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Ab-initio and continuum model studies predicted that the Γ valley transition metal dichalcogenide
(TMD) homobilayers could simulate the conventional multi-orbital Hubbard model on the moiré
Honeycomb lattice. Here, we perform the Wannierization starting from the continuum model and
show that a more general moiré Kanamori-Hubbard model emerges, beyond the extensively studied
standard multi-orbital Hubbard model, which can be used to investigate the many-body physics in
the Γ valley TMD homobilayers. Using the unrestricted Hartree-Fock and Lanczos techniques, we
study these half-filled multi-orbital moiré bands. By constructing the phase diagrams we predict the
presence of an antiferromagnetic state and in addition we found unexepected and dominant states,
such as a S = 1 ferromagnetic insulator and a charge density wave state. Our theoretical predictions
made using this model can be tested in future experiments on the Γ valley TMD homobilayers.

Introduction.— Transition metal dichalgenide (TMD)
moiré materials provide unprecedented platforms to
study the effect of electronic correlations on flat moiré
bands [1–5]. A variety of low-energy Hamiltonians can be
realized in these TMD moiré materials [6]. For example,
the WSe2/WS2 heterobilayer simulates the one-orbital
triangular lattice Hubbard model [7–10], while the AB-
stacked MoTe2/WSe2 leads to non-trivial moiré bands
demonstrating quantum anomalous Hall effect [11]. In
addition, recent ab-initio and continuum model calcu-
lations have shown that twisted Γ-valley homobilayers,
such as MoS2, MoSe2, and WS2, produce two valence
moiré bands with Dirac cone mimicking a honeycomb lat-
tice, while the next set of lower energy four moiré bands
simulates the two-orbital asymmetric px-py honeycomb
lattice model [12–16]. Moreover, surprisingly in recent
ARPES experiments Γ-valley moiré bands have been ob-
served in the twisted WSe2 [17, 18], rendering it also a
candidate material to realize the two-orbital honeycomb
lattice model. These findings opens up an exciting av-
enue to simulate multi-orbital Hubbard-like models in
TMD moiré materials.

The Kanamori-Hubbard (KH) model [19, 20] has
been extensively studied for many conventional materials
where multiple orbitals are active, as in iron based super-
conductors, iridates, manganites, etc. [21–25]. The moiré
potential is shallower than the ionic potential present
in conventional materials, leading to relatively broader
Wannier functions in moiré materials and making non-
local correlations important [26], which are typically ig-
nored in the often used KH model. This suggests that
the theoretical studies of twisted Γ-valley homobilayers
require a model going beyond the standard KH model.
In this publication, for the first time we provide a moiré
Kanamori-Hubbard (mKH) model which includes non-
local correlations, where the interaction parameters are
calculated using the well-localized and accurate Wannier
functions of the twisted MoS2 bilayer [28–30]. The im-
portance of the mKH model is depicted by discussing

the effective dielectric constant ε vs the twist angle θ
phase diagrams for the half-filled mKH model, unveiling
surprising results which definitely cannot be captured by
the standard KH model. It is interesting to note that the
relevance of the non-local correlations in the flat moiré
bands of twisted bilayer graphene (TBG) has also been
discussed [31–34], so we believe the mKH model can also
be used for TBG, but only near magic angles [35–38] un-
like in TMD bilayers where the flat bands are present in
a larger range of twist angles.

Wannierization and tight-binding model.— We calcu-
late the moiré bands structure and the Bloch states us-
ing the continuum moiré Hamiltonian H = −~k2/2m∗+
∆(r). The moiré potential ∆(r) is defined as ∆(r) =∑
s

∑6
j=1 Vse

i(gsj .r+φs), where gsj are the moiré recipro-
cal lattice vectors connecting to s-th nearest neighbour.
The model parameters {Vs, φs} are fixed following earlier
studies [12], considering the MoS2 homobilayer, so that
the band structure obtained from continuum model and
ab-initio matches very well. All of our predictions are
also valid for other Γ valley homobilayers like MoSe2 and
WS2. The valence bands closest to the chemical potential
can be described by a one-orbital tight-binding model on
a honeycomb lattice, see [12, 13]. Here, we focus on the
second-set of 4 composite valence bands, which can be
described by a two-orbital px-py tight-binding model on
the honeycomb lattice. Until now, the Wannier functions
have not been calculated for these set of bands. We per-
form Wannierization, using projection technique [39, 40],
to obtain 4 well-localized Wannier functions, two on each
sublattice namely A and B, see Fig. 1(k) (for details
see supplementary [41]). The calculated Wannier fuc-
tions have nodes at the moiré sites and a pair of lobes
like in the p-orbitals of the hydrogen atom, as shown in
Fig. 1(c-f) and Fig. 1(g-j) for twist angles 1◦ and 2.5◦,
respectively. We noticed that ΨA(B)px(r) cannot be ob-
tained by a 90◦ rotation of ΨA(B)py (r) unlike in the ideal
px-py orbitals, which follows from the absence of full ro-
tational symmetry in the moiré potential. Moreover, we
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FIG. 1. (a,b) Comparison between independently calculated band structures using the continuum model and the tight-binding
model (TBM), for the twist angles (a) θ = 1◦ and (b) θ = 2.5◦. Wannier functions, calculated using the continuum model Bloch
wavefunctions, for twist angles θ = 1◦ and θ = 2.5◦ are shown in panels (c-f) and (g-j), respectively. (k) The honeycomb lattice
geometry used in the tight-binding model. The blue, green, and red arrows depicts the nearest, 2nd-nearest, and 3rd-nearest
neighbours hoppings, respectively. (l) Evolution of the dominant hopping parameters with the twist angle.

found ΨBpx(y)(r) = −ΨApx(y)(−r) due the inversion sym-
metry of the moiré potential on two sublattices given by
∆(r−RA)=∆(−r−RB).

Using the above Wannier functions, we calculated
the hopping parameters for the two-orbital tight-binding
model on the honeycomb lattice, up to third nearest-

neighbour using tSS
′

j−i (µ, ν) = 〈Ψj
Sµ|H|Ψi

S′ν
〉 (for de-

tails see Supplementary Material [41]), where the {i, j},
{S, S′}, and {µ, ν} indices denotes unit-cell, sublattice,
and orbitals (px or py), respectively. We write the ki-
netic energy as HK.E. =

∑
iσK

1
iσ +K2

iσ +K3
iσ, where the

terms Kn
iσ consists of hoppings between the nth nearest

neighbour sites in the honeycomb lattice. The hopping
connections up to the 3rd nearest-neighbour are pictori-
ally shown in Fig. 1(k). K1

iσ is presented below:

K1
iσ =

∑
ν,µ∈{px,py}

r∈{0,−a2,a1−a2}

tBAr (µ, ν)c†i+rBµσ
ciAνσ + h.c. (1)

The K
2(3)
iσ terms can be written similarly, as shown

in supplementary [41]. The 1st nearest-neighbour hop-
ping term K1

iσ, shown in eq. 1, depends on three 2×2
matrices namely {tBA0 , tBA−a2

, tBAa1−a2
}. Similarly six 2×2

matrices {tAAa1
, tAA−a2

, tAAa1−a2
, tBBa1

, tBB−a2
, tBBa1−a2

} and three
2×2 matrices {tABa1

, tBAa1
, tBAa1−2a2

} are required for the 2nd
and 3rd nearest-neighbour hoppings, respectively. All of
these 12 matrices are dependent on θ. We found a good

match between the band-structure calculated using the
above tight-binding model and the continuum model, as
shown in Fig. 1(a,b), suggesting that we have accurate
Wannier functions. We noticed that for θ / 1.2, only
nearest-neighbour hoppings are enough to obtain the cor-
rect band-structure, as shown in Fig. 1(a) for θ = 1.0.
However, for larger θ longer-range hoppings are required
to reproduce the continuum model results (see Fig. 1(b),
for θ = 2.5). We show the evolution of the some dominant
hopping parameters in Fig. 1(l), depicting the exponen-
tial fast growth of hoppings with θ.

Interaction parameters and moiré Kanamori-Hubbard
model.— Now we will derive the Coulomb interaction be-
tween the fermions in the Wannier states discussed above.
The generic interaction term can be written as:

HInt = 1/2
∑

i,j,k,l,
α,β,γ,δ,
σ,σ′

V αβγδijkl c†iασc
†
jβσ′clδσ′ckγσ, (2)

where V αβγδijkl = 〈Ψi
αΨj

β |V |Ψk
γΨl

δ〉 and V = e2/ε|r1 − r2|.
ε is produced by the surrounding dielectric enviroment,
such as nearby h-BN layers. The exact value of ε is not
known so we keep it as a free parameter. The {α, β, γ, δ}
indices represent the sublattice S and the orbital µ via
α = 2S + µ = Sµ, where the sublattice A(B) = 0(1) and
the orbital px(py) = 0(1).
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In the present work, for simplicity, we limit the non-
local Coulomb interactions only up to nearest-neighbour
sites of the honeycomb lattice. A priori, the longer range
interactions are not expected to be very relevant at and
near half-filling [42]. To study Wigner crystals at frac-
tional fillings, the approximate longer range interactions
can be easily included by assuming the ( 1

|r| −
1√

r2+d2
)

functional form, where d is the screening length [43–
45]. The Coulomb interaction term which includes up to
nearest-neighbour interactions can be divided into three
parts, HInt =

∑
iHi +HAB

i,i-a2
+HAB

i,i+a1-a2
, where i is the

unit cell index and a(1,2) are the Bravais lattice vectors.
The first part Hi consists of all the Coulomb interactions
possible within the unit cell i, including both local and
nearest-neighbour interactions given by V αβγδiiii (total 44

terms). The second HAB
i,i-a2

and third parts HAB
i,i+a1-a2

contains the Coulomb interactions between the nearest-
neighbour sites belonging to different unit cells. Now we
will discuss the Hi term in detail; the other two terms
are very similar and shown in the supplementary. Hi

is shown in Eq. 3, where Siα= 1
2

∑
s,s′ c

†
iαsτss′ ciαs′ rep-

resent the spin at unit cell i, orbital µ=mod(α, 2), and
sublattice=(α−µ)/2. The pair anhilation operator is de-
fined as Piα = ciα↓ciα↑. s = 1(−1) for σ =↑ (↓), and the
set S = {{0123}, {0132}, {0213}}.

Hi = U0

∑
α

niα↑niα↓ +
∑
α<β

(Uαβ −
Jαβ

2
)niαniβ

− 2
∑
α<β

JαβSiα · Siβ +
∑
α<β

Jαβ(P †iαPiβ + h.c.)

+ 1/2
∑

σ,σ′,α6=β 6=γ

(Aβαγ − δσσ′ J̃βαγ)(c†iασciγσniβ,σ′ + h.c.)

+
∑
σ,α 6=β

Ãαβ(c†iασciβσniβσ̄ + h.c.)

−
∑

α6=β 6=γ

J̃αγβ(S+
iαc
†
iβ↓ciγ↑ + h.c.)

+ 1/2
∑

σ,α 6=β 6=γ

J̃αγβs(P
†
iαciγσ̄ciβσ + h.c.)

+
∑
σ,σ′,

{αβγδ}∈S

Tαβγδ(c
†
iασciγσ(c†iβσ′ciδσ′ +c†iδσ′ciβσ′)+h.c.)

(3)

Equation 3 encompasses all 44 intra-unit cell inter-
action terms. The first four terms look similar to the
conventional multiorbital Hubbard model, but here they
capture the non-local interactions as well. This is the
first time such a model is shown.

The first term is the standard onsite intra-orbital Hub-
bard repulsion, where U0 = V ααααiiii (same for all α’s).
The second term incorporates the onsite inter-orbital
density-density repulsions via parameters {U01, U23, J01,
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FIG. 2. (a) The onsite intra-orbital Hubbard repulsion
U0, onsite inter-orbital Hubbard repulsion U01, and the or-
bital resolved nearest-neighbour Hubbard repulsion parame-
ters {U02, U03, U13} shown for various twist angle θ values.
(b) The onsite Hund’s coupling J01 and the orbital resolved
nearest neighbour direct-exchange parameters {J02, J03, J13}
as a function of θ. (c,d) Evolution of nearest-neighbour in-
teraction assisted hoppings with θ, requiring electron pair in
the same-orbital (c) or on the same-site (d). ε is the effective
dielectric constant.

J23} and the non-local orbital resolved repulsions via pa-

rameters like U02, J02, etc., where Uαβ = V αβαβiiii and

Jαβ = V αββαiiii . The well known local Hund’s coupling is
present in the third term via the dominant J01 and J23
parameters; this term also includes the non-local ferro-
magnetic direct exchange terms (J02,J13, J03, J12). The
fourth term incorporate the onsite inter-orbital and non-
local pair hopping terms. We also found interaction as-
sisted hoppings (term-5 and term-6), spin-flip hopping
accompanied with local spin flip (term-7), and scatter-
ing of doublon to different states (term-8) quantified
by (Aβαγ , Ãαβ , J̃βαγ). The remaining interactions are
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present in term-9.

We show the interaction parameters of first 6 terms as
a function of θ in Fig. 2. The density-density terms are
dominant interactions, see Fig. 2(a). The onsite intraor-
bital repulsion (U0) suggests that εU0/W can be of order
of 10 to 1000 in real materials, depending on θ, where W
is the non-interacting bandwidth. For example, U0/W is
about 1200ε−1 and 25ε−1 for θ=1◦ and θ=2.5◦, respec-
tively. The local Hund’s coupling and the non-local ferro-
magnetic direct exchange is shown in Fig. 2(b). Fig 2(c,d)
displays the interaction assisted hoppings vs. θ. The rest
of the interaction parameters are relatively smaller, and
shown in the supplementary. We call the total Hamil-
tonian H = HK.E. + HInt the moiré Kanamori-Hubbard
model because of the presence of non-local interaction
terms, which are ignored in the standard KH model.
These non-local correlations can lead to unexpected re-
sults, as shown in the next sextion. It should be noted
that the mKH model shown here has larger scope and
can be also used for magic-angle TBG and future moiré
materials addressing multiorbital physics on honeycomb
lattice (only the values of hopping and interaction pa-
rameters will depend on the specific material).

In recent theoretical work [26], a one-orbital Hubbard
model with non-local interactions was derived for TMD
heterobilayers. As discussed before, in our work we in-
stead derive a multi-orbital Hubbard model, focusing on
homobilayers. We found similar non-local interactions
terms as discussed in [26], such as density-density repul-
sion, ferromagnetic direct exchange, interaction-assisted
hopping, and pair-hopping. However, in addition we also
found spin-flip hoppings assisted by local spin-flip, and
doublon scattering to different sites. Moreover, the or-
bital degree of freedom in our model may lead to phenom-
ena unique of multi-orbital models, such as orbital order-
ing [27], local Hund’s coupling driven double-exchange
mechanisms [20], etc.

Numerical results at half-filling.— We create ε vs θ
phase diagrams to investigate the physics of the mKH
model at half-filling n=N/L=2, where N is the total
number of fermions and L=L1×L2 the total number of
unit cells. We studied 6×6 and 12×12 system sizes using
the unrestricted Hartree-Fock technique. We choose a
broad range of ε ∈ [1, 80] as it can be tuned by changing
the distance with the nearby metallic gate. Moreover,
ε will be enhanced by the charge-fluctuations between
the moiré bands considered here and other remote moiré
bands. The ε vs θ phase diagram for the mKH model
is shown in Fig. 3(a). In addition to the expected anti-
ferromagnetic (AFM) state, we have unveiled two states
not anticipated to be stable in the conventional multi-
orbital model: the S = 1 ferromagnetic (FM) state for
θ < 1.75 and the charge density wave (CDW) state for
θ ≥ 1.75. The non-local density-density repulsion plays
the key role to stabilize the CDW state. We can esti-
mate the nearest-neighbour density-density repulsion to
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FIG. 3. (a,b) Effective dielectric constant ε vs twist angle
θ phase diagrams for (a) the full moiré Kanamori-Hubbard
(mKH) model and (b) the simplified mKH model, both con-
structed via unrestricted Hartree-Fock. Panels (c), (d), and
(e) show the pictorial representation of ferromagnetic (FM),
antiferromagnetic (AFM), and charge density wave (CDW)
states, respectively. The tiny violet regions in (b) correspond
to non-collinear and non-coplanar phases.

onsite intra-orbital repulsion ratio. For example, U02/U0

lies approximately in the range [0.20, 0.35] for the ho-
mobilayer we considered, whereas for heterobilayer the
nearest-neighbour density repulsion to onsite Hubbard
repulsion ratio lies in [0.12, 0.25] [26]. Although our es-
timates are in a similar range, the half-filled heterobi-
layer does not show the CDW state [26], whereas our
multi-orbital mKH model shows CDW in a large re-
gion of the phase diagram. This can be understood
by the approximate CDW stability condition for our
model which incorporates multiple orbitals and enhances
the effect of non-local correlations i.e. 2(U01 + U0) <
3(U02 + U03 + U12 + U13) which is satisfied for θ ' 1.75.
The competition between the non-local FM direct ex-
change (∝ ε−1(J02 + J13 + 2J03)) and the AFM superex-
change (∝ (εt2)/(U0 + J01)) leads to the transition from
FM to AFM state as ε increases. We found that the AFM
state is present only for ε > 20 with local moment S < 1.
See Fig. 3(c,d,e) for the pictorial represention of the FM,
AFM, and CDW states.

We also used the simplified mKH model, only keeping
the first 4 terms in Eq. 3, and found all three phases are
present nearly in the same region of the phase diagram
(see Fig. 3(b)), suggesting that the FM direct exchange
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FIG. 4. (a) Effective dielectric constant ε vs twist angle θ
phase diagram for the simplified mKH model by solving the
small 2×2 cluster using the Lanczos technique. The 2×2 hon-
eycomb cluster with periodic boundary conditions is shown
in (b); the dashed thin lines depicts the underlying triangular
Bravais lattice. (c,e) The spin-spin correlation with respect
to site=1 (〈S1 ·Sj〉) for various values of ε, at fixed (c) θ = 1.5
and (e) θ = 2.0. (d) The local moment 〈S2

L〉 for θ = 1.5 and
2.5 vs. ε. (f) The density-density correlation with respect to
site=1 (N1j) for various values of ε, at fixed θ = 2.0.

and the density-density repulsion are the most important
non-local interactions for the half-filled mKH model.

To investigate the effect of the quantum fluctuations,
we used the Lanczos technique and studied a small 2× 2
cluster with periodic boundary conditions (Fig. 4(b)), us-
ing the simplified mKH model. The phase diagram is
shown in Fig. 4(a). We again found the FM, AFM, and
CDW states in the same region of the phase diagram.
Fig. 4(c) shows the spin-spin correlation, with respect to
site=1, 〈S1 ·Sj〉 for θ=1.5◦, depicting strong FM correla-
tions for ε=10, and AFM correlations for ε ∈ {30, 50, 80}.
Fig. 4(e) and Fig. 4(f) show 〈S1 ·Sj〉 and density-density
correlations N1j = 〈n1nj〉 − 〈n1〉〈nj〉, respectively, at
fixed θ=2.0 depicting the growth of AFM correlations
and suppression in the CDW as ε increases. This indi-
cates a smooth transition from the CDW phase to the
AFM phase. We believe larger systems are required to
confirm whether it is a 2nd-order phase transition or a

crossover. The FM to AFM or the FM to CDW are
first order transitions because the total spin suddenly
changes from 2L=8 to 0. The averaged local moment
S2
L = (1/4L)

∑
iα〈S2

iα〉 as a function of ε is shown in
Fig. 4(d). We found, for θ < 1.75 that S2

L decreases as ε
is increased while the system transits from the S=1 FM
to AFM phases, whereas for θ ≥ 1.75, S2

L grows with ε
developing AFM correlations with weak CDW.

We have focused only on half-filling but investigating
other fillings would also be valuable, because including
longer-range interactions will likely lead to rich and novel
multi-orbital phase diagrams at fractional fillings [46–48].
Our model provides a unique platform to explore the in-
terplay between multi-orbital interactions and non-local
correlations. Deriving the low energy S=1 model for half-
filling [49] and the t−J model for theoretical studies near
half-filling can also be interesting future directions, as the
TMD moiré materials are generally located in the strong
coupling regime.

Conclusions.— We showed that the twisted Γ-valley
TMD bilayers contains physics beyond the conventional
multi-orbital Hubbard model. We provide a mKH model
which can be used to theoretically study the multi-orbital
physics of TMD bilayers. Using our numerical studies at
half-filled moiré bands we show that the non-local direct-
exchange terms and density-density interactions can lead
to S=1 FM insulators and CDW states, respectively, de-
pending on ε and θ. The AFM state can also be ob-
tained but at large ε > 20. Our theoretical prediction
of a S=1 FM insulator can be verified by measuring the
magnetic susceptibility and Weiss constant in real ma-
terials [7, 50], and the charge ordered state can be ob-
served using high-resolution scanning tunneling experi-
ments [51]. The mKH model can also be used for further
theoretical investigations like doping near half-filled cor-
related insulators and for studying Mott-Wigner crystals
at fractional fillings by including longer range density-
density interactions.
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Department of Energy, Office of Science, Basic Energy
Sciences, Materials Science and Engineering Division.
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