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Multiple conduction channels interacting with a quantum impurity – a spin in the conventional “multi-channel
Kondo effect” or a topological mesoscopic device (“topological Kondo effect”) – has been proposed as a plat-
form to realize anyonic quasi-particles. However, the above implementations require either perfect channel
symmetry or the use of Majorana fermions. Here we propose a Majorana-free mesoscopic setup which im-
plements the Kondo effect of the symplectic Lie group and can harbor emergent anyons (including Majorana
fermions, Fibonacci anyons, and Z3 parafermions) even in the absence of perfect channel symmetry. In addi-
tion to the detailed prescription of the implementation, we present the strong coupling solution by mapping the
model to the multi-channel Kondo effect associated to an internal SU(2) symmetry and exploit conformal field
theory (CFT) to predict the non-trivial scaling of a variety of observables, including conductance, as a function
of temperature. This work does not only open the door for robust Kondo-based anyon platforms, but also sheds
light on the physics of strongly correlated materials with competing order parameters.

Introduction. The realization of fault tolerant quantum
computation is a major goal of present day quantum research.
Amongst the various hardware platforms suitable for this ap-
plication, topologically ordered states with anyonic excita-
tions are particularly appealing [1], as the robustness against
noise and errors is a fundamental, intrinsic property of these
quantum many-body phases. A classic platform for realiz-
ing anyons which has gained renewed interest in mesoscopic
systems are frustrated and overscreened Kondo impurity mod-
els [2, 3].

The SU(2) Kondo effect is a paradigmatic model of quan-
tum many-body physics [2–6] which merges the physics of
strong electronic correlations and entanglement, whilst its
strong coupling physics is still amenable to non-perturbative
analytical methods such as Bethe ansatz [7–9], CFT [10, 11],
and Abelian bosonization [12]. Even though the impurity
spin in the conventional Kondo effect is perfectly screened
at strong coupling, the overscreened multi-channel Kondo
(MCK) effect, in which k > 2S electronic baths compete for
screening a single spin-S, is one of the earliest examples of
quantum criticality and local non-Fermi liquid (FL) behavior,
and harbors a remnant zero temperature impurity entropy [13–
15] Simp = ln(gk) with gk =

√
2, (1 +

√
5)/2,

√
3, . . . for

S = 1/2 and k = 2, 3, 4, . . . consistent with the quantum di-
mensions of Ising, Fibonacci, and Z3 parafermionic anyons.
It has thus recently been proposed to exploit these anyons for
quantum information theoretical applications [16–18], but a
major technical difficulty is that multichannel Kondo physics,
even with SU(N) and N > 2, is unstable with respect to
unequal coupling to different electronic baths.

Stable overscreened fixed points may be achieved by using
strongly interacting [19, 20] or higher spin [21] conduction
electrons, or by going beyond the conventional SU(2) group.
A recent example of the latter is the orthogonal Kondo ef-
fect in which spin-polarized conduction electrons couple to
an impurity spin transforming under the group SO(M). The
orthogonal Kondo effect for arbitrary M can be realized with
the use of Majorana Cooper pair boxes [22–25], in which case

FIG. 1. a) Schematics of proposed implementation for k = 6 with ∆
the proximity-induced gap and EC the charging energy. Light green
squares are the leads and light purple dots are the ends of 1D topo-
logical systems. The light gray square is a superconducting island.
b) Energy levels as a function of gate voltage (as imposed by charge
Ng; we take ∆ = 0.4EC ). The tunneling strength t is between
the dots and the leads (nearest sites). Dark blue (light purple) curves
correspond to states with even (odd) fermion parity. The background
shading corresponds to different effective low-energy theories (see
legend). c) Transconductance. The solid red line interpolates be-
tween the low- and high-temperature asymptotic behavior. The con-
ductance quantization at T = 0 is universal, cf. Eq. (9), and equal
to (4/3) sin2(π/5) ≈ 0.46e2/h for k = 3. In the weak coupling
regime, the conductance has a logarithmic temperature-dependence.
d) Ground state degeneracy. e) Schematic RG flow illustrating the
duality between Sp(2k) Kondo effect and k-channel SU(2) Kondo
effect at spin S = (k − 1)/2.

it is called the topological Kondo effect. While fascinating,
this implementation is temporarily elusive as the control over
Majorana devices is still developing. Another, Majorana-free
implementation for the special case M = 5 was recently pro-
posed [26, 27] and it was argued that Ising anyons (Majorana)
are emergent at the infrared.

In this paper, we propose a mesoscopic setup, see Fig. 1 re-
alizing the symplectic Kondo effect as a platform for anyons
and potentially for measurement-only topological quantum
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computation [28]. Following Cartan’s classification of Lie
groups [29, 30], we here explore the third remaining type of
Lie group Sp(2k), i.e. a symplectic Kondo Hamiltonian

HK = λ

k(2k+1)∑
A=1

SAJA , (1)

in which the symplectic impurity “spin” operators SA trans-
form in the fundamental 2k-dimensional representation, and
JA = c†0TAc0 is the symplectic spin of conduction electrons;
the spinor ca = (ca,1,↑, · · · , ca,k,↑, ca,1,↓, · · · , ca,k,↓)T for
site a has 2k components with i = 1, . . . k denoting the lead
index and σ =↑, ↓ the physical spin. Despite the 2k com-
ponents of the spinor, Eq. (1) is still a one-channel Kondo
model and will therefore not suffer from channel anisotropy.
The 2k × 2k matrices TA = −σyTTAσy denote Sp(2k) gen-
erators in the fundamental representation [31]. We present a
mesoscopic implementation of this effect for arbitrary k, the
phase diagram for this nano-device, characteristic signatures
in transport measurements as well as a solution of the sym-
plectic Kondo effect in the strong coupling limit.

From the perspective of materials science, symplectic
Kondo models are theoretically appealing as they allow for a
proper definition of time reversal symmetry and thus for large-
N descriptions of heavy fermion superconductors [32]. At the
same time SO(5) ∼ Sp(4) theories of cuprates are popu-
lar approaches to account for competing orders [33]. From
the viewpoint of quantum information theory, the symplec-
tic Kondo effect allows for the arguably most robust way of
realizing anyons in impurity models: In addition to the afore-
mentioned stable implementation of non-trivial anyons, ear-
lier work using CFT [26, 27, 30] demonstrates that – contrary
to standard multi-channel Kondo phenomenology – the leads
behave FL-like (suggesting relatively strong decoupling of
anyons and conduction electrons) and that Fibonacci anyons
(which are the simplest anyons allowing for universal quan-
tum computation) can not be realized in the simplest realiza-
tion of the topological Kondo effect, but are accessible in the
present Sp(6) setup.

Implementation of the Sp(2k) Kondo model. We consider
k spinful fermionic zero-energy states coupled to a floating s-
wave superconductor, see Fig. 1a. These states may stem from
a time-reversal symmetric higher-order topological insulator,
resonant levels of quantum dots, or a set of Su-Schrieffer-
Heeger chains. The low-energy Hamiltonian of our topologi-
cal quantum dot is,

Hd =EC(2N̂C + n̂d −Ng)2

− 1

2
∆

k∑
i=1

∑
σσ′

e−iφd†i,σ(σy)σσ′d†i,σ′ + H.c., (2)

where n̂d =
∑
i,σ d

†
i,σdiσ is the total charge in the edge states

and N̂C = −i∂φ is the number operator of the Cooper pairs
of the s-wave superconductor. The Hamiltonian Eq. (2) con-
serves the total number of electrons N̂tot = 2N̂C + n̂d, con-
trollable by the gate charge Ng . We assume that the island

size exceeds the superconducting coherence length, so that
crossed-Andreev reflection as well as hybridization of zero
modes can be neglected, and that the proximity-induced gap
∆ on the boundary states of the topological wires is less than
the bulk gap, allowing us to ignore quasiparticle states of the
parent superconductor in Eq. (2). We also take the gap to be
smaller than the charging energy, ∆ < EC , enabling a ground
state with an odd number of electrons. We ignore additional
mutual charging energies between the zero modes, which is a
good assumption when the central superconducting island has
a large normal-state conductivity [34, 35].

In the absence of ∆, each state with even Ntot is degener-
ate, with allowed values nd = 0, 2, 4, . . . , 2k and all possi-
bilities to distribute these electrons over the topological edge
states. Similarly, the states with odd Ntot are also degenerate
with nd = 1, 3, 5, . . . , 2k−1 allowed. The presence of ∆ lifts
the degeneracy as it allows to connect different states and fa-
vors a single BCS-like ground state |BCS〉d in the even sector
(see supplement [36] for details). In the odd sector, there are
2k ground states given in which one of the k spin-degenerate
boundary states is singly occupied, while the remaining k− 1
are occupied by a BCS-like state, see Fig. 2, a). The ground
state energy of the even sector is,

Eeven(Ntot) = EC(Ntot −Ng)2 −∆k, (3)

while Eodd = Eeven + ∆. These energies are plotted in panel
b) of Fig. 1 (there, all energies E are measured with respect to
−∆k).

In the 2k-fold degenerate odd sector the quantum dot acts
as an effective Sp(2k) impurity. We will therefore con-
sider Ng close to 1, where the 2k odd parity states with
Ntot = 1 are lowest in energy while the lowest excited
states (with Ntot = 0, 2) are separated by an energy gap
∆E± = Eeven(Ntot = 1± 1) − Eodd(Ntot = 1). To derive
the effective Kondo interaction, we next consider tunneling
between the electrons on the dot and the first site (a = 0) of
the lead, Ht = −

∑k
i=1

∑
σ=↑,↓ tic

†
0,i,σdiσ + H.c.. At low

temperatures and bias voltages in the weak tunneling limit,
kBT, eV, ti � ∆E±, the dot occupation cannot change and
Ht induces an effective Kondo interaction in second order per-
turbation theory. When we fine-tune all ti = t (∀i = 1, . . . k),
we get [36],

Heff = −λ1

(
d†c0

)
(c†0d)− λ2

(
d†σyc

∗
0

)(
cT0 σyd

)
, (4)

where c∗a = (c†a)T and Gutzwiller projection to the 2k
Ntot = 1 states is understood. The coupling constants are
λ1 = 2t2/(∆E−) > 0 and λ2 = 2t2/(∆E+) > 0. Exactly
at Ng = 1, and after using the completeness relation of sym-
plectic generators,

∑
A T

ij
A T

kl
A = [δilδjk − (σy)ki(σy)jl]/2,

Eq. (4) becomes a Kondo-type interaction, Eq. (1), with (bare)
coupling constant λ = 2λ1 = 2λ2 = 4t2/(EC −∆). As we
will see below, the anisotropy of tunneling strength ti is irrel-
evant.

Weak and strong coupling. Perturbation theory in the
Kondo term HK leads to the usual logarithmic divergence
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FIG. 2. a) The 2k-degenerate ground state in the odd parity sector is
given by a BCS state supplemented by one unpaired electron. b) Il-
lustration of k charge degenerate ground states in the extreme strong
coupling limit t′ = 0 and c)-d) the corresponding energy spectrum.

at second order [37]. We therefore use the renormalization
group (RG) technique to analyze Eq. (1) upon lowering the
bare bandwidth/cutoff D0 ∼ EC −∆ to a running cutoff
D = D0e

−l [38, 39]. We find the RG equation,

dλ

dl
= (k + 1)ρ0λ

2, (5)

where ρ0 = (π~vF )−1 denotes the lead density of states
per spin per length and vF is the Fermi velocity. Equa-
tion (5) implies that λ flows towards stronger coupling upon
reducing the energy cutoff (set by, e.g., the temperature).
We estimate the strong coupling scale to be TK ∼ (EC −
∆)e−1/[ρ0λ(D0)2(k+1)] in terms of the bare coupling.

Given that the isotropic weak-coupling fixed point (λ=0) is
unstable, with RG flow towards strong coupling, we will next
investigate the stability of the strong-coupling fixed point,
where the local Kondo interaction (1) is the dominant term in
the Hamiltonian, and we can treat kinetic energy t′ ∼ 1/ρ0 of
the leads perturbatively. On the bare level, this corresponds to
the limit t′ � t2/∆E± of the mesoscopic device introduced
above, see Fig. 2a).

We start by finding the unperturbed ground state of Eq. (1),
without kinetic terms. Similarly to Nozières’ [40] description
of the conventional SU(2) Kondo problem, the strong cou-
pling ground state is given by singlets formed by the impu-
rity and the conduction electrons. We systematically derived
the spectrum [36] of this problem using representation theory,
and additionally explicitly constructed the singlet ground state
wave functions for all k and the excited states for k = 2, 3 ,
see Fig. 2 c),d). We find that the Sp(2k) Kondo Hamiltonian
is overscreened, with k degenerate ground states at t′ = 0,
e.g. for k = 2 these are the Sp(2k) singlets,

|N = 1〉singlet =− i(d†σyc∗0) |0〉c ⊗ |BCS〉d , (6a)

|N = 3〉singlet =(d†c0) |4〉c ⊗ |BCS〉d , (6b)

where |4〉c is the state in which all electronic states on the
first site of the lead are filled, while |0〉c is the empty state.
For generic k, the degeneracy is a consequence of the sym-
plectic symmetry associated to superconductivity[41]:
Given that |N = 1〉singlet is a singlet, the states
(c†0σyc

∗
0) |N = 1〉singlet , . . . , (c

†
0σyc

∗
0)k−1 |N = 1〉singlet

transform trivially under Sp(2k), as well [42], see Fig. 2 b).

The above states, Eq. (6a)–(6b), are related by particle-hole
symmetry (PHS). More generally, PHS implies an inherent
SU(2) symmetry in Nambu space for the symplectic Kondo
Hamiltonian [32] which can be made apparent by writing the
Sp(2k) currents as symmetric form,

JA =
1

2

(
c†0 cT0 (iσy)

)( TA 0
0 TA

)(
c0

(−iσy)c∗0

)
, (7)

which is invariant under SU(2) rotations in particle-hole
space. We used here the property TTA = −σyTAσy of
Sp(2k) generators. After having established the t′ = 0
ground states, we now incorporate the nearest-neighbor hop-
pingHNN = −t′

∑k
i=1

∑
σ=↑,↓(c

†
0,i,σc1,i,σ+c†1,i,σc0,i,σ) as a

perturbation to study the stability of the strong coupling fixed
point. HNN will couple the degenerate strong coupling ground
states, Eqs. (6a)–(6b), in second order perturbation theory,
while preserving the SU(2) symmetry. Inspired by the SU(2)
symmetry in the particle-hole space [see Eq. (7)] and the k
singlets distributing in all odd-number particle sectors [36],
we thus conjecture that the strong coupling Hamiltonian takes
the form of channel-isotropic k channel Kondo model,

Hs = λ̃S ·
k∑
i=1

si, (8)

where the impurity SU(2) spin-(k − 1)/2 operator S acts
in the k−dimensional subspace (spanned by Eqs. (6a)–(6b)
for k = 2), si = f†i (σ/2)fi and fi = (fi↑, fi↓)

T ≡
(c†1,i,↑, c1,i,↓)

T with i = 1, . . . k labeling the effective chan-
nel of conduction electrons. Since S = (k − 1)/2 < k/2,
the MCK Hamiltonian (8) is overscreened [43]. We have
explicitly proven the conjecture for k = 2 (k = 3) by
second-order perturbation theory (Schrieffer-Wolff transfor-
mation), for which virtual fluctuations into the 62 (381) ex-
cited states lead to λ̃ = 24t′2/(5λ) (λ̃ = 128t′2/(21λ)), re-
spectively [36]. In this context it is also worthwhile to point
out a hidden (larger) Sp(2k) symmetry in the k−channel
SU(2) Kondo effect [44].

Since the weak-coupling limit of the overscreened multi-
channel SU(2) model is unstable [43, 45], the above map re-
lating it to the strong-coupling limit of the symplectic Kondo
model implies also the instability of the latter fixed point, see
Fig. 1e. Together with the instability of the weak-coupling
fixed point of the Sp(2k) Kondo problem, see Eq. (5), these
findings indicate a single stable fixed point between the two,
i.e. at an intermediate coupling. Our conjecture of a single
fixed point is supported by the low-temperature impurity en-
tropy (below) which is found to have the same value, when
approaching from the weak [Sp(2k)] and strong [k-channel
SU(2)] coupling sides. Since Sp(2) is isomorphic to SU(2),
our model provides an example of the level-rank duality [30]
relating the weak and strong coupling theories.

Observables: thermodynamics. Above, we argued that near
strong coupling, the model can be mapped to an overscreened
k-channel spin-(k − 1)/2 Kondo model, which has a stable
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intermediate coupling fixed point. We can use the impurity
entropy [46] to characterize the effective residual ground state
degeneracy gk of this fixed point. The ground state degen-
eracy associated to screening a spin (k − 1)/2 with k spin-
1/2 channels is well-known, gk = 2 cos[π/(k + 2)] [13–
15, 46]. This result agrees with the impurity entropy of the
Sp(2k) Kondo problem, calculated using CFT [30] and Bethe
Ansatz [47].

In particular, we note that the case k = 3 has g3 =
(1 +
√

5)/2 = ϕ, the Golden ratio, indicating an emergent Fi-
bonacci anyon. Crucially, in our symplectic Kondo model this
Fibonacci anyon occurs even in the single-channel case (in the
sense that our model, Eq. (1), is of level 1) and is therefore not
subject to instability due to channel anisotropy, unlike previ-
ous examples in the 3-channel Kondo [44, 48] and 2-channel
topological Kondo [49] models.

Despite this appearance of the same anyon-like ground-
state degeneracies and an unstable strong coupling fixed point
which is equivalent to the k-channel spin-(k − 1)/2 SU(2)
Kondo model, we emphasize that in our model due to PHS,
not all operators of the SU(2) Kondo model are effective. For
example, the symplectic susceptibility involves the excitation
of states outside the low-energy manifold Eqs. (6a),(6b), lead-
ing to less singular behavior than for the SU(2)k susceptibil-
ity [36]. More generally, we expect that the irrelevant oper-
ator of scaling dimension 1 + 2/(2 + k) is forbidden for the
dual Kondo problem, Eq. (8). This implies Fermi-liquid like
temperature and field dependence of thermodynamic quanti-
ties, consistent with results [26, 27, 30, 47] based on the weak
coupling Hamiltonian, Eq. (1).

We note that CFTs in which certain operators are symmetry
disallowed are well known in the theory of (e.g. confinement-
deconfinement) phase transitions in gauge theories and usu-
ally denoted by an asterisk [50–52]. In view of the relation-
ship between deconfining gauge theories and overscreened
Kondo impurities [53], we borrow the notation employed for
the latter phenomena and denote the boundary CFT describing
the dual Kondo problem, Eq. (8), as SU(2)∗k.

Observables: transport. We propose to test the non-trivial
nature of the symplectic Kondo effect in a charge transport
experiment across the mesoscopic island. As we explicitly
demonstrate [36] using the CFT method [11, 46, 54–60],
the fixed point off-diagonal conductance, Eq. (9), of Sp(2k)
Kondo model and the spin-1/2, k-channel SU(2) charge
Kondo model [61, 62] are identical up to normalization [63].
Nevertheless, we emphasize that our result is valid far from
the charge degeneracy points, in the regime of elastic cotun-
neling akin to spin Kondo effect [64]. At low temperatures,
T � TK , near the intermediate coupling fixed point, the off-
diagonal Sp(2k) charge conductance is

Gi 6=j(T ) =
4e2

hk
sin2

(
π

k + 2

)[
1 + cij

(
T

TK

)2
]
, (9)

where the T = 0 value is obtained in Ref. [36]. For k = 2
we have exactly half of the maximum conductance, analogous

to halving of the conductance in the spin 2-channel Kondo ef-
fect [65] and also similar to the conductance in the quarter-
filling SU(4) Kondo model [66]. The finite-temperature cor-
rection with its dimensionless coefficient cij and the Kondo
temperature TK are determined from the microscopic physics,
see below Eq. (5) for the latter. The temperature dependent
transconductance (including larger temperature regimes) is
plotted in Fig. 1 c). The exponent in the finite-temperature
correction to Gij(T = 0) is determined by the scaling di-
mension ∆LIO of the leading irrelevant operator. Importantly,
in the 1-channel Sp(2k) model the leading irrelevant op-
erator [26, 27, 30] is local density-density interaction with
∆LIO = 2, giving a FL-like temperature dependence while
it is non-FL like for SU(2)k. As explained above, also for
SU(2)∗k the operator responsible for non-FL power-laws is
absent and we expect the exponent in Eq. (9) to be the same
regardless of whether we approach the stable intermediate
(T = 0) fixed point from weak or strong coupling. The exotic
zero-temperature conductance value Gi 6=j(0) reminiscent of
the multi-channel charge Kondo effect [3, 4, 61, 62, 67] to-
gether with FL corrections to it are unique signatures of the
Sp(2k) intermediate fixed point.

Effect of anisotropy and PHS breaking. When deriving
the Sp(2k) Kondo interaction, we required fine tuning of the
tunneling strengths ti = t (∀ i = 1, · · · , k) and particle-
hole symmetry Ng = 1. Although these parameters can be
controlled in experiments, we will discuss next what hap-
pens when we deviate from the requirements. We show that
the former requirement can be relaxed but the deviation from
PHS will drive the system towards an SU(2k) Kondo fixed
point. Let us first discuss the anisotropy of the tunneling
amplitudes, while keeping the system PHS [36]. When we
consider the anisotropic version of the effective Hamiltonian
Eq. (4), the anisotropic tunneling strength ti > 0 can be ab-
sorbed into the operators d̃ = ηd and c̃0 = ηc0, where η = I⊗
diag(

√
t1, · · · ,

√
tk)/
√
t, where t now denotes the geometric

mean of ti. The anisotropic Hamiltonian then takes the same
form as Eq. (4), with the replacement d, c0 → d̃, c̃0. Upon us-
ing the completeness relation and restoring the physical opera-
tors d, c0, we obtain transformed generators ηTAη in the oper-
ators SA and JA. The transformed generators are still Sp(2k)
generators because the matrix η commutes with (σy⊗ I), thus
(σy ⊗ I)(ηTAη)T (σy ⊗ I) = −ηTAη according to the prop-
erties of Sp(2k) generators [31]. Then, we can expand the
transformed generators by the original generators: ηTAη =∑
B κABT

B . From this we see that the anisotropy of tunnel-
ing amplitudes is equivalent to the “exchange” anisotropy of
the Sp(2k) Kondo model, HK = λ

∑
A,B κABS

AJB . Us-
ing the generalized version [36], weak anisotropies |κAB −
δAB | � 1, can be shown to be irrelevant on general grounds.
The same situation occurs with SO(M), in the topological
Kondo model [22, 23, 68–70], where the isotropic direction
dominates the RG flow. We note however that in the effective
strong coupling multichannel SU(2) model, Eq. (8), time-
reversal symmetric tunneling anisotropy (unequal t′i) corre-
sponds to channel anisotropy which is a relevant perturba-
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tion. Thus, the strong coupling multichannel Kondo physics
requires fine-tuning of the Sp(2k) symmetry.

While at weak coupling anisotropy in the tunnel-couplings
is harmless, the Sp(2k) is more sensitive to breaking of PHS.
We first consider Ng 6= 1 (λ1 6= λ2) in Eq. (4), whilst still
requiring t � ∆E± (regime of pink shading of Fig. 1 b)).
Then, we can rewrite Eq. (4) as a potential scattering term
for conduction electrons and an anisotropic SU(2k) Kondo
interaction. This SU(2k) Kondo model is exactly screened
and has a FL fixed point, and thus the non-FL fixed point of
the Sp(2k) Kondo model will be unstable. An example with
k = 2 has been discussed in Ref. [27]. Also, the term aris-
ing from λ1 6= λ2 maps to an effective magnetic field in the
SU(2) Kondo model in the strong coupling regime, similar
to the case in charge Kondo [67]. Near the intermediate cou-
pling fixed point such a perturbation is relevant, with a scaling
dimension ∆H = 2/(2 + k), and drives the system to a FL
fixed point [44]. Hence, we conclude that the PHS breaking
anisotropy (Ng 6= 1) is relevant. As Ng is further detuned
from unity to a regime t ∼ ∆E± and further, we first enter
an SU(2k) mixed valence regime (dark gray in Fig. 1 b), in
which odd and even parity states are of comparable energy,
and ultimately reach the regime in which the impurity ground
state is non-degenerate. In the infrared, FL behavior persists,
see Fig. 1 d).

Summary and Conclusions. In summary, we proposed
a mesoscopic implementation of the symplectic Kondo ef-
fect, in which the group Sp(2k) naturally describes spin-1/2
fermions in k orbitals in a Coulomb blockaded island hosting
k spinful topological zero-energy Andreev states. We cou-
ple each zero-energy state to a spinful fermion lead and found
the symplectic Kondo Hamiltonian Eq. (1) for an odd-parity
charge state of the Coulomb blockaded island.

Interesting open questions about the symplectic Cooper
pair box setup include the Coulomb blockaded transport be-
yond Ng = 1 and complementary analytical, numerical and
experimental studies which should help shed light on the any-
onic signatures and their quantum-information theoretic po-
tential.
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