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Linearly dispersing Rarita-Schwinger-Weyl (RSW) fermions featuring two Fermi velocities are the
key constituents of itinerant spin-3/2 quantum materials. When doped, RSW metals sustain two
Fermi surfaces (FSs), around which one fully gapped s-wave and five mixed-parity local pairings can
take place. The intraband components of four mixed-parity pairings support point nodes at the poles
of two FSs, only around which long-lived quasiparticles live. For weak (strong) pairing amplitudes
(∆), gapless north and south poles belonging to the same (different) FS(s) get connected by polar
hairs, one-dimensional line nodes occupying the region between two FSs. The remaining one, by
contrast, supports four nodal rings in between two FSs, symmetrically placed about their equators,
but only when ∆ is small. For large ∆, this paired state becomes fully gapped. The transition
temperature and pairing amplitudes follow the BCS scaling. We explicitly showcase these outcomes
for a rotationally symmetric RSW metal, and contrast our findings when the system possesses an
enlarged Lorentz symmetry and with the ones in spin-3/2 Luttinger materials.

Introduction. Emergent phenomena lead to peculiar
outcomes in quantum solids [1]. Electron and hole quasi-
particle excitations, respectively characterized by posi-
tive and negative effective mass and charge stand as its
paradigmatic examples [2]. More intriguingly, spin-1/2
electrons hopping under specific crystal environments can
give rise to effective spin-3/2 excitations, as is the case in
227 pyrochlore iridates [3–5], half-Heuslers [6, 7], HgTe [8]
and gray tin [9, 10]. In these materials spin-3/2 Luttinger
fermions display a biquadratic touching between Kramers
degenerate valence and conduction bands, with respec-
tive spin projections j = ±3/2 and ±1/2 [11]. Spin-
3/2 Rarita-Schwinger-Weyl (RSW) fermions [12], by con-
trast, display linear band touching, featuring two Fermi
velocities ±v/2 and ±3v/2. In RSW materials the va-
lence (conduction) band is composed of j = −3/2, −1/2
(3/2, 1/2) spin projections. While antiperovskites har-
bor massive RSW fermions [13], PdGa [14], PdBiSe [15],
AlPt [16], PtGa [17], CoSi [18–20] and RhSi [18] accom-
modate their gapless counterpart. Altogether, these elec-
tronic materials endow an exciting opportunity to study
exotic Cooper pairings among spin-3/2 fermions. While
the Cooper avenue has been explored in Luttinger mate-
rials [21–33], due to experimental pertinence in super-
conducting half-Heuslers [34–37], pairing among RSW
fermions is still in its infancy [38–42].

key results. In crystals, RSW fermions are accompanied
by doubler (a generalized Nielsen-Ninomiya theorem [43,
44]). Here, for simplicity we consider a single irreducible
copy of four-component RSW fermions. Such gapless
excitations, nonetheless, can be found on the three-
dimensional hypersurface of a four-dimensional bulk
topological insulator of massive spin-3/2 fermions [45].
When doped, RSW metals typically sustain two Fermi
surfaces (FSs) [Fig. 1]. Around them exotic local mixed-
parity nodal superconductors can nucleate [Table I].
Their intraband components often feature gapless po-

FIG. 1. Topology of Fermi surfaces for various α. See Eq. (1).

lar hairs [Fig. 2], one-dimensional line nodes connecting
the poles of the FSs through its interior, in the presence
of an effective attraction within a characteristic Debye
frequency (weak coupling BCS mechanism). These out-
comes are contrasted with the ones when the RSW mate-
rials enjoy enlarged Lorentz symmetry and in Luttinger
materials, featuring a single FS. In both cases, nodal pair-
ings host simple line nodes on the FS [Fig. 3].

Model. The Hamiltonian describing RSW fermions is

HRSW = v
(
J · k − α J3 · k

)
− µ, (1)

where v bears the dimension of the Fermi velocity [39–
41, 46, 47]. Momentum k and chemical potential µ
are measured from the band touching RSW node, J =
(Jx, Jy, Jz) is the vector spin-3/2 matrix with Jz =
diag.(3, 1, −1, −3)/2, J3 = (J3

x , J3
y , J3

z ) and α is a tuning
parameter. Spin-3/2 matrices satisfy the SU(2) algebra
[Jp, Jq] = iϵpqrJr, where p, q, r = x, y, z and ϵpqr is the
antisymmetric tensor. For α = 0 the system possesses
a rotational symmetry, yielding two isotropic FSs with
Fermi momenta kF,j = µ/(jv) with j = 1/2, 3/2. By
contrast, a Lorentz symmetry emerges when α = 4/7
and the system supports a doubly degenerate FS with
Fermi momentum kF = 7µ/(3v). Then matrices appear-
ing in HRSW, J −4J3/7 = 3{Γ23, Γ31, Γ12}/7 besides the
SU(2) algebra also satisfy the mutually anticommuting
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FIG. 2. Evolution of polar hairs (top) and nodal rings (bottom) with pairing amplitude (∆j/µ) for α = 0. Polar hairs (nodal
rings) are shown for ∆3 (∆5) pairing. Different segments of polar hairs (color coded) connecting the north and south poles (red
dots) of the same FS [(a),(b)] touch each other at a critical amplitude [(c)], beyond which they connect same poles of different
FSs [(d)]. Nodal rings, symmetrically placed about the equators, get closer with increasing ∆5 [(e),(f)]. They touch each other
for a critical amplitude [(g)]. Then the paired state becomes fully gapped [(h)]. Momentum k is measured in units of µ/v.

Clifford algebra. Here Γjk = [Γj , Γk]/(2i) and five mutu-
ally anticommuting Hermitian matrices are Γ1 = κ3σ2,
Γ2 = κ3σ1, Γ3 = κ2σ0, Γ4 = κ1σ0 and Γ5 = κ3σ3.
Two sets of Pauli matrices {κν} and {σν} operate on
the sign (±) and magnitude (3/2, 1/2) of the spin pro-
jections, respectively [48, 49]. Nodal topology of RSW
fermions changes at α = 4/9 and 4 [40, 46, 47] at which
two FSs touch along the principal axes [Fig. 1].

Nambu doubling. To capture superconductivity in
RSW materials, we Nambu double HRSW. After absorb-
ing a unitary matrix Γ13 in the hole part of the Nambu
spinor, the normal state Hamiltonian reads HNam

RSW =
η3HRSW. Newly introduced Pauli matrices {ην} operate
on the Nambu indices. Antisymmetric nature of the effec-
tive single-particle Bogoliubov de Gennes (BdG) Hamil-
tonian, manifesting the Pauli exclusion principle [50], in
the presence of all the local or on-site or momentum-
independent pairings restricts its form to

HBdG = (η1 cos ϕ + η2 sin ϕ)
5∑

ν=0
∆νΓν , (2)

where Γ0 = κ0σ0 and ∆ν are the pairing amplitudes for
ν = 0, · · · , 5. Without any loss of generality, we set
the U(1) superconducting phase ϕ = 0. To unveil the

emergent topology of the pairings near the FSs, next we
project HBdG onto the valence or conduction bands and
consider only their intraband pieces. This procedure is
justified within the framework of weak coupling BCS pic-
ture, in which attractive pairing interaction persists only

FIG. 3. (a) Nodal loops for ∆1 (red), ∆2 (blue) and ∆3
(magenta) pairings in a Lorentz symmetric RSW metal with
a single FS of Fermi momentum kF = 7µ/(3v). We set µ/v =
3/7. (b) Nodal loops for ∆4 (red) and ∆5 (blue) pairings in
a Luttinger metal. Here momenta k are measured in units of
kF =

√
2m±µ. Nodal loops for ∆1,2,3 pairings are obtained

from the ones for ∆4 pairing after suitable rotation [28].
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Pairing
matrix
(Ampli-
tude)

Pairing near Fermi surfaces and emergent topology in RSW metals
α = 0 (Rotational symmetry) α = 4/7 (Lorentz symmetry)

Angular functions Parity Nodal lines Angular functions Parity Nodal lines

Γ0(∆0) a0
0 =1 + × a0

0 =1 + ×

Γ1(∆1)

a1
1 = cos(2θ) sin(ϕ)

a1
2 = cos(θ) cos(ϕ)

a1
3 =

√
3

2 sin(2θ) sin(ϕ)

–
+
+

qy =0, δ2
1q2

z =f(q)q2

qz =0, δ2
1q2

y =f(q)q2

a1
1 = 1

2 sin(θ) sin(2ϕ)

a1
2 = sin(θ) cos2(ϕ)

+

+

qx =0,

q2
y + q2

z =
(

7
3

)2

Γ2(∆2)

a2
1 = cos(2θ) cos(ϕ)

a2
2 = cos(θ) sin(ϕ)

a2
3 =

√
3

2 sin(2θ) cos(ϕ)

–
+
+

qz =0, δ2
2q2

x =f(q)q2

qx =0, δ2
2q2

z =f(q)q2

a2
1 = sin(θ) sin2(ϕ)

a2
2 = 1

2 sin(θ) sin(2ϕ)

+

+

qy =0,

q2
z + q2

x =
(

7
3

)2

Γ3(∆3)

a3
1 = 1

2 sin(2θ) sin(2ϕ)
a3

2 = sin(θ) cos(2ϕ)
a3

3 =
√

3
2 sin2(θ) sin(2ϕ)

–
+
+

qx =0, δ2
3q2

y =f(q)q2

qy =0, δ2
3q2

x =f(q)q2

a3
1 = cos(θ) sin(ϕ)

a3
2 = cos(θ) cos(ϕ)

+

+

qz =0,

q2
x + q2

y =
(

7
3

)2

Γ4(∆4)

a4
1 = 1

2 sin(2θ) cos(2ϕ)
a4

2 = sin(θ) sin(2ϕ)
a4

3 =
√

3
2 sin2(θ) cos(2ϕ)

–
+
+

qx = ± qy

δ2
4q2

z =[δ2
4 − f(q)]q2

a4
1 = cos(ϕ)

a4
2 = sin(ϕ)

–

–
×

Γ5(∆5)
a5

1 =
√

3
2 sin(2θ)

a5
3 = 1

4 (3 cos2(ϕ) + 1)
–
+

q2
x + q2

y = 8
9 q2

±

q2
z = ± 1

9 q2
±

a5
3 =1 + ×

TABLE I. Symmetry classification and emergent nodal topology of six local pairings appearing in Eqs. (2) and (3) for RSW
fermions around the FSs for α = 0 and 4/7. The even parity s-wave pairing (∆0) is always fully gapped. The ∆1,2,3,4 pairings
are always gapless when α = 0. By contrast, ∆5 pairing is gapless up to a critical pairing amplitude δ∗

5 = 1/
√

2, beyond
which it becomes fully gapped. See Fig. 2. These five non s-wave pairings are mixed-parity in nature for α = 0. Here + (−)
corresponds to even (odd) under the parity (θ → π − θ and ϕ → π + ϕ). By contrast, ∆4 (∆1,2,3,5) pairing(s) is (are) odd
(even) under parity when α = 4/7. Then only ∆1,2,3 pairings are gapless. See Fig. 3(a). The equations for the polar hairs and
nodal rings are in terms of dimensionless momenta qj = vkj/µ and pairing amplitude δν = ∆ν/µ, where q2 = q2

x + q2
y + q2

z ,
f(q) = [q2 −4(q −1)2]/4 and q± = 2[2±

√
1 − 2δ2]/3. For spin-3/2 Luttinger fermions (displaying biquadratic band touching in

the normal state), the angular dependence of ∆ν pairings is solely captured by aν
3 for α = 0, which can be expressed in terms

of cubic d-wave harmonics (even under parity). Each of them supports two nodal loops [Fig. 3(b)]. Missing aν
ρs are trivial.

around the FSs within a shell set by the Debye frequency.
The reduced BCS Hamiltonian then reads

HRSW
BCS = η3

[
v|k|ĥ0(α) − µσ0

]
+ η1

5∑
ν=1

∆ν

3∑
ρ=0

σρaν
ρ, (3)

where ĥ0(0) = diag.(3, 1)/2 and ĥ0(4/7) = (3/7)σ0. The
angular dependence of the pairing terms aν

ρ ≡ aν
ρ(Ω̂, α)

for α = 0 and 4/7 are shown in Table I, where Ω̂ ≡
(θ, ϕ) with θ (ϕ) as the polar (azimuthal) angle. Detailed
derivation is shown in the Supplemental Materials [51].

Parity. The angular functions aν
ρ allow us to pin the

parity (P) of each paired state, under which θ → π − θ,
ϕ → π + ϕ [Table I]. For any α, the s-wave ∆0 pairing
is even under P. The remaining five paired states corre-
spond to mixed-parity pairings when α = 0, as aν

1 (aν
2,3)

is (are) odd (even) under parity for ν = 1, · · · , 5. For
α = 4/7, parity eigenstates fragment into two sectors,
and ∆4 (∆1,2,3,5) pairing(s) is (are) even (odd) under P.
The parity mixing or fragmentation of the paired states

solely stems from the linear band dispersion of RSW
quasiparticles, captured by k-linear terms [Eq. (1)] that
are odd under P. Therefore, paired states inherit parity
from the normal state [52, 53], which we further justify
from their even parity counterparts in Luttinger materi-
als, where the normal state Hamiltonian is described in
terms of even-parity d-wave harmonics [Eq. (5)] and con-
sequently all the six local pairings are even under parity
(s-wave or d-wave) [Eq. (6)].

BdG bands. Energy eigenvalues ±Eν
j (α) of HRSW

BCS are

Eν
j (0) =

[
∆2

ν [(aν
0)2 + (aν

3)2] +
(

(−1)j+1/2v|k|/2

+
√

(v|k| − µ)2 + ∆2
ν [(aν

1)2 + (aν
2)2]

)2]1/2
,

Eν
j (4/7) =

[ (
3
7v|k| − µ

)2
+ ∆2

ν

3∑
ρ=0

(aν
ρ)2

]1/2
(4)

for j = 1/2, 3/2. Independence of Eν
j (4/7) on j con-
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FIG. 4. Self-consistent solutions of (a) pairing amplitude (∆ν) and (b) transition temperature (tc) with the pairing interaction
strength (λ) for various Debye frequency (ωD), when α = 0. Here ∆ν , tc, λ and ωD are dimensionless (see text for definitions).
(c) Scaling of ∆ν with temperature (t/tc) for λ = 1 and ωD = 0.01, showing that despite possessing different amplitudes for
t < tc, all the pairing channels have identical transition temperature. Results match with the BCS scaling theory [Eq. (8)].

firms the double degeneracy of each eigenvalue. Emer-
gent nodal topology inside the paired states is computed
from the zeros of Eν

j (α), which we discuss next.
Nodal topology. The even-parity ∆0 pairing represents

a fully gapped trivial s-wave superconductor. For α = 0,
the ∆1,2,3,4 pairings are always gapless and support polar
hairs, one-dimensional line nodes connecting the opposite
(same) poles belonging to the same (different) FS(s) be-
low (above) a critical amplitude ∆j/µ = 1/

√
3 [51]. They

interpolate through the region between two FSs. The
evolution of the polar hairs for the ∆3 pairing is shown
in Fig. 2(top) and its analytical equations are given in
Table I. The structures of the polar hairs for ∆1 (∆2)
and ∆4 pairings can be obtained from those for the ∆3
pairing after π/2 (π/2) and π/4 rotations about x (y) and
z axes, respectively. The ∆5 pairing, on the other hand,
supports four nodal rings, symmetrically placed about
the equators of the FSs and in the region in between
them, but only up to a critical amplitude ∆5/µ = 1/

√
2

[Fig. 2(bottom)]. Above this threshold amplitude, the
∆5 pairing is fully gapped. For α = 4/7, two nodal loops
residing on a doubly degenerate FS for ∆1,2,3 pairings
can be rotated into each other [Fig. 3(a)]. By contrast,
∆4,5 pairings are then fully gapped. See Table I.

Luttinger Metal. The normal state Hamiltonian for
isotropic spin-3/2 Luttinger materials reads as [11]

HLutt =
(

k2

2m0
− µ

)
Γ0 − k2

2m

5∑
j=1

Γj d̂j(Ω̂). (5)

Here m0 and m bear the dimension of mass, and d̂j(Ω̂) is
a five-dimensional unit vector that transforms in the l = 2
(“d-wave”) representation under orbital SO(3) rotations.
Its components are given by the cubic harmonics, lin-
ear combinations of the spherical harmonics Y m

l=2(Ω̂) [51].
The BdG Hamiltonian for local pairings in this system is
also given by HBdG [Eq. (2)]. After the projection onto
the valence (−) or conduction (+) band, the reduced BCS

Hamiltonian takes the form

HLutt
BCS =

[
± k2

2m±
−µ

]
η3+η1

[
∆0+

5∑
j=1

∆jaj
3(Ω̂, 0)

]
, (6)

where m± = m0m/|m0±m| [28]. As a3(Ω̂, 0) ≡ d̂(Ω̂), be-
sides the trivial s-wave pairing (∆0), this system supports
five even-parity d-wave pairings. Each of them hosts two
nodal loops on the FS [Fig. 3(b)] [28]. The d-wave nature
of the local pairings stems from the biquadratic normal
state band dispersion, also expressed in terms of “d-wave”
harmonics. Thus local paired states inherit the normal
state band parity, justifying our attribution of the par-
ity mixing or fragmentation in the paired states of RSW
materials to its linear normal state band structure.

Gap equation. Finally, we compute the pairing ampli-
tudes and transition temperatures (Tc) for all non s-wave
pairings in a RSW metal within the BCS formalism. We
assume that the Debye frequency (ΩD) over which RSW
fermions experience effective attraction is same near two
FSs. At finite temperature (T ), the self-consistent gap
equation is obtained by minimizing the free energy

Fν = ∆2
ν

2g
−2ℓ3kBT

∫
d3k

(2π)3

∑
j=1/2,3/2

ln
[
cosh

(
Eν

j (α)
2kBT

)]
(7)

with respect to ∆ν . Here ℓ is the lattice constant
and g is the coupling strength. We numerically solve
the gap equation in terms of the dimensionless quan-
tities: ∆ν/µ → ∆ν , T/µ → t, ΩD/µ → ωD and
gℓ3µ2/(2π2v3) → λ [51]. Results shown in Fig. 4 con-
form to the universal BCS scaling forms [55]

∆ν

ωD
= aν exp

[
−bν

λ

]
,

kBtc

ωD
= c exp

[
−bν

λ

]
,

∆ν

kBtc
= dν .

(8)
For α = 0, aj ≈ 3.22 and dj = 2.84 for j = 1, · · · , 4, a5 ≈
3.36, d5 ≈ 2.96, and bν ≈ 0.301 for all ν. For α = 4/7,
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FIG. 5. Schematic structure of the drumhead flat Majorana
surface states (shaded regions) for the ∆3 (top) and ∆5 (bot-
tom) pairings, shown in the surface Brillouin zones for (a)
∆3/µ = 0.567, (b) ∆3/µ = 0.587, (c) ∆5/µ = 0.628 and (d)
∆5/µ = 0.707. Note that the perimeters of the drumhead
states are determined by the projections of the bulk polar
hairs or the nodal loops, which are shown in Fig. 2, and here
color coded accordingly.

aj ≈ 2.79 (2), bj = 3/2 (1/2) and dj = 2.46 (1.76) for
j = 1, 2, 3 (4, 5). But, c ≈ 1.13 always [51, 54].

Discussions & outlooks. Considering a minimal ir-
reducible four-component continuum model for RSW
fermions, here we show that they harbor a plethora of
exotic mixed-parity or parity fragmented topological su-
perconductors, featuring polar hairs or nodal rings that
reside in between the FSs, showcasing intriguing evo-
lutions with changing pairing amplitude as they then
move, collide, reconnect or disappear. Topological na-
ture of these paired states gives rise to surface-localized
drumhead-shaped Majorana Fermi pockets, images of the
bulk polar hairs or nodal loops on the surfaces, schemat-
ically shown in Fig. 5. Polar hairs or nodal rings man-
ifest in specific heat Cv ∼ T 2 [56], T -linear penetration
depth [57] and inverse nuclear magnetic resonance relax-
ation time 1/T1 ∼ T 3 (Korringa’s relation), for example.
Due to the |E|-linear density of states in the presence of
polar hairs or nodal loops, the paired states become a
diffusive thermal metal of BdG fermions at lowest tem-
perature even for infinitesimal disorder, yielding Cv ∼ T
and 1/T1 ∼ T . Nonetheless, in sufficiently clean systems
the aforementioned scaling of physical observables due
to polar hairs and nodal loops remains operative over a

large temperature window below Tc.
In real materials, RSW nodes often appear at finite

time reversal invariant momentum points [13–20], at K
(say). Then intra RSW node pairings stand as exam-
ples of Fulde-Farrell-Larkin-Ovchinikov superconductors
for spin-3/2 fermions [58, 59], with center of mass mo-
mentum 2K of Cooper pairs, displaying spatial modu-
lation with periodicity 2K, as in graphene heterostruc-
tures [60, 61] and spin-1/2 Weyl semimetals [62]. These
exciting possibilities should open new avenues in the rich
landscape of unconventional superconductors, triggering
search for their microscopic Cooper glue (electronic re-
pulsion or phononic attraction) and the role of a mate-
rial dependent parameter α [Eq. (1)] in determining the
paired state at the lowest temperature in RSW materials.
Tabulation of α in different candidate RSW materials
will thus be crucial to theoretically predict the nature of
the paired states and their competition in these materi-
als. Nonetheless, given that spin-3/2 Luttinger material
YPtBi supports nodal pairing [37], it is natural to expect
that at least some RSW materials can accommodate the
nodal pairings, discussed in this work.
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