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For a long time, it has been thought that 2D Fermi gases could support long-lived excitations,
thanks to the collinear quasiparticle scattering controlled by phase space constraints at a 2D Fermi
surface. We present a direct calculation that pinpoints such excitations and demonstrates that their
lifetimes exceed the fundamental bound set by Landau Fermi-liquid theory by a factor as large as
(TF /T )

α with α ≈ 2. These excitations represent Fermi-surface modulations of an odd parity, one
per each odd angular momentum. To explain this surprising behavior, we employ a connection
between the linearized quantum kinetic equation and the dynamics of a fictitious quantum particle
moving in a 1D reflectionless secanth potential. In this framework, we identify the zero modes
originating from supersymmetry as the long-lived excitations that arise from collinear scattering.

Microscopic theory of carrier collisions in two-
dimensional (2D) electron systems is essential for the field
of electron hydrodynamics, an area that has made signif-
icant progress in recent years [1–19]. Theory of Fermi
liquids that links carrier collision rates and quasiparticle
lifetimes is generally considered to be comprehensive and
complete. However, recent research has challenged the
widely-held belief that the theory is entirely free of gaps
and inconsistencies [20–24]. Specifically, this literature
indicates that Landau’s T 2 scaling law, which describes
the decay of quasiparticles in three-dimensional Fermi-
liquids at low temperatures, may not hold true for 2D
metals. This happens because 2D fermions display two-
body scattering of a unique collinear character, arising
due to kinematic phase space constraints at the Fermi
surface. These findings have interesting implications for
our understanding of Fermi-liquids, as they suggest that
the behavior of quasiparticles in 2D materials may dif-
fer significantly from that in 3D materials. Quenching
of Landau’s T 2 damping for certain excitations points
to new interesting ways for extending coherence in elec-
tron systems. The aim of this work is to validate these
predictions through a direct calculation.

The collinear behavior in 2D raises an interesting
comparison with one-dimensional (1D) systems, where
collinear scattering causes quasiparticles to have a short
lifespan. Interactions in 1D systems destroy the Fermi-
liquid state, leading to a state known as the Tomonaga-
Luttinger state [25, 26]. The collinear processes in 2D
metals take on a role which is a complete opposite of that
in 1D liquids. These processes give a giant boost to quasi-
particle lifetimes and can be said to produce a “super-
Fermi-liquid” that harbors a unique family of excitations
with exceptionally long lifetimes, exceeding by orders of
magnitude those familiar from Fermi-liquid theory. The
unique behavior arising from these processes endows the
kinetics of 2D fermions with angular memory and gives
rise to peculiar ‘tomographic’ response effects[22–24].

The emergence of novel time scales is particularly ev-
ident in a system with isotropic band dispersion and a
circular Fermi surface. In such a system, various excita-
tions correspond to distinct angular harmonics of Fermi

FIG. 1. Decay rates for different angular harmonics of particle
distribution, scaled by T 2, vs. temperature. Shown are di-
mensionless eigenvalues λm related to the decay rates through
γm = Ap2Fλm, see Eq.(4) in [47]. Double-log scale is used to
facilitate comparison of disparate time scales. Decay rates for
even-m harmonics obey a T 2 scaling at T ≪ TF . Decay rates
for odd-m harmonics are markedly smaller than those for even
m and show “super-Fermi-liquid” scaling strongly deviating
from T 2. Odd-m decay rates can be approximated as Tα with
α > 2. An even/odd asymmetry in the rates and the suppres-
sion of decays for odd m is seen already at T ≲ 0.16TF .

surface modulations that evolve in space and time as

δf(p,x, t) ∼
∑

mαm(ϵ,x, t) cosmθ + βm(ϵ,x, t) sinmθ,

where θ is the angle parameterizing the Fermi surface.
The microscopic decay rates, illustrated in Fig.1, gov-
ern dynamics of spatially-uniform excitations, αm, βm ∼
e−γmt. As evident in Fig.1, at low temperatures T ≪ TF
the lifetimes of these modes greatly exceed the ones
for even m, showing strong departure from conventional
Fermi-liquid scaling. The decay rates in Fig.1 are ob-
tained by a direct calculation that treats quasiparticle
scattering exactly, using a method that does not rely on
the small parameter T/TF ≪ 1. The odd-m decay rates
display scaling γ ∼ Tα with super-Fermi-liquid expo-
nents α > 2. In our analysis we find α values close to 4,
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i.e. the odd-m rates are strongly suppressed compared
to the even-m rates, γodd/γeven ∼ (T/TF )

2.

There is a simple explanation for why the odd-m har-
monics are found to be long-lived. These harmonics are
essentially the perturbations in the momentum distri-
bution associated with particle current, the quantities
odd under p → −p that can take different values on
different patches of the Fermi surface. The significance
of these “tomographic” quantities is that they are ap-
proximately conserved when two-body collisions have a
strongly collinear character. Indeed, for two-body colli-
sions without fermion exclusion, the p-wave (m=1) har-
monic of current is conserved, whereas higher-order har-
monics (m = 3, 5, etc.) are non-conserved. However, in
our case, as discussed below, the collisions are strongly
collinear. This property endows all angular harmonics of
current, that is the odd-m harmonics of particle distri-
bution, with exceptionally long lifetimes.

Interestingly, the absence of Landau’s T 2 damping in
odd-m modes seems to contradict previous results on ex-
citation lifetimes in 2D Fermi gases, which predict that
quasiparticle lifetimes are diminished by collinear scat-
tering, as revealed by self-energy calculations of Green’s
functions [27–33]. The predicted decay rates were found
to be faster by a logarithmic factor log(TF /T ) compared
to the conventional T 2 rates. Surprisingly, the self-energy
approach fails to account for the existence of long-lived
odd-m excitations. This is unexpected because it is com-
monly assumed that there is a single timescale that char-
acterizes decay for all low-energy excitations. However,
as shown in Fig. 1, the odd-m and even-m modes have
drastically different lifetimes that exhibit different scaling
behavior with respect to T . The conventional self-energy
approach is not well-suited to handle such a situation
because it is most sensitive to the fastest decay path-
ways. Hence, the literature on Fermi liquids may have
overlooked the long-lived excitations, despite 60 years of
intense interest in the field.

We want to emphasize that the collinear processes that
generate long-lived excitations are universal and largely
independent of the specifics of two-body interactions or
particle dispersion characteristics. The existence of long-
lived excitations is a robust property that persists for
non-circular Fermi surfaces, as long as the surface dis-
tortion is not significant. This is due to the presence of
inversion symmetry, which separates Fermi surface mod-
ulations into even and odd parity modes. Similar to the
self-energy analysis [27–33], the difference in lifetimes be-
tween these mode types is identical to that observed in
circular Fermi surfaces.

It is worth noting that in certain electron systems,
collinear dynamics can accelerate quasiparticle decay by
allowing particles, by traveling side by side, interact more
strongly. This is well-documented in Dirac bands where
collinear dynamics arising from linear band dispersion
shortens carrier lifetimes and accelerates dynamics [34–
41]. In our problem, an entirely different behavior arises
due to collinear scattering and phase space constraints,

the effects that dominate at a 2D Fermi surface but are of
little importance for highly excited states in Dirac bands.
The analysis presented below is based on the Fermi-

liquid transport equation that accounts for the kinetics
of two-body collisions constrained by fermion exclusion,

df1
dt

+ [f1, H] =
∑
21′2′

(w1′2′→12 − w12→1′2′) , (1)

where f(p, r, t) is fermion distribution, [f,H] denotes the
Poisson bracket ∇rf∇pϵ−∇rϵ∇pf . The right-hand side
is the rate of change of the occupancy of a state p1, given
as a sum of the gain and loss contributions resulting from
the two-body scattering processes 12 → 1′2′ and 1′2′ →
12. Fermi’s golden rule yields

w1′2′→12 =
2π

ℏ
|V12,1′2′ |2δϵδp(1− f1)(1− f2)f1′f2′ , (2)

where the delta functions δϵ = δ(ϵ1 + ϵ2 − ϵ1′ − ϵ2′),
δp = δ(2)(p1+p2−p1′ −p2′) account for the energy and
momentum conservation. The gain and loss contribu-
tions are related by the reciprocity symmetry 12 ↔ 1′2′.
Here V12,1′2′ is the two-body interaction, properly anti-
symmetrized to account for Fermi statistics. Interaction
V12,1′2′ depends on momentum transfer k on the k ∼ kF
scale; this k dependence is inessential and will be ignored.
In what follows we consider a spatially uniform problem
setting [f,H] = 0. The sum over momenta 2, 1′, 2′ rep-
resents a six-dimensional integral over p2, p1′ and p2′ ,
which is discussed below.
For a weak perturbation away from equilibrium, Eq.(2)

linearized by the standard ansatz f(p) = f0(p) −
∂f0
∂ϵ η(p) yields a linear integro-differential equation f0(1−
f0)

dη1

dt = Ieeη with the operator Iee given by

Ieeη =
∑
21′2′

2π

ℏ
|V |2F121′2′δϵδp (η1′ + η2′ − η1 − η2) (3)

Here
∑

21′2′ and |V |2 denote the six-dimensional inte-

gral
∫ d2p2d

2p1′d
2p2′

(2π)6 and the interaction matrix element

|V12,1′2′ |2, the quantity F121′2′ is a product of the equi-
librium Fermi functions f01 f

0
2 (1− f01′)(1− f02′).

Different excitations are described by eigenfunctions
of the collision operator Iee, with the eigenvalues giving
the decay rates equal to inverse lifetimes. Because of the
cylindrical symmetry of the problem, the eigenfunctions
are products of angular harmonics on the Fermi surface
and functions of the radial energy variables xi = β(ϵi−µ):

η(p, t) =
∑
m

e−γmteimθχm(x), (4)

where γm and χm(x) are solutions of the spectral problem
−γmf0(1− f0)χm(x) = Ieeχm(x).
Before we proceed with diagonalizing the operator Iee

we note that one more reason for why the long-lived
modes have been missed in the literature undoubtedly
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FIG. 2. a) Angular distribution σ(θ) for two-body quasiparticle scattering at the Fermi surface, Eq.(5), at different temperatures.
Restricted phase space gives rise to collinear scattering, producing sharp peaks in the forward and backward directions, θ = 0
and π. Temperature values used: T/TF = 10−2 × [0.25, 0.5, 1, 2, 4, 8, 16, 32, 64, 128]. b) The back-scattering peak in σ(θ) near
θ = π for the same temperatures as in a). Angle is given in T -dependent units θT = T/TF to illustrate linear T dependence of
the peak width. The intensity σ(θ) is multiplied by TF /T to illustrate linear T dependence of the peak height. This translates
into ∼ T 2 scaling for the peak area. c) The dependence of peak height vs. T confirms asymptotic linear scaling at low T .

lies in the difficulty of a direct calculation. This problem
proves to be quite demanding for several reasons. First,
the eigenstates of Iee are localized in a peculiar phase
space region, an annulus at the Fermi surface of width
proportional to T owing to the fermion exclusion effects
(see Sec. A in Supplemental Information [47]). Sampling
this “active part” of p space requires a mesh which is
adjusted with temperature. Second, capturing the kine-
matic constraints that lead to collinear collision effects,
requires “high-finess” sampling of the near-collinear mo-
menta as compared to the generic momenta in the an-
nulus (see Sec. B in Supplemental Information [47]).
Things are made still more complex by the fact that the
anglular width of the active collinear region also varies
with temperature, decreasing as T . To tackle this prob-
lem, we make use of the cylindrical symmetry of our sys-
tem and link the decay rates for different modes to the
angular distribution for scattering induced by a test par-
ticle injected in the system. Computing the angular dis-
tribution as described below, we Fourier-transform it in
θ to find decay rates for individual modes. This scheme
allows us to directly diagonalize the collision operator,
Eq.(3), finding the results shown in Fig.1 (the relevant
technical steps are described in Secs. C and D Supple-
mental Information).

The angular distribution of particles scattered after a
test particle has been injected in the system at an energy
near the Fermi level, fi(θ) = J0δ(θ − θi), is given by

f(θ) =

∮
dθ′

2π
σ(θ − θ′)fi(θ

′) =
J0
2π
σ(θ − θi), (5)

where fi(θ) describes the injected beam and the scat-
tering angle θ parameterizes the Fermi surface. Here J0
is a T -independent intensity of the injected beam and,
for simplicity, we suppressed the width of the distribu-

tion in the radial direction. As discussed above, exci-
tations with different lifetimes are represented as normal
modes of the two-body collision operator linearized in the
deviation of the distribution from the equilibrium state
Ieefm(θ) = −γmfm(θ), where γm are the decay rates
(inverse lifetimes) for different excitations. Due to the
cylindrical symmetry of the problem, the normal modes
are the angular harmonics fm(θ) = eimθ times some func-
tions of the radial momentum variable [47]. Comparing
to Eq.5 we see that the quantities γm are related to the
Fourier coefficients of the angle-resolved cross-section,

σ(θ) =
∑

m eim(θ−θi)(γm − γ0), (6)

where the term −γ0 describes particle loss from the in-
jected beam. We use the basis functions introduced
above to compute σ(θ) and then use the relation in (6)
to obtain lifetimes of different modes.
The angular dependence, shown in Fig.2, features

sharp peaks centered at θ = 0 and π, describing forward
scattering and backscattering, respectively. The angular
widths θT of the peaks scale as T at T ≪ TF . Notably,
the backscattering peak is of a negative sign, represent-
ing backreflected holes. At T ≪ TF the values σ(θ) at
generic θ within the peak scale as T . Multiplying this by
the peak width θT ∼ T/TF yields the net backscattering
rate that scales as T 2/TF , as expected from Fermi-liquid
theory. This behavior is detailed in Fig.2 insets.
The decay rates γm for odd-m modes, obtained from

the relation in (6), show significant departure from a T 2

scaling. The even-m and odd-m rates, shown in Fig.1,
are similar at T ∼ TF but have a very different behavior
at T < TF . This difference originates from the collinear
character of scattering, manifest in prominent peaks in
σ(θ) in the forward and backward directions. The near-
equal areas of these peaks and the negative sign of the
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backscattering peak suppress the odd-m Fourier harmon-
ics of σ(θ), yielding small decay rates for these harmonics.
The T dependence for the even-m harmonics agrees well
with the T 2 law. The odd-m harmonics, to the contrary,
have decay rates decreasing at low T much faster than T 2.
For these harmonics, we observe scaling γm ∼ Tα with α
slightly below 4. This represents a “super-Fermi-liquid”
suppression of the decay rates for odd-m harmonics.
It is interesting to mention that collinear scattering,

manifest in the sharp peaks in σ(θ) at θ = 0 and π, is
directly responsible for the log enhancement of quasipar-
ticle decay rates predicted from the self-energy analysis
[27–33]. Indeed the angle dependence near θ = 0 and π is
of the form σ(θ) ∼ T 2/|θ| and T 2/|θ − π|, with the 1/|θ|
singularity rounded on the scale δθ ∼ T/TF , as illus-
trated in Fig.2. Integrating the angle-resolved crosssec-
tion over θ yields a log(TF /T )T

2 total scattering crosssec-
tion. This illustrates that the abnormally long-lived exci-
tations with the decay rates that scale as T 4 rather than
T 2, described in this work, and the seminal log(TF /T )T

2

decay rates [27–33], originate from the same phase-space
constraints. Restricted phase space renders quasiparticle
scattering a highly collinear process even when the mi-
croscopic interactions have a weak angular dependence.

Given these findings, there is a clear need to find a sim-
ple explanation for the unique properties of long-lived
excitations. To accomplish this, we have employed a
clever method developed 50 years ago in Refs.[42–45] to
tackle transport in 3D Fermi liquids. This approach in-
volves linearizing the kinetic equation near thermal equi-
librium at T ≪ TF to transform it into a time-dependent
Schroedinger equation with a reflectionless secanth po-
tential, which can be solved exactly to predict transport
coefficients at T ≪ TF . We use this framework to explore
the modification of this equation in the 2D case and find
that, although the decay rates of most excitations follow
the T 2 scaling, a unique set of non-decaying excitations
emerge due to zero modes originating from the super-
symmetric quantum mechanics, with one mode per each
odd angular momentum.

In general, the six-dimensional integral operator Iee
has a complicated structure which is difficult to ana-
lyze. However, at T ≪ TF the part of phase space
in which transitions 12 ↔ 1′2′ are not restricted by
fermion exclusion is a thin annulus of radius pF and
a small thickness δp ≈ T/v ≪ pF . One can there-
fore factorize the six-dimensional integration over p2,
p1′ and p2′ in Iee into a three-dimensional energy in-
tegral and a three-dimensional angular integral, and in-
tegrate over angles to obtain a closed-form equation for
the radial dependence χ(x). This is done by noting that
the delta functions δϵδp together with the conditions
|p1| ≈ |p2| ≈ |p1′ | ≈ |p2′ | ≈ pF imply that the states
1, 2, 1′ and 2′ form two anti-collinear pairs

p1 + p2 ≈ 0, p1′ + p2′ ≈ 0 (7)

The azimuthal angles therefore obey θ1 ≈ θ2 + π, θ1′ ≈
θ2′ +π. In a thin-shell approximation δp≪ pF , this gives

two delta functions δ(θ1 − θ2 − π), δ(θ1′ − θ2′ − π) that
cancel two out of three angle integrals in Iee, allowing to
rewrite the quantity η1′ + η2′ − η1 − η2 as

eimθ1′ (χ(x1′)+(−)mχ(x2′))−eimθ1(χ(x1)+(−)mχ(x2)),
(8)

where χ denotes χm. Subsequent steps differ for the
even and odd m, because the contributions of χ(x1′) and
χ(x2′) to Iee cancel out for odd m and double for even m,
since F is symmetric in x1′ and x2′ . Focusing on the odd
m and carrying out integration over the angle between
p1 and p1′ yields

F̃
dχ(x1)

dt
= T 2

∫
dx2dx1′dx2′Fgδx[χ(x1)− χ(x2)], (9)

where F̃ = f0(1 − f0) and δx = δ(x1 + x2 − x1′ − x2′).
Here T 2 originates from nondimensionalizing the energy
variables xi in the integral and the delta function, the
dimensionless factor g is a result of angular integration,
the quantity F is defined above. Integration over energy
variables x2, x1′ , x2′ extends throughout −∞ < xi <∞,
as appropriate for T ≪ TF .
As a first step, we reverse signs of the 1′ and 2′ vari-

ables: x1′ → −x1′ , x2′ → −x2′ . This transforms the
integral equation in Eq.(9)to

F̃
dχ

dt
= gT 2

∫
dx2dx1′dx2′F121′2′δ

+
x (χ(x1)− χ(x2)),

F121′2′ = f0(x1)f0(x2)f0(x1′)f0(x2′) (10)

where δ+x = δ(x1 + x2 + x1′ + x2′). Next we use the
identities∫

dx2dx1′dx2′f0(x2)f0(x1′)f0(x2′)δ
+
x =

1

2

x21 + π2

1 + e−x1
,

(11)∫
dx1′dx2′f0(x1′)f0(x2′)δ

+
x = − x1 + x2

1− e−x1−x2
(12)

to carry out integration over x2, x1′ , x2′ in the first term
and over x1′ , x2′ in the second term. The equation can
be further simplified using the substitution

χ(x) = 2 cosh
(x
2

)
ζ(x) =

(
ex/2 + e−x/2

)
ζ(x), (13)

which gives an equation

dζ(x1)

dt
= −gT 2

[
x21 + π2

2
ζ(x1) +

∫
dx2

x̄

sinh x̄
ζ(x2)

]
,

where x̄ = (x1 + x2)/2. Next, we reverse the sign of
x2, which brings the integral operator to the form of a
convolution, separately for the even and odd functions
ζ(x2). For an even function ζ(−x2) = ζ(x2) we have∫

dx2
x1 − x2

2 sinh x1−x2

2

ζ(x2).
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After Fourier transform ζ(x) =
∫
dkeikxψ(k) this gives

a time-dependent Schroedinger equation with a secanth

potential π2

cosh2 πk

∂tψ(k) = gT 2

[
1

2
ψ′′(k)−

(
π2

2
− π2

cosh2 πk

)
ψ(k)

]
.

(14)
Unlike the 3D case, where after a similar transformation
the T 2 scaling translates into a T 2 dependence of the
decay rates, here the operator in (14) has a zero mode,
ψ0(k) = 1

cosh(πk) . Being a zero mode, this mode does

not relax. The associated χ0(x) can be found from the

identity
∫
dξ e2πiξy

coshπξ = 1
coshπy , giving χ0(x) = 1. Return-

ing to the energy variable, this yields the Fermi-surface-
displacement mode δf(x) = df0/dx = f0(1−f0), identical
for all odd m.

Analogously, for odd functions ζ(−x2) = −ζ(x2) upon
changing x2 to −x2 a minus sign appears in front of the
integral operator:

−
∫
dx2

x1 − x2

2 sinh x1−x2

2

ζ(x2).

Carrying out Fourier transform ζ(x) =
∫
dkeikxψ(k) give

a time-dependent Schroedinger equation for a secanth
potential of an opposite sign

∂tψ(k) = gT 2

[
1

2
ψ′′(k)−

(
π2

2
+

π2

cosh2 πk

)
ψ(k)

]
(15)

In this case, physical solutions correspond to the eigen-
functions that are odd in k. For a repulsive secanth po-
tential these functions are in the continuum spectrum
and asymptotically have the form of plane waves. As a
result, the behavior of the eigenfunctions that are odd in
x is quite different from that of the even-x eigenfunctions
discussed above.

For even m, analysis proceeds in a similar manner,
however the 1D Schroedinger operators obtained for even
m feature no zero modes. As a result, the analysis yields
a normal T 2 scaling of the decay rates. This is so because
for even m the terms χ(x′1) and χ(x

′
2) in (8) are of equal

signs and do not cancel out. As a result, the even-m and
odd-m harmonics show a very different behavior: the
odd-m rates vanish in the zero-thickness approximation
for the active shell at the Fermi surface, whereas the even-
m rates remain finite in this limit, scaling as T 2.
We would like to note that although we have presented

an analytic approach to determine the lifetimes of even-m

excitations, the corresponding problem for odd-m exci-
tations remains an open problem that requires further
investigation. Infinite lifetimes found for odd-m modes
and interpreted in terms of zero modes, indicate that the
decay rates for these modes vanish at order T 2. However,
it is important to note that the supersymmetry that pro-
tects zero eigenvalues is a property that only appears
in the limit of zero thickness of the thermally broadened
Fermi surface. Therefore, it is unlikely that this property
holds outside of this limit, and we expect the lifetimes of
odd-m modes to be finite. Moreover, we anticipate that
the decay rates for these modes will scale as Tα, with
α > 2. However, determining the precise values of α will
require a framework that extends beyond the approxima-
tions considered in our 1D quantum mechanics approach.
Further research is needed to fully understand the be-

havior of odd-m excitations, and we hope that our work
will inspire future investigations into this intriguing prob-
lem. The relation with the 1D supersymmetric quan-
tum mechanics can be employed, in principle, to study
a variety of other problems of interest, e.g. the thermal
transport effects such as thermal conduction, the Joule-
Thomson effect and convective thermal drag. A compre-
hensive understanding of transport effects arising due to
odd-m modes would require deriving transport equations
for these quantities supplied with suitable boundary con-
ditions and connecting them to observables. This is an
interesting topic for future work.
In summary, the kinematic restrictions of the phase

space for quasiparticle scattering at the Fermi surface
lead to highly collinear dynamics, even if the microscopic
interactions have weak angular dependence. This gives
rise to several notable effects, such as the emergence of
abnormally long-lived excitations and strong backscatter-
ing features in two-body collisions. The resulting unusual
kinetics is especially relevant for 2D systems that are cur-
rently being investigated for electron hydrodynamics and
related collective phenomena. This area of transport the-
ory is rapidly evolving, and a robust understanding of the
fundamental physics behind collinear collisions is crucial
to grasp the electron behavior in various transport phe-
nomena.
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