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Majorana zero modes form as intrinsic defects in an odd-orbital one-dimensional superconduc-
tor thus motivating the search for such materials in the pursuit of Majorana physics. Here, we
present combined experimental results and first principles calculations which suggest that quasi-
one-dimensional K2CrszAss may be such a superconductor. Using inelastic neutron scattering we
probe the dynamic spin-susceptibilities of KoCrsAss and KoMozAss and show the presence of an-
tiferromagnetic spin-fluctuations in both compounds. Below the superconducting transition, these
fluctuations gap in KeMosAss but not in K2CrszAss. Using first principles calculations, we show that
these fluctuations likely arise from nesting on one dimensional features of the Fermi surface. Con-
sidering these results we propose that while KoMosAss is a conventional superconductor, KoCrsAss
is likely a spin-triplet, and consequently, topological superconductor.

To realize scaleable quantum computers, new phenom-
ena on which to base the qubit are needed - ones ro-
bust, with intrinsic entangled properties such as exists in
certain topological phases [1-9]. Of the potential candi-
dates, the Majorana zero mode (MZM) is one of the most
promising due to its non-abelian anyon statistics which
are suited for braiding while also potentially allowing ma-
nipulation necessary for computation [10-15]. However,
generating and observing MZMs have proven challenging
due to their complex materials’ requirements and charge-
less nature. One proposed route to realize and localize
MZM is with one-dimensional SCs whose pair operators
are their own conjugate - ‘spin-less’ or spin-triplet odd-
orbital SCs - this is original the toy-model proposed by
Kitaev [11].

Consequently, there is great interest in one-
dimensional (1D) or quasi-1D (Q1D) systems which ex-
hibit spin-triplet SC (TSC). However, such materials are
extraordinarily rare with few compounds showing either
property and still fewer with both. Nonetheless, several
candidate materials have been found (including the Bech-
gaard salts and purple bronze)[16-18]. More recently, the
discovery of the Q1D potential TSC A, H_p), T M3Ass

(with A = Na,K,;Rb or Cs, TM = Cr or Mo and n = 1
or 2) family has provided another route to realize these
exotic physics [19-28].

The A,H_p),TM3As3 materials exhibit numerous
novel properties, several of which evince TSC. These
materials crystallize with a motif of Q1D TM;3As;
tubes which give rise to strongly Q1D features such as
Luttinger-liquid physics, Q1D Fermi surfaces (FS) and
highly anisotropic transport [19, 20, 26, 29-32]. Entic-
ingly, their SC state appears to be unconventional with
an unexpectedly high upper critical field, nodes in the
SC gap, and a proximity to a quantum critical point
with suggestions of TSC due to a spontaneous magne-
tization below the SC transition (7¢), an angular de-
pendent upper critical field, ferromagnetic (FM) fluctu-
ations, a T suppressed by non-magnetic impurities and
findings of a leading T'SC instability from theory [33-46].
In K5CrgAss this scenario was recently strengthened by
nuclear magnetic resonance (NMR) measurements which
revealed the spin-susceptibiliy remains finite through T
strongly suggesting TSC [46].

However, some debate about the superconducting state
still remains due to reports of anti-FM (AFM) insta-



bilities, proximity to a spin-glass state, and a s* gap
symmetry, [28, 47, 48]. This has lead to a complicated
landscape for these materials with numerous proximate
magnetic, structural, and superconducting instabilities.
Recently, it was proposed that the KT MsAss family
may straddle a boundary between unconventional SC
in KoCrzAss (Te~ 6 K) and multi-gap conventional
electron-phonon (e-p) SC in KsMosAss (T~ 10 K),
perhaps giving guidance to understand the disparate re-
ported features[49]. Here it was argued that understand-
ing how superconductivity evolved between the two com-
pounds would elucidate the role of the different insta-
bilities in the SC pairing, particularly in determining
whether spin-fluctuations (SF) competed with or sup-
ported the SC state in KoCrzAss[49].

In this Letter, we assess the role of SF in KyCrzAss
through comparing the dynamic spin susceptibilities of
K5CrzAsz and KoMogAs;z using experimental probes and
first principles calculations. To start, inelastic neutron
scattering (INS) experiments reveal SF in both com-
pounds above T¢ which are consistent with incipient
AFM order. Below T¢, we find that for KoMosAss a
resonanceless spin-gap opens while in KoCrzAss no gap
is observed implying a difference in the compounds’ SC
states. Performing first principles calculations, we find
that the AFM SF can be explained by FS nesting on
Q1D FSs. Consequently, we suggest that KoMozAss is
an e-p SC whose low energy SF are suppressed by the
opening of SC gaps on all FSs. Contrastingly, the lack of
a spin-gap in KyCr3zAsg indicates that neither the AFM
SF nor the associated FSs participate in SC leaving a
single remaining FS which is favorable to FM SF driven
TSC thus indicating FM driven TSC in K5Cr3Ass.

Large powder samples of KyCrg3Ass and KoMogAsg
were synthesized as reported previously (see the supple-
mental materials (SM) for details) [19, 26, 47]. Neutron
powder diffraction (NPD) was performed on the HB-
2A diffractometer of Oak Ridge National Laboratory’s
(ORNL) High Flux Isotope Reactor (HFIR) and analyzed
using FullProf [50, 51]. INS was performed on the HB-3
and C-TAX triple axis spectrometers of HFIR using fixed
analyzer energies of 14.7 and 5 meV respectively. Density
Functional Theory (DFT) calculations were performed
using the generalized gradient approximation of Perdew,
Burke and Ernzerhof (PBE) and the general potential
linearized augmented planewave method as implemented
in the WIEN2k code [52-54].

In fig. 1 (a) we show the crystal structure of KoMozAsg
(space group P6m2) which exhibits a Q1D structural mo-
tif of two inequivalent, alternating, coaxial layers of Mo
(and As) triangles. In fig. 1(b) we show a diffraction
pattern of KoMosAsz collected at 300 K together with
a simulated pattern from our best-fit model showing no
impurity phase, indicating the high quality of our sam-
ple. In the inset of fig. 1(b) we show a comparison of
NPD patterns collected at 300 and 2 K demonstrating a
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FIG. 1. (a) Crystal structure of KosMogAss viewed along ¢
and of the isolated tube motif. (b) Neutron powder diffraction
pattern and best model fit for data collected at 300 K. Inset
of panel (b) shows a comparison of the low ¢ region of data
collected at 300 and 2 K.

lack of any significant changes which might be associated
with the onset of magnetic order suggesting KoMogAsg
(as K2CrsAss) has no long-range magnetic order (see the
SM for more discussion) [55].

Previously, KoCrzAss was shown to have AFM SF aris-
ing from incipient k = (0, 0, %) order. This was revealed
as a column of scattering in the dynamic structure fac-
tor S(q, AE) (as probed via INS) which is proportional
to the imaginary component of the spin-susceptibility
[47, 56, 57]. Such fluctuations offer significant insights to
the SC state therefore, we performed similar experiments
on KsMosAss and compare these materials’ S(Q, AE).

Fig. 2(a) and (c) show the S(Q, AE) of KoMosAsz and
K2CrsAs;s collected at 20 and 10 K respectively (above
either compound’s T¢). Here we focus on the low @
and low AFE region which is typically featureless at these
temperatures for non-magnetic materials. However, for
both materials a column of scattering is seen arising from
~0.75 A1, Such a signal is often indicative of incipient
magnetic order caused by SF with a @ characteristic of
the incipient ordering vector [39, 57-61].

Qualitatively, the signal observed in KoMogAsj is sim-
ilar to that of KoCrszAss. Fitting constant AFE cuts with
Gaussian functions, we find a slight shift in the position
of the feature to lower Q by ~ 0.1 A~ in KosMosAsz com-
pared to KoCrzAss consistent with KoMogAss’s larger ¢
axis (see SM for details) [55]. The dispersion of the two
signals is very similar (though both are convoluted with
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FIG. 2. Inelastic neutron scattering spectrograms for
KsMosAss at (a) 20 K and (b) 2 K and for K2CrsAss at
(c) 10 K and (d) 2 K. Intensity is in units of detector counts
normalized to monitor counts. We note that the data showed
in panel (c) includes data from ref. 47 but with additional
counting statistics.

the instrument resolution function). On the other hand,
the fits reveal that the column in KoMosAss is broader
in Q by ~ 20% and also is ~ 30% weaker (though this
is more difficult to reliably quantify between samples)
which may indicate the fluctuations are shorter-ranged
and the fluctuating moment smaller in KoMogAsg - both
of which have been suggested from prior DFT treatments
[49]. Due to these considerations, we attribute the origin
of this signal to similar causes as in KoCr3Ass.

We next consider the temperature dependencies across
T¢. Fig. 2(b) and (d) show the same region of S(Q, AE)
measured below T at 2 K for both samples. Here a dis-
tinction between the two emerges. For KoCrzAss the
spectrograph looks qualitatively identical to the 20 K
data set - no gap opens despite the onset of SC. On
the other hand, in KsMogAss (fig. 2(b)) there is a clear
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FIG. 3. (a) Comparison of scattering intensity of KoMogAss
for constant ¢ scans along the column collected at 20 and
2 K. (b) Temperature dependence of the low energy region
of the KoMosAss column with the 20 K count rate and T¢
denoted by horizontal and vertical dotted lines. (c) Difference
curve for the 20 and 2 K KosMosAss data using a larger AE
binsize than panel (a) to improve the statistics. (d) Similar
comparison of 20 K and 2 K scans for KyCrzAss with the
an envelope denoting the size of a gap expected for a signal
similar to that observed in panel (a).

change in the column where the signal for AE < 7 meV
loses intensity. This observation is consistent with the
opening of a SC gap which inhibits fluctuations below
2A (i.e. the energy required to break a Cooper pair).

To characterize this feature, constant () scans were
taken at Q ~ 1.1A"! above and below T¢ for both sam-
ples (fig. 3). For KsMogsAss(fig. 3(a)), the gap becomes
clear. While the 20 K data exhibit a constant increase in
intensity below 5 meV (as the elastic line is approached),
the 2 K data drop in intensity by ~ 20% below ~ 5 meV.
Using the weak coupling Bardeen Cooper Schieffer gap
approximation (i.e. A(T = 0) = ZkpTc) we estimate
2A as 6.2 meV which is consistent with our observed gap
(a similar estimate is obtained using the empirical for-
mula of wy = 4.3kgT, with wy being the energy of the
spin-gap)[62]. In fig. 3(c) we show a difference curve of
the 20 and 2 K data to remove background effects. Here,
the gap is seen to open below ~ 5 meV and progres-
sively widen to the lowest measured temperature of 2 K.
We further associate this gap with T by measuring the
intensity at 1.05 A! and 3 meV as a function of temper-
ature (fig. 3(b)) which shows the gap to close at ~ 6 K.
This is a little below T (10.4 K); however, the gap itself
is a function of T' and so should become smaller than the



certainty of our measurements before T is exceeded.

In KoCrzAss, we see discretely different behavior in
the low energy spectrum (fig. 3(d)). Here, no obvious
SF gap is seen in the 2 K data. If estimated as before,
2A ~ 3.7 meV and wg ~ 2.2 meV, both of which are
within the limits of our energy resolution (~ 1.4 meV).
For comparison, in fig. 3(d) we plot an envelope showing
the range equivalent to the percent change of the sig-
nal seen in KoMosAss, demonstrating that, within our
statistics, a similar decrease in intensity would be ob-
servable. Additional measurements were taken using a
cold neutron triple-axis spectrometer to access lower en-
ergy transfers ( < 1 meV) and no gap was observed (see
SM)[55]. Consequently, we take this observation to be a
strong indication that no spin-gap opens in the SC state
of K2 CT3AS3.

Such observations have significant implications for the
nature of SC in these systems [49]. That the SF in
K5CrzAss do not respond strongly to SC (which naively
should open a gap) requires explanation. Furthermore,
though a spin-gap with a resonance has become a hall-
mark of unconventional SCs, here we see no evidence of
a resonance above the gap in KosMogAsz undermining SF
role in SC [63]. If the SF can be associated with specific
features of the F'Ss then the presence (or absence) of a
gap in those SF will correspond to the presence (or ab-
sence) of a gap on the associated FS. In a system such as
KoCrzAss, where different FSs have different SC insta-
bilities, such information can be key in determining the
symmetry of the SC state [62, 64-76].

In fig. 4 (a) and (b) we show the FSs of KsMosAsg
and (undistorted) KoCrgAss as determined by DFT cal-
culations. Here we use undistorted KyCrzAss due to
ambiguity in the distorted structure [77, 78]. As re-
ported, these two compounds have similar FSs, consist-
ing of two Q1D « and  sheets and one large 3D = sheet
[40, 43, 49, 79-81]. Given the large sheet-like features
of the F'Ss, nesting vectors have been proposed as possi-
ble between both the upper and lower o and (3 sheets as
well as between the top and bottom of the v sheet any
of which may lead to spin- or charge-density wave type
orders such as has been proposed for the SF observed in
KoCrzAss[39, 47, 49, 78, 82, 83].

We next calculate the Fermi velocities (vp) through-
out the FSs of both compounds to predict the strength of
electron correlations on the different surfaces (as shown
in the color scale on fig. 4 (a) and (b)). These calcula-
tions reveal two important features: for both compounds
the large 3D v sheet has significantly lower vp indicat-
ing stronger electron correlations (and magnetic interac-
tions) on this sheet. Additionally, vg is in general larger
in KoMogAss suggesting it exhibits weaker electron cor-
relations than KoCrgAss.

If there is an electronic instability to nesting between
the Q1D FSs, then we expect an associated peak in the
dynamic spin susceptibility as calculated via the imag-
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FIG. 4. Calculated Fermi surfaces of (a) KoCrzAss (undis-
torted) and (b) K2MosAss . In (a) and (b) the calculated
Fermi velocity is shown as a function of position on the Fermi
surface via the color scale with blue indicating low relative
velocities and red indicating higher velocities. (c) Imagi-
nary component of the calculated Lindhard susceptibility of
KoMogAss plotted for several energies near the Fermi energy
(with Ep =0 eV).

inary component of the Lindhard susceptibility (shown
projected along k. for KosMozAss in fig. 4(c)). Here, we
clearly observe a large broad peak near the zone center
indicative of FM SF as has been previously suggested in
prior first principles studies [43, 80, 84, 85]. Such a signal
is consistent with the experimental evidence for FM SF
found in NMR measurements [35, 46, 58, 86]. Near the
zone boundary at k, ~ 0.9, we see a second feature which
corresponds to the k position of the AFM SF observed in
INS. This peak is quite small, consistent with it arising
from nesting between the two high vp Q1D sheets, and
similar to prior observations in A;CrzAss and ACrsAsg
[43, 83, 87, 8]

These insights from first principles provide a roadmap
to interpret the experimental results. They show that
both KosMogAsz and KoCrzAss have similar potential
nesting vectors across the 1D FSs consistent with the
observed column of SF. That these AFM SF do not gap
in K5Cr3Ass indicates that neither the AFM SF nor the
1D FSs participate in SC. This is expected as symme-
try considerations for AFM SF mediated spin-singlet or
spin-triplet SC disallow Cooper pairs between k, and
—k, states [89, 90]. In K;MozAss the SF gap but do



not exhibit a resonant-spin excitation which further con-
tradicts AFM SF driven SC [83]. The un-gapped Q1D
FSs in KoCrzAsz imply SC must exist on the 7 sheet.
Given that FM SC can pair k and —k states for a sign
changing gap, as occurs in the proposed p,-wave symme-
try, this allows a possible scenario for a TSC mechanism
[39, 89]. We note that our experimental results can not
eliminate other possible pairing potentials which might
be available on the  sheet however, they do weaken e-p
as a candidate which is inconsistent with the presence
of an ungapped FS [49]. Furthermore, for FM SF the
pairing potential is enhanced for low scattering vectors
as found on the v surface which encompasses the zone
center, consistent with the low vg found on this sheet
and in additional support of TSC [89].

Considering previous experimental reports of FM SF
and the recent report of TSC which have largely been
driven by NMR experiments, our INS results provide im-
portant new insights. Whereas the previously reported
SF were argued to possibly arise from combinations of
AFM and FM components which obfuscated their rele-
vance in pairing, here we clearly show that in KoCrgAss
the AFM SF do not participate in SC [58]. Additionally,
our results are consistent with the recently proposed sce-
nario of a proximate FM quantum critical point (QCP)
in the Cr compounds [35]. Here, tuning away from the
QCP gives rise to residual FM SF which in turn can
drive TSC pairing [35, 91]. On the other hand, while our
results are complimentary to the recent NMR observa-
tion of a finite spin-susceptibility inside the SC state and
subsequent identification of TSC, our symmetry analysis
suggests a p, symmetry rather than the (p, % ip,) in-
dicating the need for additional experimental evaluation
of the SC gap structure [46]. More generally, that both
AFM and FM SF exist in K;CrzAss but only the latter
responds to SC is highly suggestive of TSC. However, lo-
calizing SC to the 3D v sheet undermines arguments for
1D SC, instead encouraging the use of KoCrsAss as a ma-
terial with TSC which still requires macroscopic manip-
ulation of sample shape to achieve a 1D wire geometry.
Nevertheless, our results are consistent with a p,-wave
TSC state in KoCrzAss and encourage further work, po-
tentially pointing to a system which advantageously TSC
and a highly Q1D crystal habit which may help with de-
vice design as well as in isolating such states [83, 92, 93].

In summary, we show that both KyCrzAss and
KoMogAs; exhibit antiferromagnetic spin fluctuations
which are consistent with an incipient k = (0,0, 3) type
magnetic order. Comparing spectra collected above and
below their respective T¢s, we find that while KoMogAsg
exhibits a gap with no spin-resonance, KoCrzAss ex-
hibits no such gap. Using first principles calculations,
we show that these two materials are susceptible to nest-
ing across their Q1D Fermi surfaces consistent with the
experimental k = (0,0, %) As we observe no gap in
the spin-fluctuations of KyCrzAss, we infer that these

Fermi surfaces are not gapped by the superconducting
state and that the remaining «y sheet, which should favor
spin-triplet pairing, must host superconductivity. Fur-
thermore, we rule out the antiferromagnetic coupling su-
perconducting mechanism in KoCrsAss, leaving ferro-
magnetic fluctuation driven spin-triplet superconductiv-
ity as the lead candidate mechanism. As KyCrzAsg is a
Q1D material, its hosting spin-triplet superconductivity
should have exciting implications for topological physics
invoking aspects of Kitaev’s toy model for Majorana zero-
modes.
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