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Abstract: Nonlinear Hall effects have been previously investigated in non-

centrosymmetric systems for electronic systems. However, they only exist in metallic 

systems and are not compatible with ferroelectrics since these latter are insulators, 

hence limiting their applications. On the other hand, ferroelectrics naturally break 

inversion symmetry and can induce a non-zero Berry curvature. Here, we show that a 

non-volatile electric-field control of heat current can be realized in ferroelectrics 

through the nonlinear phonon Hall effects. More precisely, based on Boltzmann 

equation under the relaxation-time approximation, we derive the equation for nonlinear 

phonon Hall effects, and further show that the behaviors of nonlinear Hall effects for 

phonons (that are bosons) are very different from nonlinear Hall effects for electrons 

(that are fermions). Our work therefore provides a route for electric-field control of 

thermal Hall current in ferroelectrics. 
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Introduction 

Hall effects [1-4], which typically require breaking of the time reversal (TR) symmetry, 

have been widely studied in the past years. Recently, the nonlinear Hall effect (NHE) 

[5-17], which can exist without breaking TR symmetry, attracted a lot of attention. It 

arises from the Berry curvature dipole (BCD) [5] in an inversion-symmetry broken 

system. Due to the symmetry requirement of BCD, the NHE has been proposed to 

detect the direction of magnetic moments [18,19], electric polarization of polar metal 

[20] and broadband terahertz at room temperature [21]. NHE also has been extended to 

nonlinear thermal Hall effects [22-26], that involve electrons and magnons. 

Ferroelectrics, which naturally break inversion-symmetry, have been widely 

investigated due to, e.g., their applications in non-volatile memory devices [27-29]. 

Ferroelectrics usually are insulators. However, the response of NHE (for electronic 

systems) to external electric fields is a Fermi liquid property [5] and can only exist in 

metallic systems. Hence, ferroelectrics and NHE are naturally not compatible to each 

other in principles. Note that Xiao et al. predicted that NHE can exist in the LiOsO3 

ferroelectric metal [20], but it cannot be controlled by switching the polarization of 

metallic LiOsO3 which is metallic. Similarly, although ferroelectrics can also be 

metallic for some special two-dimensional (2D) systems with out-of-plane polarization 

[30-33], the switchable ability of their polarization is also very limited,  except for 2D 

WTe2 [30]. On the other hand, compared with electronic (Fermionic) systems, phononic 

(Bosonic) systems may be a good platform for controlling the nonlinear phonon Hall 

effect (NPHE) since it is not limited to metallic systems. A natural question thus arises, 

namely does the NPHE exist in ferroelectric systems? If yes, are there any differences 

in the temperature-dependent behavior of NHE and NPHE? Moreover, could the NPHE 

be switched by an external electric field? Obviously, answering these questions will not 

only open a new possibility for NPHE, but also may lead to thermal Hall devices 

integrated in ferroelectrics. 



In this work, by solving the Boltzmann equation under relaxation-time approximation 

[34], we find that NPHE can exist in any system having broken inversion-symmetry. It 

is very different in nature from the NHE for electrons. For instance, the NHE for 

electrons are only decided by the states located near the Fermi level, while NPHE are 

contributed by all phonon bands. Furthermore, the nonlinear Hall conductivity for 

electrons increases with decreasing temperature [7,14]. In contrast, the nonlinear 

phonon Hall conductivity first increases with increasing temperature, and then, after 

reaching a maximum value at a specific temperature, decreases with further heating the 

system. We also find that, for three-dimensional (3D) ferroelectrics, the nonlinear 

phonon Hall conductivity changes its sign when the ferroelectric polarization switches. 

While, for 2D ferroelectrics, if the two polarization states are connected by a 𝑀𝑧 mirror 

symmetry, the nonlinear phonon Hall conductivity does not change its sign due to the 

lack of component of Berry curvature Ω𝑥, Ω𝑦, and lack of the good quantum number  

𝑘𝑧 in 2D systems.  We further find that the switching of ferroelectric polarization in 3D 

systems switches the Weyl chirality and topological charge of Weyl phonons. 

Nonlinear phonon Hall effects 

The phonon Hall effect has been previously observed in experiments [35,36]. 

Theoretical studies show that it is caused by the Berry curvature of phonon bands in 

systems with Raman spin-phonon coupling [37-39] and its Hamiltonian is non-

Hermitian [40]. The phonon Hall conductivity can be expressed as [41,42] 

𝜅𝑎𝑏 = −
𝑘𝐵

2 𝑇

ℏ𝑉
∑ 𝑐2(𝜌)Ω𝑛,𝑐(𝒒)𝑛,𝒒         (1) 

where, 𝜅𝑎𝑏 is the phonon Hall conductivity. 𝑇 and 𝑉 are the temperature and materials’ 

volume. 𝑘𝐵 and ℏ are Boltzmann and reduced Plank constants. 𝒒 and 𝑛 are Bloch wave 

vector and band index for phonons. 𝑎, 𝑏 and 𝑐 (equivalent to 𝑥, 𝑦, 𝑎𝑛𝑑 𝑧) are Cartesian 

coordinates. 𝜌 and Ω are distribution function and Berry curvature for phonons. Here, 

𝑐2(𝜌)[42] is a coefficient that depends on 𝜌 , and which is different from the 𝑐0 (𝑐0 =

𝜌 ) involved in NHE [5] and 𝑐1  ( 𝑐1 = (1 + 𝜌)𝐼𝑛(1 + 𝜌) − 𝜌𝐼𝑛𝜌 ) associated with 



nonlinear (spin) Nernst effect [22,25]. For non-magnetic systems (in their equilibrium 

state), 𝜅𝑎𝑏 is always zero since the integration of Berry curvature in the whole Brillouin 

zone (BZ) for all phonon bands vanishes. Consequently, the phonon Hall conductivity 

vanishes. However, for non-magnetic systems with breaking inversion-symmetry, 

although the integration of Berry curvature is zero in the BZ, the Berry curvature 𝛀𝑛(𝒒) 

is non-zero at a specific vector 𝒒 of a band 𝑛. In this case, under a temperature gradient 

∇𝑇 (corresponding to the non-equilibrium state), we will show that the phonon Hall 

conductivity 𝜅𝑎𝑏 can be non-zero, leading to the NPHE. 

The expression of 𝑐2  in Equation (1) is [42]  

𝑐2(𝜌) =  (1 + 𝜌) (𝐼𝑛
1+𝜌

𝜌
)

2

− (𝐼𝑛𝜌)2 − 2𝐿𝑖2(−𝜌)     (2) 

𝐿𝑖2 is the polylogarithm of order 2. Note that, here, we consider the non-equilibrium 

state which is caused by the temperature gradient ∇𝑇 . Here, 𝜌  represents the 

distribution function for non-equilibrium state and we expand it as 𝜌 ≈ 𝜌0 + 𝜌1, where 

𝜌0 refers to the Boson-Einstein distribution function for equilibrium state, and 𝜌1 is a 

small first-order term of the temperature gradient ∇𝑇. 

Furthermore, the Boltzmann equation can be written as [43]:  

𝜕𝜌

𝜕𝑡
= −𝒗𝑛,𝒒

𝜕𝜌

𝜕𝒓
(𝒒, 𝒓, 𝑡) − (

𝑑𝒒

𝑑𝑡
)

𝜕𝜌

𝜕𝒒
(𝒒, 𝒓, 𝑡) −

𝜌−𝜌0

𝜏𝑛(𝒒)
     (3) 

where, 𝑡 and 𝒓 represent the time and position vector, respectively. 𝑣𝑛,𝒒 is the group 

velocity for band 𝑛 at the 𝒒 point in BZ. Assuming the system in a steady state, we have 

𝜕𝜌

𝜕𝑡
= 0. Since phonons have no charge, there is no electric field force. Thus, we have 

𝑑𝒒

𝑑𝑡
= 0 . The last term of equation (3) −

𝜌−𝜌0

𝜏𝑛(𝒒)
 represents the collision term. 𝜏𝑛(𝒒) 

represents the relaxation time for phonons, which depends on 𝒒 and 𝑛. For simplicity, 

we consider the relaxation time approximation and write it from now on as 𝜏. Thus, 

Equation (3) can be simplified (for the 𝑎 component) to: 



𝑣𝑛,𝑎(𝒒)
𝜕𝜌

𝜕𝑟𝑎
= −

𝜌−𝜌0

𝜏
            (4) 

Putting 𝜌 ≈ 𝜌0 + 𝜌1 into equation (4) and comparing the expansion coefficients in the 

first-order of temperature gradient, we get  

𝜌1 = −𝜏𝑣𝑛,𝑎(𝒒)
𝜕𝜌0

𝜕𝑇

𝜕𝑇

𝜕𝑟𝑎
           (5) 

Putting 𝜌 ≈ 𝜌0 + 𝜌1 into equation (2), and then using equation (5), we obtain after a 

straightforward but tedious calculation (Details can be found in the supplementary 

materials[44] (see also references [45-53] therein):  

𝑐2(𝜌) = 𝑐2(𝜌0) +
𝜏𝑘𝐵

ℏ
(

𝐸𝑛,𝒒−𝜇

𝑘𝐵𝑇
)3 𝜕𝜌0

𝜕𝑞𝑎

𝜕𝑇

𝜕𝑟𝑎
        (6) 

Where 𝐸𝑛,𝒒 and 𝜇 are the energy for band 𝑛 at the 𝒒 point in the BZ and the chemical 

potential, respectively. For phonons, the chemical potential 𝜇  is always zero since 

phonons are Bosons. Putting equation (6) into equation (1), and by using 𝜅𝑎𝑏 =

−
𝑘𝐵

2 𝑇

ℏ𝑉
∑ 𝑐2(𝜌0)Ω𝑛,𝑐(𝒒)𝑛,𝒒 = 0 for the equilibrium state (Note that we focus on the non-

magnetic system), the temperature gradient induced thermal conductivity can be written 

for non-equilibrium states as 

𝜅𝑎𝑏 = −
𝜏𝛻𝑑𝑇

𝑉ℏ2
𝜖𝑎𝑏𝑐 ∑

𝐸𝑛,𝒒
3

𝑇2

𝜕𝜌0

𝜕𝑞𝑑
Ω𝑛,𝑐(𝒒)𝒒,𝑛        (7) 

Here, 
𝜕𝑇

𝜕𝑟𝑑
 is denoted by 𝛻𝑑𝑇 and 𝑑 = (𝑎, 𝑏, 𝑐). Since 𝑗𝑎 = −𝜅𝑎𝑏𝛻𝑏𝑇, we have  

𝑗𝑎 =
𝜏𝛻𝑑𝑇𝛻𝑏𝑇

𝑉ℏ2 𝜖𝑎𝑏𝑐 ∑
𝐸𝑛,𝒒

3

𝑇2

𝜕𝜌0

𝜕𝑞𝑑
Ω𝑛,𝑐(𝒒)𝒒,𝑛         (8) 

where  𝜖𝑎𝑏𝑐 is the Levi-Civita symbol. One can see that the thermal current 𝑗𝑎 (related 

with phonons) is proportional to the second order of the temperature gradient. Hence, 

we name this effect as the NPHE. Note that, in reality, the phonon relaxation time 𝜏 

will be 𝒒 (also n with n being the band index of phonon spectrum) dependent, i.e. 



𝜏𝑛(𝒒). The low-frequency phonon has a longer relaxation time than the high-frequency 

phonon, but the energy of the low-frequency phonon is lower than that of the high-

frequency phonon. These facts indicate that both low- and high-frequency phonons can 

have a significant contribution to the nonlinear phonon Hall effects. However, since the 

magnitude of the nonlinear phonon Hall effect is proportional to the first power of 

𝜏𝑛(𝒒) and is proportional to the third power of 𝐸𝑛,𝒒, the high-frequency phonons would 

have more contribution than low-frequency phonons. 

For NHE of electrons, at the equilibrium state, ∫ 𝑐0(𝑓0)Ω
𝑞

 (In this case, 𝑐0 =  𝑓0 is the 

Fermi-Dirac distribution for equilibrium state) equals to zero for non-magnetic systems. 

Hence, by integration by parts, one gets ∫
𝜕𝑓0

𝜕𝑞
Ω

𝑞
= − ∫ 𝑓0

𝜕Ω

𝜕𝑞𝑞
. The right side 

− ∫ 𝑓0
𝜕Ω

𝜕𝑞𝑞
 is the so-called BCD since it is related with the gradient of Berry curvature 

in the BZ. However, in our case, at the equilibrium state, we have ∫ 𝑐2(𝜌0)Ω
𝑞

=

0  (The form of 𝑐2(𝜌0) is shown in Eq. (2)) instead of ∫ 𝑐0Ω = 0
𝑞

  for non-magnetic 

system. Hence, we cannot use the BCD to describe the nonlinear thermal current for 

phonons. However, we still can define a similar pseudotensorial quantity 𝑃𝑎𝑏 =

1

𝑉𝑇2
∑ 𝐸𝑛,𝒒

3 𝜕𝜌0

𝜕𝑞𝑎
Ω𝑛,𝑏(𝒒)𝒒,𝑛  which has the same transformation properties as BCD under 

symmetry operations. Since 𝜌0  is an even function under TR symmetry, the 

transformation properties under crystal symmetry of 𝑃𝑎𝑏 is only decided by 𝒒 and 𝛀 

which is the same as BCD. Note that we have a factor 
𝐸𝑛,𝒒

3

𝑇2  for the pseudotensorial 

quantity 𝑃𝑎𝑏 , which is different from the factor 
(𝐸𝑛,𝑞−𝜇)

2

𝑇2  for nonlinear anomalous 

Nernst effect [22]. Moreover, and as different from the nonlinear anomalous Nernst 

effect and NHE for electrons [5], the factor 
𝜕𝜌0

𝜕𝑞𝑎
 in 𝑃𝑎𝑏  indicates that the nonlinear 

thermal current [Equation (8)] is contributed by all phonon bands instead of the states 

near the Fermi level since phonons are bosons. For 3D systems, different from the BCD 

which is dimensionless, the pseudotensorial quantity 𝑃𝑎𝑏 has a unit of 𝑒𝑉 ∗ 𝑘𝐵
2 . While, 

for 2D systems, 𝑃𝑎𝑏 has a unit of 𝑒𝑉 ∗ 𝑘𝐵
2 ∗ Å. 

https://en.wikipedia.org/wiki/Bose%E2%80%93Einstein_condensate


 

Switchable NPHE in 3D ferroelectrics 

In this part, we will show that, due to the symmetry requirement of the pseudotensorial 

quantity 𝑃𝑎𝑏 =
1

𝑉𝑇2
∑ 𝐸𝑛,𝒒

3 𝜕𝜌0

𝜕𝑞𝑎
Ω𝑛,𝑏(𝒒)𝒒,𝑛 , the NPHE must change its sign when the 

polarization of a 3D ferroelectric is reversed. For a 3D ferroelectric, there must exist a 

polar axis. For simplicity, we assume it is along the +𝑐 direction. Thus, the mirror 

symmetry 𝑀𝑐 is broken by the polarization, and one can then show that 𝑃𝑎𝑏 must be 

non-zero. Hence, one can see that the ferroelectric polarization is highly related with 

the symmetry of the pseudotensorial quantity 𝑃𝑎𝑏. When the polarization is switched, 

the structure is reflected by inversion symmetry. Under inversion symmetry,  𝛀𝑏 is 

even and 𝒒𝒂  is odd (Note that 𝜌0  is even under TR symmetry). Thus, the 𝑃𝑎𝑏  must 

reverse its sign when the polarization is reverted. More interestingly and since the Berry 

curvature does not change sign under inversion symmetry, the Weyl chirality and 

topological charge of Weyl points for 3D ferroelectrics should reverse their sign when 

switching the electrical polarization of 3D ferroelectrics. Related details of such 

features can be found in Supplemental Material [44]. 

We then take the 3D ferroelectric PbTiO3[54] as an example and explain how the NHPE 

can be controlled by switching the polarization. The crystal structure of PbTiO3 is 

shown in Fig. 1(a). It is a tetragonal phase with the 𝑃4𝑚𝑚 space group (number 99) 

and 𝐶4𝑣 point group. This latter point group implies that the pseudotensorial quantity 

𝑃𝑎𝑏 has the form (see Supplemental Material [44]) of  

[

0 𝑃𝑥𝑦 0

−𝑃𝑥𝑦 0 0

0 0 0

] 

For which only 𝑃𝑥𝑦 and 𝑃𝑦𝑥 are non-zero. Based on equation (8), we have  

𝑗𝑧 =
𝜏(𝛻𝑥𝑇)2

𝑉ℏ2
∑

𝐸𝑛,𝒒
3

𝑇2

𝜕𝜌0

𝜕𝑞𝑥
Ω𝑛,𝑦(𝒒)𝒒,𝑛 =

𝜏(𝛻𝑥𝑇)2

ℏ2 𝑃𝑥𝑦       (9) 



This equation implies that, for PbTiO3 with a polarization down, adding a temperature 

gradient (𝛻𝑥𝑇) along the −𝑥  direction will induce a thermal current (along the −𝑧 

direction) that is proportional to both (𝛻𝑥𝑇)2 and 𝑃𝑥𝑦 (𝑃𝑥𝑦 is positive for a polarization 

down with temperature higher than 30 Kelvin (K)) [see Fig. 1(a)]. After the polarization 

is switched by an electric field, the nonlinear thermal current 𝑗𝑧 switches its sign due to 

the change of sign of 𝑃𝑥𝑦, while the temperature gradient is maintained.  

We calculate the 𝑃𝑥𝑦 as a function of temperature for PbTiO3, and the results are shown 

in Fig. 1(c). When the temperature is low (that is, lower than 20K, see Fig. 1(c)), the 

magnitude of 𝑃𝑥𝑦 is small. With increasing temperature, the magnitude of 𝑃𝑥𝑦 quickly 

increases (between 20K and 80K). In the high temperature limit, the magnitude of 𝑃𝑥𝑦 

decreases again. As indicated in Fig. 1(c), reverting the polarization direction results in 

the 𝑃𝑥𝑦  being reversed. The behaviors of the  𝑃𝑥𝑦  as a function of temperature, and 

detailed calculations for 𝑃𝑥𝑦  can be seen Supplemental Material [44]. We also 

investigated the component 𝑃𝑥𝑦  as a function of frequency (the chosen range of 

frequency for PbTiO3 is from 0 𝑇𝐻𝑧 to 25 𝑇𝐻𝑧 since the maximum frequency is around 

24 𝑇𝐻𝑧 ), see Supplemental Material [44]). The result is shown in Fig. 1(d). The 

temperature is fixed at either 𝑘𝐵𝑇 = 2.6 𝑚𝑒𝑉 (which corresponds to 30 K) or 𝑘𝐵𝑇 =

18.1 𝑚𝑒𝑉  (corresponding to 210 K). Comparing the result for these two different 

temperatures, one can see that, at low temperature, only low-frequency phonon bands 

make contribution for 𝑃𝑥𝑦; the high-frequency phonons being thus frozen. On the other 

hand, for higher temperature, the high-frequency phonons are excited and have 

significant contribution for 𝑃𝑥𝑦, implying that  is contributed by all phonon bands. Due 

to the cancellation of the Berry curvature for different phonon bands,  𝑃𝑎𝑏 can change 

its sign for different frequency values. Note also that 𝑃𝑎𝑏 at frequency 𝑤 is calculated 

by using 𝑃𝑎𝑏 =
1

𝑉𝑇2
∑ ∑ 𝐸𝑛,𝑞

3 𝜕𝜌0

𝜕𝑞𝑎
Ω𝑛,𝑏(𝑞)𝑞,𝑛𝑤 ) and summing over the states between 0 

𝑇𝐻𝑧 and 𝑤 𝑇𝐻𝑧 (𝑤 is the frequency of phonons). To make sure that the computed 

Berry curvature is converged, we tested the results for different 𝑞  grids (see 

Supplemental Material [44]). The results are shown in Supplemental Material [44].  



NPHE in 2D ferroelectrics 

For 2D systems, the Berry curvature just has a finite component for Ω𝑧 . The good 

quantum number for 𝒒 are 𝑞𝑥 and 𝑞𝑦. Hence, only 𝑃𝑥𝑧 and 𝑃𝑦𝑧 can be defined. For this 

reason, the switching of the electrical polarization of a 2D ferroelectric will not always 

changes the sign of the NPHE. Specifically, a 2D ferroelectric only maintaining an out-

of-plane polarization (e.g., along +𝑧) cannot realize the sign reversal of the nonlinear 

thermal current. In fact, for a 2D ferroelectric only maintaining an out-of-plane 

polarization is such as its two polarization states are connected by a mirror symmetry 

𝑀𝑧, with  Ω𝑧, 𝑞𝑥 and 𝑞𝑦 all being even under the 𝑀𝑧 operation. Thus, 𝑃𝑥𝑧 and 𝑃𝑦𝑧 do 

not change their sign when changing the polarization. One specific example is the 

monolayer CuInP2S6 for which the two ferroelectric states (with only out-of-plane 

polarization) are connected by 𝑀𝑧 [55,56]. The phonon spectra are shown in 

Supplemental Material [44], and the phonon berry curvature distribution for the two 

ferroelectric states can be found in Supplemental Material [44]. On the other hand, a 

2D ferroelectric only maintaining an in-plane polarization [e.g., along +𝑦 (+𝑥)] can 

realize the sign reversal of the NPHE since its two polarization states are connected by 

a mirror symmetry 𝑀𝑦 (𝑀𝑥). Ω𝑧 being odd under the 𝑀𝑦 (𝑀𝑥) operation while 𝑞𝑥 (𝑞𝑦) 

is even under the 𝑀𝑦  (𝑀𝑥) operation, 𝑃𝑥𝑧  (𝑃𝑦𝑧) changes its sign when reverting the 

polarization. One example is 2D ferroelectric SnTe [57] that only has an in-plane 

polarization (the phonon spectra are shown in Supplemental Material [44]). Note that 

the point group of monolayer SnTe is C2v, for which there is a mirror symmetry 𝑀𝑥 

whose normal is perpendicular to the 𝑥  axis (See Fig.2 (a)). Due to such mirror 

symmetry 𝑀𝑥, 𝑃𝑦𝑧 vanishes and only 𝑃𝑥𝑧 is nonzero. This nonzero 𝑃𝑥𝑧 implies that, if 

there exist a temperature gradient along -𝑥 (∇𝑥𝑇) direction, a nonlinear thermal current 

will emerge along the +𝑦 direction (since 𝑃𝑥𝑦 is negative for a polarization down (𝑃 −) 

with temperature higher than 40 K [see Fig. 2(c)]) which is proportional to (∇𝑥𝑇)2 (see 

Fig. 2(a)). Switching the polarization will reverse the direction of nonlinear thermal 

current 𝑗𝑦  (see Fig. 2(b)). The 𝑃𝑥𝑧  (for both 𝑃 + and 𝑃 − up and down polarization 

states, respectively) as a function of temperature and frequency are shown in Fig. 2(c) 



and Fig. 2(d). Note that these results originate from the use of 𝑃𝑎𝑏 =

1

𝑉𝑇2 ∫ ∑ 𝐸𝑛,𝑞
3 𝜕𝜌0

𝜕𝑞𝑎
Ω𝑛,𝑏(𝑞)𝑞,𝑛

𝑤

0
 and that the ferroelectric transition temperature for 

monolayer SnTe is 275 K [57],  while the range of frequency for SnTe is from 0𝑇𝐻𝑧 to 

5𝑇𝐻𝑧 (see Supplemental Material [44]). For the 2D ferroelectrics with both in-plane 

and out-of-plane polarization, the nonlinear phonon Hall current can also be reverted 

since they have non-zero in-plane component polarization. One particular example is 

the 2D ferroelectric In2Se3[58]. 

 

Discussions 

Here, we roughly estimate the magnitude of NPHE, and discuss the experimental details 

for observing it. The experimental set-up is shown in Fig. 3. The left side (yellow 

cylinder) is a heater. The length, width and height of the sample are represented by 𝑙𝑥, 

𝑙𝑧 and 𝑙𝑦, respectively. Once the system reaches a steady state, we have 

𝜅𝑥𝑧∇𝑥𝑇 = −𝜅𝑥𝑥∇𝑧𝑇              (10) 

Hence, ∇𝑧𝑇 = −
𝜅𝑥𝑧∇𝑥𝑇

𝜅𝑥𝑥
, i.e. 

Δ𝑧𝑇

𝑙𝑧
= −

𝜅𝑥𝑧∇𝑥𝑇

𝜅𝑥𝑥
. Then, we get  

Δ𝑧𝑇 =
𝑗𝑧𝑙𝑧

𝜅𝑥𝑥
                (11) 

where 𝑗𝑧 is the nonlinear Hall current and 𝜅𝑥𝑥 is the longitudinal thermal conductivity. 

∇𝑧𝑇 and ∇𝑥𝑇 are the temperature gradients along the 𝑧 and 𝑥 direction, respectively. 

Δ𝑧𝑇 is the temperature difference between the two sides (along the 𝑧 direction) of the 

sample which can be directly measured. Equation (11) indicates the temperature 

difference Δ𝑧𝑇 can be enhanced by increasing 𝑗𝑧 and 𝑙𝑧, and decreasing 𝜅𝑥𝑥. Based on 

Equation (9), 𝑗𝑧 =
𝜏(𝛻𝑥𝑇)2

𝑉ℏ2
∑

𝐸𝑛,𝒒
3

𝑇2

𝜕𝜌0

𝜕𝑞𝑥
Ω𝑛,𝑦(𝒒)𝒒,𝑛 =

𝜏(𝛻𝑥𝑇)2

ℏ2
𝑃𝑥𝑦 , one can see  𝑗𝑧  is linear 

proportional to 𝜏 and tensor 𝑃𝑥𝑦, and is quadratically proportional to 𝛻𝑥𝑇. By setting 

appropriate values for 𝜏 , 𝑃𝑥𝑦  and 𝛻𝑥𝑇 , i.e. 𝜏 = 5𝑝𝑠 , 𝑃𝑥𝑦 = 0.5𝑚𝑒𝑉 ∗ 𝑘𝐵
2  (the 

temperature of the system is set to be 100K) and 𝛻𝑥𝑇 = 5K/𝑚𝑚, we get 𝑗𝑧 = 1.71 ×

10−4𝑊 ∗ 𝑚−2 . Choosing 𝑙𝑧  to be around 1𝑐𝑚 , and recalling that 𝜅𝑥𝑥  for ultra-low 

thermal conductivity can be small as ~10−2𝑊 ∗ 𝑚−1 ∗ K−1[59], we get from equation 



(11), a temperature difference Δ𝑧𝑇 =
𝑗𝑧𝑙𝑧

𝜅𝑥𝑥
=

1.71×10−4×10−2

10−2 = 1.71 × 10−4K =

0.171𝑚K = 117𝜇K . This value is observable since resolution of temperature 

difference can be as small as ~101𝜇K [60]. Moreover, if the temperature gradient 𝛻𝑥𝑇 

is 10K/𝑚𝑚 , the temperature difference Δ𝑧𝑇 can be four times bigger, i.e. 468𝜇K. 

Furthermore, if the sample can be grown longer along the 𝑧 direction, for example, 𝑙𝑧 =

2𝑐𝑚, Δ𝑧𝑇 will become as twice as large, that is ~1𝑚K. 

 

Conclusions  

In this work, we investigated the nonlinear phonon Hall effects based on the Boltzmann 

equation under relaxation-time approximation and compared differences between NHE 

and NPHE. Due to the looser requirement (nonlinear phonon Hall effects can occur in 

insulators), the nonlinear phonon Hall current and the Weyl chirality of phonons 

(topological charge) can be reversed by switching the ferroelectric polarization. We 

hope that these predictions will be observed by experiments soon and will be used to 

design novel quantum phononics devices. 
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FIG. 1. Schematic diagram for the electric field control nonlinear thermal current in 

PbTiO3 with polarization down state (a) and polarization up state (b). Red and blue 

regions indicate the hot and cold regions, respectively. 𝑃 − and 𝑃 + are used to label 

the polarization down and polarization up state. (c) 𝑃𝑥𝑦 (symmetrized) as a function of 

temperature. (d) 𝑃𝑥𝑦 (symmetrized) as a function of frequency.  
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FIG.2. Schematic diagram for the electric field control nonlinear thermal current in 2D 

SnTe with polarization down state (a) and polarization up state (b). The black solid 

square line indicates the unit cell. The black dashed line represents the 𝑀𝑥  mirror 

symmetry. Red and blue region represent the hot and cold regions. The 𝑃 −  and 𝑃 + 

states are connected by the 𝑀𝑦 mirror symmetry. (c) 𝑃𝑥𝑧  (symmetrized) as a function 

of temperature. (d) 𝑃𝑥𝑧  (symmetrized) as a function of frequency. 

 



 

FIG. 3 Schematic diagram for experimental set-ups. The length, width and height of the 

sample are represented by 𝑙𝑥 , 𝑙𝑧  and 𝑙𝑦 , respectively. The transverse temperature 

difference Δ𝑧𝑇 = 𝑇𝐶 − 𝑇𝐴. 
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