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Among the exotic and yet unobserved features of multi-channel Kondo impurity models is their
sub-unitary single electron scattering. In the two-channel Kondo model, for example, an incoming
electron is fully scattered into a many-body excitation such that the single particle Green function
vanishes. Here we propose to directly observe these features in a charge-Kondo device encapsulated
in a Mach-Zehnder interferometer - within a device already studied by H. Duprez et. al., Science
366, 1243 (2019). We provide detailed predictions for the visibility and phase of the Aharonov-Bohm
oscillations depending on the number of coupled channels and the asymmetry of their couplings.

Introduction. The conventional Kondo effect is de-
scribed by a local Fermi liquid theory!'. One of its man-
ifestations is the scattering phase shift resulting in a
Kondo resonance forming at the Fermi level. The multi-
channel Kondo (MCK) model, however, is described by
a non-Fermi liquid (NFL) theory?, and even the scatter-
ing of an electron incident at the Fermi level is inelas-
tic3: it cannot be described by a single particle scatter-
ing phase shift. For the specific and most dramatic case
of two channels, the incoming electron scatters purely
into a many-body excitation®® with no elastic scattering,
which is often referred to as the unitarity paradox®. For
three or more channels there is a finite (yet non-unitary)
elastic scattering probability which tends to unity in the
limit of a large number of channels*. Though quantum
dot (QD) experiments have proved successful in veri-
fying many predictions on electronic transport through
Kondo impurities, a direct observation of the single elec-
tron scattering amplitude in NFL states has remained
elusive.

An experimental proposal” to measure the NFL single
electron scattering consists of embedding a spin-Kondo
QD?®? in one arm of an Aharonov-Bohm (AB) interfer-
ometer. In this geometry, half of the conductance is ex-
pected to be incoherent while the other half is coherent
with a definite phase shift” since only one linear combina-
tion of the source and drain leads couples to the QD while
the other remains free, described by a FL theory. Realiz-
ing this setup with the necessary control of all parameters
has been attempted by one of the present authors, but it
has proved challenging.

In this paper we propose a complementary approach
for observing the single electron scattering amplitude
and phase in the Kondo effect, using a multi-channel
charge-Kondo system!'?!! based on quantum Hall edge
states, embedded in a Mach—Zehnder interferometer.
This experimental configuration was recently designed by
Duprez et. al., see Fig. 1. Here, we argue that such a
device is capable of directly identifying so-far-elusive in-

FIG. 1. Schematics of the device of Ref. 18 based on chiral
edge states. The blue areas are in the v = 1 quantum Hall
state, with black boundaries denoting the propagating edge
mode. The grey box including the dark blue confined dot
highlights the Multi-channel Kondo system. The Mach Zehn-
der interferometer contains two QPCs with reflection ampli-

tudes r1 and r2. In the text we analyzed the differential con-
ductance dI/dV.

formation about the NFL nature of the MCK effect.
Model. The right hand side of the device in Fig. 1,
demarcated by a gray box, is the charge-multichannel
Kondo system. Recent experiments'®!! matched de-
tailed conformal field theory predictions for the con-

ductance of two and three channels: Goorx = % and
Gscx = %Sin2 T, respectively, at the intermediate-

coupling fixed points, as well as renormalization group
flows toward the single channel fixed point as asymme-
try between the channels becomes apparent.

In this charge-based realization of the Kondo ef-
fect'? 14, two charge states of the QD play the role of
the impurity spin: the NV 4 1 charge state is mapped to



“spin up”- and the N charge state to “spin down”. Con-
sider weakly transmitting quantum point contacts (QPC)
coupling the dot to the leads. Each reflection process in
the QPC (i.e. ~; in Fig. 1) translates into an impurity
“spin flip”. To complete the analogy to spin, label the
annihilation operators of spinless electrons in each lead
(4 = 1,2,3 in the figure) by ¢;¢, and spinless electrons
inside the QD near each QPC by v;; as marked in Fig. 1.
As the Kondo effect requires a continuum in both spin
flavors, the electronic level spacing in the QD must be
negligible. In practice, incorporating a metal (with its
high density of states) into the QD has allowed achieving
this criterion without making the charging energy unac-
ceptably small.

Thus, the free part of the Hamiltonian H = Hy +
Hp, describes 2gpicaa X 3qpcs chiral channels, Hy =
Damtlj=1.23 fdxw;{a(x)ivpaxzpja(x). There is no elas-
tic transport between different QPCs due to the large
ratio between the temperature and the level spacing in
the metallic QD' !4, The Kondo interaction simply de-
scribes tunneling in and out of the QD'%,

Hi = 70! (0)+(0)ST + he. + AES*, (1)
J

with amplitudes v;. Here ST = [N + 1)(N|[,S* = (|N +
1)(N + 1| = [N)(N|)/2, and AE o Vy — V) describes a
gate-voltage-dependent energy splitting between the two
charge states.

The MZ interferometer in Fig. 1 consists of two arms
denoted 0 and 1. The zeroth (“reference”) arm in the left
side in Fig. 1 is described by a chiral fermion Hy cr =
[ dapd (2)ivpd,o(x). Arm 1 is described by 1. The
tunneling Hamiltonian of the MZ interferometer is

Hyun = MY (—L)13(—L) + oeof (L)14 (L) + H.€2)

where ¢ is the AB flux in units of h/e.

Interference current. Useful information about the
MCK state can be extracted from the current within
second order perturbation theory in the tunneling am-
plitudes Ay 2. To leading order these are given in terms
of the reflection amplitudes at the MZ QPCs, r;, =
Ai/(hvp)'8 (i = 1,2). In the absence of the QD (y; = 0),
the conductance between arm 0 and arm 1

ar| e

2
v - ’7"1 + rge”" . (3)
v1=0

The current can be separated as I = Iy + Is, where
Iy o< |r1]? + |r2)? does not depend on the AB flux, and
Ig is the interference term, which in the absence of the
QD (31 =0) is dlp/dV = & (rir5e™ + h.c.).

Calculating the current using the Kubo formula to sec-
ond order in the reflection, one finds!"18

Iq;. = T1T267i¢/ dt@in X (4)

—0o0

(W (—=L)wo(L, 1)) (W1 (L)} (L, 1))
— (o (L, )Y (L)) (] (L, )1 (—L))) + h.c.

We see that the interference term probes the electron
propagator between x = —L and x = L, which for arm 1
is sensitive to the scattering amplitude of the QD.

The interference term ri73e~® in Eq. (3) corresponds
to an electron passing uninterrupted through channel 1,
unaffected by the QD. This is obtained by substituting
the free Green function denoted Gy for both arms'®. In
this case the variation of the conductance due to the AB
oscillations is given by 4|rira|. The smallness of r; and
ro guarantees that the interference term is due to a sin-
gle electron being injected into arm 1. Practically, it is
sufficient to demand that only |r1] < 1 whereas |ra| can
be of order unity.

All nonzero orders in the v;’s are encoded by the
exact T-matrix!®? G(w,—~L,L) = Go(w,—L,L) +
Go(w, —L,0)T (w)Go(w,0, L). Substituting into Eq. (4)

yields at zero temperature'6-2!

_ hodly

0= SoF = nrse US(EV) +he,  (5)

where
S(w)=1=-27ivT (w). (6)

As a matrix, S is diagonal in both on-site pseudospin
and channel index, and we refer throughout to the ma-
trix elements S14.1¢4 as probed by the MZ interferometer
(and similarly for 7). Since this result is perturbative in
the tunneling between arms 0 and 1, the voltage V sets
the value of the frequency of the 7 matrix computed at
equilibrium.

From the S-matrix, we see that the visibility, i.e. the
difference in conductance in units of e?/h between maxi-
mum and minimum, is given by 4|r172||S|, and the phase
of the AB oscillations is given by arg S,

Ge(V,T) = 2|r1r2||S(eV)] cos(arg(rwé‘)—&—arg(S(eV))—((b)).

7
We refer to |S| as the relative visibility with respect to
the trivial case in Eq. (3).

Consider first the case where k£ QPCs are equally cou-
pled (71 = v2 = -+ = ), and where the gate voltage of
the QD is tuned to an exact degeneracy between the two
charge states (AE = 0). In this case we employ the Af-
fleck and Ludwig result for the S-matrix at the k-channel
Kondo fixed point?,

cos[27/(2 + k)]

oSt/ (24 k)] (k>2). (8)

k=

We emphasize that this result with a real scattering am-
plitude (being > 0 except for & = 1 for which & = —1)
only holds at the charge degeneracy point, AE = 0.
Plugging this result into Eq. (7), in Fig. 2 we illustrate
the conductance as a function of flux. In a reference
configuration with the QD detached from the first arm
(11 = 0), Go = r17r5e"" + h.c.. Namely, the visibility
is given by 4|rirs| with an arbitrary phase dictated by
details such as the interferometer length [Fig. 2(a)].
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FIG. 2. AB oscillation patterns for (a) the trivial case with a detached QD, and for (b) 1CK, (c¢) 2CK and (d) 3CK configurations.
Both the amplitude of the phase of the single electron scattering amplitude S in the k—channel Kondo state can be read by

comparison with the trivial reference case of (a).

1CK effect. Connecting the QD only to the first arm,
(71 # 0, 2 = 73 = 0), the 1CK effect develops. This is
an example of a FL fixed point described in terms of a
scattering phase shift §, such that S = €% is unitary. For
the 1CK effect at the charge degeneracy point AE = 0,
corresponding to zero Zeeman field in the usual “spin”
Kondo system, § = /2, hence S = ¢*% = —1. This leads
to a unit relative visibility and a m-shift of the interference
term, as in Fig. 2(b).

A finite gate detuning AFE # 0 leads to a deviation of
the average charge of the island from N + 1/2. As AFE
varies, the charge of the QD N(AFE) displays Coulomb
steps for small enough v;’s'*. In a FL at T' = 0 the phase
shift is directly related to the charge via the Friedel sum
rule, 6(AE) = #N(AFE). In an experiment, probing the
phase via the MZ interference, while simultaneously ca-
pacitively measuring on-site charge would test that this
sum rule holds. As the QPCs become more and more
open (i.e. upon increasing the v;’s), the charge as a func-
tion of gate voltage should gradually increase with a con-
stant slope up to weak Coulomb oscillations, as can be
observed using these two measurements.

At T = 0 the variation of the AB phase through
the MZ interferometer upon varying the gate detuning
AFE can be accounted for by a noninteracting scatter-
ing model. However, the key property that cannot be
explained by a single-electron scattering model is the re-
duction of the visibility occurring in multichannel case.

Symmetric MCK fized points. We proceed by cou-
pling additional leads, but first setting the QD to charge
degeneracy, AE = 0. Upon coupling to the QD a second
channel (y1 = 72 # 0, 73 = 0), as in Fig. 2(c), the visi-

bility vanishes, Sp—2 = 0, and thus the interference term
completely disappears as T,V — 0. In other words, in
contrast to the previously-considered realization of the
2CK with a single electron quantum dot”, here the uni-
tary paradox of the 2CK NFL stateS directly manifests
in the visibility.

We note that the experimental results in Duprez et.
al.l® are reminiscent of the sequence of behaviors in
Fig. 2(a,b,c) although a different interpretation was given
in a different regime with large ry 2, uncontrolled ~; 2 and
unknown energy splitting between pseudospin (charge)
states.

Finally, upon coupling the QD to a third channel with
equal magnitude (y; = 2 = v3 # 0) as in Fig. 2(d), the
visibility approaches Sk—3 = g:
is the golden ratio, with the phase shift reverting to its
reference value. Observing all the different behaviours
shown in Fig. 2 in a single device, as couplings are tuned,
could not be explained by a noninteracting single electron
model.

Below we discuss the effect of various symmetry break-
ing perturbations such as channel asymmetry or gate
voltage detuning.

Symmetry breaking FL states. We now consider the
FL fixed points obtained by starting from the 2CK state
Y1 = 72, 73 = 0, and either breaking the particle-hole
symmetry by a gate voltage AE # 0, corresponding to
a Zeeman field on a conventional spin-based Kondo im-
purity, or by breaking the channel symmetry by a finite
AJ =~ — v # 0. Any small deviation from the “spin”
and channel symmetries generates an energy scale T*,
such that upon lowering the temperature or voltage be-

=1— 1/ where ¢
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FIG. 3. (a) 2CK quantum critical point, displaying an energy scale T* which vanishes at the critical point controlled by
symmetry breaking perturbations AJ and AE. (b) The AB phase arg S changes continuously, winding by 27, as the NFL state
is encircled in the plane spanned by AJ and AE. (¢) For T* <« Tk the crossover of the visibility (as well as phase shift, not

shown), can be computed exactly, see Eq. (11).

low T, the system undergoes a crossover from NFL to
FL behavior?? 24, see Fig. 3(a). For the 2CK case the
crossover scale is quadratic in the perturbations!®:22:25

T =n?4n35, m < AJ, n x AE. (9)

Manifestations of this FL-NFL crossover were studied ex-
perimentally both for spin-Kondo?* and charge-Kondo
systems'?, as well as in other devices?3.

We now consider the low energy limit, T, V' — 0. The
phase shift in the FL regime depends on the ratio between
channel anisotropy AJ and gate voltage detuning AFE.
For AE = 0 the FL switches from a 1CK state occurring
with channel 1 for v; > 75, in which case § = /2, to one
occurring with channel 2 for 75 > 71, in which case § = 0.
These two values of the phase shift correspond to the
AE =0 line in Fig. 3(b). It is interesting to explore the
effect of encircling the NFL point AE = AJ = 026, As
seen in Fig. 3(b), the phase shift performs a full winding
by 7 (with the definition S = €2i9)22:27:28,

i
VIt 3

In the pseudospin-polarized FL state for dominating AFE,
the phase shift is /4 or 37 /4 corresponding to a complex
scattering amplitude e?*® = +i?2. Thus, the present MZ
device can probe this phase shift winding around the NFL
fixed point.

FEract NFL-FL crossover. Based on the phase dia-
gram in Fig. 3(a), one expects that the relative visibility
of the 2CK MZ device will depend on the energy scale.
Setting T" = 0 for simplicity, we expect a NFL region
for eV > T* with vanishing visibility, and a FL region
for eV <« T with unit relative visibility. Interestingly,
the 2CK model perturbed by any combination of chan-
nel asymmetry or Zeeman field maps to a known sta-
tistical mechanics problem known as the boundary Ising
model?® for which exact results are known®’. Borrowing
these results, the Green function in the presence of a fi-
nite perturbation 7 has been computed along each of

Spr = (10)

these crossovers?”?8, The S-matrix is given by

S:SFLQ(w/T*), (11)

where G(z) = 2Kliz], K[z] is the complete elliptic in-
tegral of the first kind, yielding asymptotically G(z) =
1 +ix/4 — (3x/8)% + O(23) for * < 1; and G(z) =
%(log[%(ixz] —im)z~ Y2 for x> 1.

Plugging the exact Green function into Eq. (7), we ob-
tain the visibility and phase shift analytically. As shown
in Fig. 3(c) the relative visibility given by |G(eV/T™)]
tends to 1 in the FL regime and decays as 1/ VV for
eV > T* in the NFL regime. Due to the complex struc-
ture of the function G(w/T*) the phase of the AB oscilla-
tions, arg(S(eV)) in Eq. (7) also displays a crossover as
a function of V' (not shown) as confirmed with NRG?8.

Summary and outlook. We analyzed an electronic
Mach-Zehnder interferometer in the quantum Hall regime
as a proposed setup to directly probe longstanding pre-
dictions on the scattering phase and sub-unitary scat-
tering amplitude of single electrons in the multi-channel
Kondo effect. The setup in general allows probing any
quantum impurity model including multiple-impurity
systems exhibiting exotic critical points as recently stud-
ied experimentally®!32. An interesting future direction
would be to use such an interferometer to probe the phase
and possibly non-abelian statistics of Kondo anyons3336
by placing multiple dots along the chiral interference arm.
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