundary conditions of our lad-
ders [26, 30], we calculate P(r) from an average of Nayg
correlations of the same distance r, centered about the
midpoint of the ladder. The results shown here used
Navg = 10 (Navg = 11) for even (odd) r. In Fig. 2,
we show the normalized pair-pair correlation function
(P(r)/P(r = 1)) for 96-rung ladders with Uy = 8,
U, = 3, tpp = 0.5, and a range of dopings. We find that
P(r) is well fit by a power law P(r) ~ r~ over a range
of electron and hole dopings. As can be seen in Fig. 2
there is a very clear difference in the power law exponent
for hole versus electron doping, with a noticeably faster
decay with distance for hole-doped ladders. For electron
doping, o < 1 over a large range of doping, corresponding
to a correlation exponent K, > 1, which indicates quasi-
long-range superconducting order. In contrast, K, < 1
for hole doping [30]. With increased hole doping, pair
correlation decays faster with distance [30].

A more accurate approach to determining the corre-
lation exponent K, in DMRG calculations is to fit the



charge density (Friedel) oscillations caused by the open
boundaries of the ladder [26, 42]. This method also per-
mits more accurate extrapolation of K, to the L — oo
limit [26]. We use the following fitting function for the
charge density ny [26, 30, 42],

cos(N7k/Leg + ¢)

= A .
=m0+ sin(rk/ Leg ) K¢ /2

3)

In Eq. 3 ng is the background charge density, A the
Friedel oscillation amplitude, ¢ a phase shift, and Leg
an effective length. Typically Leg is smaller than L
to account for end effects [26]. The amplitude of the
charge density oscillations at the center of the system,
on = n(L/2) — ng, scales as L~5+/2. Finite-size scaling
of on, where the values of ng and n(L/2) are determined
from the fitted function in Eq. 3, then yields the most
precise estimates for the correlation exponent K, in the
infinite-length limit (L — oo) [26].

In Figs. 3(a)-(c) we show the Friedel oscillations of lo-
cal charge density n; on a 96-rung ladder with Uy = 8,
U, = 3, and tp, = 0.5 for three different values of electron
doping (6. =0.0833, 0.125, and 0.25). For each doping
level we also provide estimates for both ng and n(L/2)
in Figs. 3(a)-(c). As expected, the wavelength of the
Friedel oscillations is reduced with increasing doping Je.
In Fig. 3(d) we show the finite-size scaling analysis for
different ladder lengths of up to L = 96 to determine the
correlation exponent K, in the L — oo limit.

In Fig. 4 we summarize the extrapolated values of K,
for two sets of parameters most relevant to cuprates in
both hole- and electron-doped systems. The values of
K, for hole doping are from Ref. 30. We find that for
electron doping, K, > 1 and K, remains nearly constant
over a wide doping range. In contrast, for hole doping K,
is close to 1 for very small 0y, but rapidly decreases with
dp, and is significantly less than 1 for 6, > 0.0625. These
results, consistent with calculations of pair-binding ener-
gies, show that a superconducting Luther-Emery phase
occurs in the electron-doped cuprate ladder but not the
hole doped ladder.

The most important conclusion from our work is
that the doping asymmetry in pairing correlations found
within the one-band model calculations for the 2D layer
[17, 20, 22] occurs also within the two-leg three-band
cuprate ladder Hamiltonian for realistic Hubbard and
hopping parameters. As in the one-band ladder, the
three-band two-leg ladder also contains rung-based spin
singlets, now on Cu-O-Cu rungs, as evidenced from the
large As in the undoped ladder (Fig. 1(a)). Doping with
electrons therefore generates Cu?t ion pairs on the rungs,
and superconducting correlations persist for the same
reason as in the one-band model. Doped holes create
O'~ ions on rung or leg O-sites with equal probability.
Even when a doped hole occupies a rung O-ion, a second
doped hole necessarily occupies a neighboring leg oxygen,
which cannot be associated with any specific rung. This
severely reduces the hole-hole binding energy leading to
fast decrease of the spin gap (Fig. 1(a)). Direct O-O
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FIG. 4. (Color online) The doping dependence of the extrap-
olated power-law exponents K,. Circles and squares are for
(Up, tpp) = (3,0.5) and (4,0.6), respectively. Error bars are
estimated from the fits in Fig. 3(c). Lines are guides to the
eye. See also Table I in [31].

hopping t,, is strongly pair-breaking, as is indeed found
from our calculations. This particular result has strong
implications for the 2D lattice, where individual O-atoms
also cannot be associated with any single Cu?*-ion and
each O-atom is coupled to four other oxygens. The pair-
breaking effect due to O-O hopping therefore remains
strong in 2D: absence of pairing in the hole-doped three-
band ladder necessarily implies the same for 2D. With
hindsight, this breakdown of the Zhang-Rice reduction
of the full three-band Hamiltonian to a single-band Hub-
bard Hamiltonian is to be anticipated, as the original
derivation by Zhang and Rice had excluded O-O hop-
ping [1].

Superconductivity with electron-doping within the
three-band ladder similarly predicts the same in 2D
within the three-band Hamiltonian. Electron-doping
generates spinless Cu?t ions in the background antiferro-
magnet now instead of a spin-singlet ground state as 02~
ions remain closed-shell. O-O hopping thus plays no role
whatsoever, and Cu?T-Cu?* pairing, as found within the
one-band Hamiltonian will persist within the three-band
Hamiltonian. Coexistence with long-range antiferromag-
netism (AFM), as is found in the one-band calculations,
is a necessary condition of such pairing. Such coexis-
tence with long-range AFM is precluded experimentally
from inelastic neutron scattering studies [43] and muon
spin rotation measurements [44]. Additionally, coexis-
tence with AFM leads to coupled d,2_ > and triplet pair-
ing, as has indeed been found within both ¢-t'-J and t-
t’-t"-J and Hubbard model calculations [8, 17, 20] also
in contradiction to experiments. We note that a recent
extended t-J model DMRG calculation on 4- and 6-leg
cylinders found dominant pairing correlations and expo-
nentially decaying spin correlations for electron doping
[18]. Because even-leg cylinders are expected to possess
spin gaps, distinguishing between long-range AFM and



spin gap behavior is however difficult in DMRG calcu-
lations, and these results do not necessarily contradict
those obtained in references [17, 20] or here.

Rather than asymmetry, recent experiments have re-
vealed deep underlying symmetry between hole- and elec-
tron doped cuprates [45, 46]. In both cases there is ab-
sence of coexistence between long-range AFM and SC,
and there exists a quantum critical point with Fermi sur-
face reconstruction inside the superconducting dome, ac-
companied by a sudden change in the number of charge
carriers. In both hole- and electron-doped compounds
the carrier density is linear in doping p for small dop-
ing, but jumps to 1+ p and 1 — p respectively following
the Fermi surface reconstruction. The quantum critical
point in hole-doped systems occurs at the doping concen-
tration p. where the pseudogap vanishes at zero temper-
ature. The region between this critical doping and the
doping at which SC ends in both cases is occupied by a
strange metal that exhibits resistivity linear in tempera-
ture T and magnetoresistance linear in magnetic field H
[45-47]. Similar behavior has now been observed in many
different families of unconventional superconductors [48—
51]. Many authors have therefore speculated that there
is an intimate relationship between the quantum criti-
cality and superconductivity. Very recent research indi-
cates that charge carriers in the strange metallic state
of YBayCu3O7 may be charge 2e bosons [52]. All the
above continue to be challenging within standard models
of cuprate SC.

We end this Letter by pointing out that the quan-
tum criticality and associated phenomena can be qual-
itatively understood within a valence transition theory
of cuprates we have recently proposed [53-55]. Within
this theory the Fermi surface reconstruction in both hole
and electron-doped compounds is due to dopant-induced
transition from positive to negative charge transfer gap
state. The transition involves change in Cu-ion ionicity

from Cu®*t to Cu't, resulting in transfer of nearly all Cu-
ion dg2_,2 holes to the O-ions. Similar quantum critical
transitions between different ionicities have been widely
discussed over four decades in the context of neutral-
ionic transition in organic donor-acceptor charge-transfer
solids [56] and heavy fermion systems [57]. Carrier densi-
ties of 14+ p and 1 — p holes are naturally expected within
this approach following the valence transition. Trans-
port in the normal and superconducting states with both
hole- and electron doping then involve the nearly %—ﬁlled
strongly correlated O-band alone, explaining the myste-
rious symmetry between the two cases. Previous calcu-
lations on the single-band 2D %—ﬁlled Hubbard Hamilto-
nian have shown that (a) precisely at this carrier con-
centration there is a strong tendency to transition to a
paired-electron crystal (PEC), which is a charge-ordered
state of spin-singlet electron pairs [58, 59], and (b) very
close to this concentration there occurs enhancement
of superconducting pair correlations by the Hubbard U
[60, 61]. In the absence of phase coherence the spin-
coupled electron pairs can conceivably be the bosonic
charge carriers in the strange metallic state. Importantly,
the occurrence of the strange metallic state under pres-
sure in the organic superconductor (TMTSF),PFg [48],
known to possess a %—ﬁlled hole band (%—ﬁlled electron
band) is indirect confirmation of this approach. These
and related topics are currently under investigation.
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