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Proximity-induced superconductivity in fractional quantum Hall edges is a prerequisite to pro-
posed realizations of parafermion zero-modes. A recent experimental work [Gül et al., Phys. Rev.
X 12, 021057 (2022)] provided evidence for such coupling, in the form of a crossed Andreev reflec-
tion signal, in which electrons enter a superconductor from one chiral mode and are reflected as
holes to another, counter-propagating chiral mode. Remarkably, while the probability for crossed
Andreev reflection was small, it was stronger for ν = 1/3 fractional quantum Hall edges than for
integer ones. We theoretically explain these findings, including the relative strengths of the signals
in the two cases and their qualitatively different temperature dependencies. An essential part of our
model is the coupling of the edge modes to normal states in the cores of Abrikosov vortices induced
by the magnetic field, which provide a fermionic bath. We find that the stronger crossed Andreev
reflection in the fractional case originates from the suppression of electronic tunneling between the
fermionic bath and the fractional quantum Hall edges. Our theory shows that the mere observation
of crossed Andreev reflection signal does not necessarily imply the presence of localized parafermion
zero-modes, and suggests ways to identify their presence from the behavior of this signal in the low
temperature regime.

Introduction— Topological quantum computation
(TQC) benefits from resilience to errors arising from lo-
cal noise and decoherence processes [1, 2]. In particular,
such protection is obtained by encoding the quantum
data in many body systems which harbor a non-Abelian
phase of matter. These phases are characterized by
having an energy gap and non-trivial ground state
degeneracy in the presence of specific quasiparticles or
defects [3].

The most well-studied non-Abelian phases are those
supporting Majorana zero-modes (MZMs). Notable ex-
amples of systems realizing such phases are the Moore-
Read fractional quantum Hall state [4, 5], p + ip super-
conductors [6, 7] and arrays of p-wave superconducting
wires [8–11]. While currently being the most experimen-
tally accessible non-Abelian systems, MZMs do not ad-
mit universal TQC [12]. Beyond the MZM paradigm,
phases admitting parafermion zero-modes (PZMs) sup-
port a richer set (yet not universal) of topologically pro-
tected quantum gates induced by braiding [12]. Further-
more, systems supporting universal TQC can be realized
by utilizing an array of PZMs [13].

A promising method to realize PZMs utilizes prox-
imity coupling between a superconductor (SC) and
counter-propagating fractional quantum Hall (FQH)
edge modes [14–18] (other routes towards realizing
PZMs [19–23] and various experimental signatures [24–
28] have been proposed as well). Importantly, to sustain
PZMs suitable for TQC, this coupling must induce an
energy gap. This requires overcoming two major obsta-
cles. First, the gap can be impeded by repulsive electron-
electron interactions within the edges. This obstacle can
be overcome for judicious choices of physical parameters
[29]. The second challenge, and the focus of this work,
is that the high magnetic fields required to sustain the

(a)

SC QH

(b)

· · ·
· · · l

0 L

V

I
∆, Γ

ψR

ψL

ζR

ζL

(c)

no CAR CAR

no local PZMs local PZMs

K
1 KCAR Kc

FIG. 1. (a) The physical system: a quantum Hall (QH)
droplet, with its edge proximity coupled to a superconductor
(SC) in a “finger” shape. Due to the strong magnetic field
Abrikosov vortices are present in the SC finger and act, due to
their normal core, as a metallic bath. (b) The model, Eq. (1):
the boundary of a QH droplet at filling factor ν = 1/m
(for odd integer m) is modeled by two edge modes, ψR/L(x),
counter-propagating along a grounded SC finger of length L.
The right-moving mode arrives at the finger region x = 0 at
bias V , and is totally back-scattered at x = L into a left-
moving edge mode that leaves the finger region at x = 0. The
counter-propagating edges are proximity coupled to the SC
finger, and are subject to back-scattering and Andreev reflec-
tion between the edges. We denote the tunneling amplitudes
of these two processes by Γ and ∆ respectively. The dissipa-
tive vortices are modeled as one dimensional metallic modes
ζR/L coupled at each point along the finger to the QH edges.
(c) A phase diagram of a fractional model with m > 2 as a
function of the Luttinger parameter K. Above K > KCAR

there is the onset of CAR correlations. At K = Kc we find a
phase transition to a local PZM-harboring phase.

FQH state clash with superconductivity. This leads to a
proliferation of in-gap states, such as those residing in the
cores of Abrikosov vortices in the superconductor supply-
ing the proximity coupling [30–32]. By electron-tunneling
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between these states and the edge modes, current can be
conveyed out of the system through a grounded reservoir
connected to the superconductor, serving as a source of
fermionic dissipation.

Despite these challenges, systems of SCs proximity
coupled to QH edge modes have been subject to much
interest. This includes theoretical approaches to predict
transport measurements of these systems [33–36], and ex-
perimental works showing promising results in graphene
[37–41]. In particular, Ref. [37] successfully confirmed
proximity coupling of both integer quantum Hall (IQH)
and FQH states via the observation of crossed Andreev
reflection (CAR) across the superconductor. Notably
(see Fig. 5f in Ref. [37]), the probability of CAR was
larger for Laughlin FQH states than IQH; however, in
both cases, this probability was significantly smaller than
1, hinting that fermionic dissipation plays a major role.
In the IQH case, the CAR probability was largely temper-
ature independent. In contrast, the proximitized Laugh-
lin FQH edges displayed a CAR signal that grows with
decreasing temperature, raising the hope that the sys-
tem approaches the local PZM-harboring phase in the
zero temperature limit.

Motivated by these results, in this paper we introduce
a model to treat the effects of vortices on electric trans-
port QH-SC hybrid systems. Our model includes three
types of processes: dissipation via single-electron tun-
neling into vortex core states; back-scattering between
edges; and crossed Andreev reflection via the supercon-
ductor. We note that while dissipation has been studied
in Luttinger liquids in various contexts [42–45], this is
typically done via density-density interactions with some
external environment, rather than fermionic dissipation
in which electrons directly tunnel into a metallic environ-
ment.

Calculating the electric conductance in the dissipation-
dominated regime, we find qualitatively different behav-
ior for IQH-SC and Laughlin FQH-SC hybrid systems.
For the IQH states, the conductance saturates at low
energies to a negative value if inter-edge Andreev reflec-
tion is stronger than inter-edge back-scattering, and to
a positive value otherwise. Conversely, FQH states may
display an enhancement of CAR with lowering tempera-
tures over a wide temperature range, bounded from be-
low by a temperature determined by the size of the sys-
tem. This occurs if the effective interactions on the FQH
edge are sufficiently attractive, as a result of the presence
of the superconductor. Interestingly, while in the IQH
case dissipation always spoils the robustness of localized
zero-modes the FQH case exhibits two phases in which
a CAR signal persists, one of which supports localized
PZMs, see Fig. 1c. The distinction between the integer
and fractional cases results from the suppression of frac-
tional quasiparticle tunneling into the vortex core states
[46–49]. Our results are congruent with the aforemen-
tioned reporting of larger CAR for fractional vs. integer

states in Ref. [37].
Model— We model the system as described in Fig. 1b.
A superconductor of length L is embedded within the
bulk of a Laughlin FQH state at filling factor ν = 1/m
for odd integer m. We describe the QH edge in terms of
two modes, converging at the end of the finger: a right-
moving mode, which emanates towards the finger from
a reservoir at bias voltage V , and a left-moving mode,
which is collected by a grounded reservoir. We denote
the current collected at this reservoir as I.

Within the superconductor, we model the presence of
vortices as a continuum of metallic states, justified by
the dense spacing of the vortex core Caroli-De Gennes-
Matricon states [32]. We thus treat these states as metal-
lic quasi one dimensional leads, with an effective “Fermi
velocity” corresponding to the normal NbN density of
states. We assume that vortices are sufficiently preva-
lent such that these states are available throughout the
edge. Three processes are enabled within the finger:
back-scattering between the edges; crossed Andreev re-
flection (CAR) via the superconductor; and tunneling
into the metallic states. These processes are character-
ized phenomenologically by tunneling amplitudes of Γ,
∆, and w, respectively.

We define right- and left-moving boson fields, with
the electron’s annihilation operators being ψR/L =

e±imφR/L/
√

2πa, where a is a short-distance cutoff
of the order of the magnetic length [50]. The
boson operator fields satisfy the commutation rela-
tions [φR/L(x), φR/L(y)] = ±iπ sgn(x − y)/m and
[φL(x), φR(y)] = iπ/m. The corresponding electric
charge and current densities are ρ̂R/L = ∂xφR/L/(2π)

and ĵR/L = −∂tφR/L/(2π), respectively.
The Hamiltonian of the system is given in terms of the

bosonized fields byH = H0+Hζ+HΓ+H∆+Hw [50, 51],
where

H0 =
m

4π

ˆ L

−∞
dx

{
v
[
(∂xφR)

2
+ (∂xφL)

2
]

+ 2U (∂xφR) (∂xφL)

}
,

Hζ =
∑
γ=R,L

ˆ
dx dy ζ†γ(x, y) (−ivb∂y) ζγ(x, y),

HΓ =
Γ

πa2

ˆ L

0

dx cos (mφR +mφL),

H∆ =
∆

πa2

ˆ L

0

dx cos (mφR −mφL),

Hw =
∑
γ=R,L

ˆ L

0

dx

[
w√
a
ψ†γ(x)ζγ(x, y = 0) + h.c.

]
.

(1)

Here, v and vb are Fermi velocities of the FQH edge and
the metallic states, respectively, U is interaction strength
between the two edges, ζR/L annihilates an electron in a
metallic mode that couples to the right/left-moving edge,
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and we chose the units such that ~ = 1. These define
the Luttinger velocity u =

√
v2 − U2 and the Luttinger

parameter K =
√

v−U
v+U . Notice that Γ, ∆, w and U all

carry units of velocity. We assume that the edges are spin
polarized and the superconductor has sufficient spin-orbit
coupling to induce pairing between them.

We proceed by integrating out the bath degrees of free-
dom. A calculation of the perturbative RG flow equa-
tions with respect to the Luttinger liquid fixed-point, H0,
is straightforward and yields (see App. B, [52])

d∆

d`
= (2−m/K)∆,

dΓ

d`
= (2−mK)Γ,

dα

d`
= (2−mK̄)α,

du

d`
= −2mK̄α,

dK

d`
= m

(
∆

u

)2

−mK2

(
Γ

u

)2

+m
α

u
(1−K2),

(2)

where α = |w|2/(2πvb), and K̄ = (K +K−1)/2.

We see that all three processes are relevant for IQH
edges, and irrelevant for non-interacting FQH edges. In
FQH edges, Andreev reflection becomes relevant for suf-
ficiently attractive interactions, K > Kc = m/2; impor-
tantly, Andreev reflection becomes the least irrelevant
process at weaker attractive interactions, K > KCAR =√

3m2+4−2
m . The phase boundaries are obtained by ex-

amining the equation for K and comparing the scaling
of ∆2, Γ2 and α which appear in this equation. In the
FQH case this admits a regime, KCAR < K < Kc, that
does not support localized PZMs, but can exhibit CAR
at non-zero temperatures. A schematic phase diagram is
shown in Fig. 1c.

Temperature Dependent Perturbative Solution— We cal-
culate transport properties of the system perturbatively
in all three couplings. The RG equation for K shows
that, for IQH in the dissipation dominated regime, the
system flows towards K = 1. As such, in the IQH case,
we set K = 1.

For the perturbative calculation, we imagine dividing
the finger into multiple segments of equal length l, such
that each segment is close to local equilibrium. This
enables us to define a local voltage for each segment,
VR/L(xn), xn = n · l. Furthermore, we assume that prop-
agating quasiparticles lose coherence between segments,
formally implemented by neglecting inter-segment corre-
lations. In essence, we treat each segment as a quantum
resistor, and the resulting network of resistors is treated
classically. Motivated by the strong dissipation appar-
ent in the experimental data, we assume that we are in
the dissipation dominated regime. In this regime, we take
the segment length-scale l to be the dissipation length ld,
defined as the length scale at which most of the current
dissipates into the vortices.

We proceed by writing continuity equations for the
right- and left-moving densities, ∂tρ̂R/L = −i

[
ρ̂R/L,H

]
.

Taking expectation values with respect to the unper-
turbed Hamiltonian H0, and restricting ourselves to
steady states

〈
∂tρ̂R/L

〉
= 0, we find a “Kirchhoff-like”

equation relating the currents at boundaries between seg-
ments, given at the small segment limit ld � L by〈
∂xĵR(x)

〉
= −

〈
ĴΓ(x)

〉
−
〈
Ĵ∆(x)

〉
−
〈
Ĵw,R(x)

〉
,〈

∂xĵL(x)
〉

= −
〈
ĴΓ(x)

〉
+
〈
Ĵ∆(x)

〉
+
〈
Ĵw,L(x)

〉
.

(3)

Here, the operators on the RHS denote the three pro-
cesses that current can undergo in each segment: ĴΓ

describes the current per unit length that back-scatters
from the right-moving to the left-moving edge; Ĵ∆ de-
scribes the Andreev current per unit length which flows
from the edges into the superconductor; and Ĵw,R/L de-
scribes the current per unit length that dissipates from
the right/left-moving edge to the metallic states.

The expectation values of all the operators are eval-
uated perturbatively to leading orders in |∆|2,|Γ|2, and
α. Within this treatment, the LHS of Eq. (3) is given by
〈ĵR/L(xi)〉 = σxyVR/L(xi), where σxy is the Hall conduc-
tance. The RHS is calculated in App. C, [52]. Due to
the lack of coherence between segments, the expectation
values depend on the voltage in a local manner.

At non-zero temperature and sufficiently low volt-
ages, eV � kBT , each quantum resistor is at the
Ohmic limit. Explicit calculation then gives, for

each segment, 〈ĴΓ(x)〉 = e2

u2aAΓ|Γ|2 (VR(x)− VL(x)),

〈Ĵ∆(x)〉 = e2

u2aA∆|∆|2 (VR(x) + VL(x)), and

〈Ĵw,R/L(x)〉 = e2

uaAwαVR/L(x), where Ac(T ) with
c = Γ,∆, w are unitless coefficients that encode temper-
ature dependence, and we suppress the T dependence
for brevity. The derivation and explicit forms of the
Ac(T ) coefficients is given in App. C, [52] (see Table
C.1). We plug these values into Eq. (3), and solve it with
the boundary conditions VR(0) = V (representing the
incoming bias voltage) and VR(L) = VL(L) (representing
the edge of the finger, where all remaining right-movers
become left-movers). The collected current is given by
I = σxyVL(0).

The full solution for a general L is given in Eq. (C20)
[52]. At the infinite finger limit, L → ∞, we obtain the
result

VL(0)

V
=

AΓ|Γ|2 −A∆|∆|2
AΓ|Γ|2 +A∆|∆|2 + uAwα+ λ

, (4)

where for convenience we define (λ e
hm )2 ≡(

AΓ|Γ|2 +A∆|∆|2 + uAwα
)2 −

(
AΓ|Γ|2 −A∆|∆|2

)2
.

As such, even in the case where all three processes are
irrelevant, the low-energy behavior is dominated by
the process which is least irrelevant, with differential
conductance at zero temperature taking a well-quantized
value of G/σxy = ±1, 0. Andreev reflection becomes
the least irrelevant process at K > KCAR, whereas it
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FIG. 2. Differential conductance G ≡ dI/dV (normalized by
Hall conductance) as a function of temperature for Laugh-
lin fractional edges (m = 3) and various Luttinger param-
eters K, as obtained from a solution of Eq. (3). The re-
sults displayed are for a system length of L = 2µm, a

back-scattering length of
(
|Γ|2/4πu2a

)−1
= 100 nm (dashed

lines) or
(
|Γ|2/4πu2a

)−1
= 2µm (solid lines), an Andreev-

reflection length of
(
|∆|2/4πu2a

)−1
= 1.6µm, a dissipation

length of
(
|w|2/uvba

)−1
= 10 nm, a Luttinger velocity of

u = 2.5 × 104 m/s, and a short-distance cutoff of a = 7 nm,
such that we are in the regime where bare dissipation dom-
inates bare back-scattering and Andreev reflection. We see
that, over a range of low temperatures comparable to experi-
mental data in Ref. [37], CAR increases with decreasing tem-
perature for sufficiently attractive interactions (K > KCAR).
Inset: At sufficiently low temperatures, the finite size of the
finger causes conductance to rise back to σxy. As a function of
system size, this transition temperature decays as a power law
for K < Kc = 1.5, and exponentially for K > Kc (schemati-
cally drawn with the dotted line). Just above this transition
temperature, the K > Kc case is near the full Andreev reflec-
tion fixed-point, driving the conductance to −σxy.

becomes relevant at K > Kc; in particular, for m = 3 a
low-energy CAR signature is obtained without localized
PZMs in the range 1.19 . K < 1.5. Notice that a
crossover between negative and positive conductance
can occur if

(
AΓ|Γ|2 −A∆|∆|2

)
changes sign at a

non-zero temperature, see Fig. 2.

Microscopic details, such as the coherence length (∼
50nm for NbN) and penetration depth (200-300nm) of
the superconductor, and the metallic density of states
(which is related to the ∆2/EF level spacing of the
Caroli-De Gennes-Matricon states [32]), enter the model
through the three bare tunneling amplitudes As such,
variance in these parameters will not affect the RG flow of
Eq. (2), nor will they effect the qualitative phase bound-
aries in Fig. 1c. Such varience will, however, affect the
precise measured conductance of Fig. 2 (compare solid to
dashed lines).

Finite L affects the behavior at very low temperatures.

2 4 6 8 10
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FIG. 3. Differential conductance G ≡ dI/dV (normalized
by Hall conductance) as a function of temperature for non-
interacting integer edges (m = 1, K = 1) (purple curve)
and attractively interacting Laughlin fractional edges (m =
3,K = 1.3) (orange curve), as obtained from a solution of
Eq. (3). We choose the same parameters as the solid lines in
Fig. 2, such that we are in the regime where bare dissipation
dominates bare back-scattering and Andreev reflection. At
the low temperature limit we show here that CAR saturates
for electrons, having a very weak dependence on the tempera-
ture. For fractional quasiparticles, CAR grows monotonously
with decreasing temperature over a wide range, bounded from
below by Tfs (dashed vertical line), at which point the finite
size of the finger causes conductance to collapse to σxy. From
the RG equations (2) we see that the velocity u decreases at
low energies, an effect we neglected in Eq. (4); as such, the
value of Tfs shown here is an over-estimate.

At finite L and m > 1, the temperature dependence of
ld defines a temperature scale at which ld(Tfs) ∼ L. It is
reasonable to surmise that at T � Tfs all three processes
flow to zero, such that all current flows back and forth
around the entire finger unperturbed, yielding G→ σxy.

In Figs. 2 and 3, we plot the temperature depen-
dence of the differential conductance, G ≡ dI/dV for
non-interacting IQH (m = 1, K = 1) and for ν = 1/3
FQH edges, respectively. We choose parameters that en-
able significant CAR, and give a high energy cutoff of
∼ 10 K, consistent, for example, with a bulk gap of 20 K
found experimentally [53]. Indeed, for non-interacting
IQH edges, CAR plateaus at low temperatures. For
ν = 1/3 edges, conversely, CAR increases as tempera-
ture decreases when interactions are sufficiently attrac-
tive, K > KCAR. This process continues until the finite
size of the finger demands that all irrelevant processes
halt and all current is reflected from the end of the fin-
ger.

For even stronger interactions (K > Kc), the Andreev
pairing is relevant, and the system is driven towards a
local PZM-harboring phase. At this point, Eq. (4) is no
longer valid. For comparison, the red dotted curve in
the inset of Fig. 2 shows a schematic temperature de-
pendence of a power-law decay to the Andreev reflection
fixed-point [24], with a finite size effect at low enough
temperatures.

Overall, our model reproduces the temperature-
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FIG. 4. Comparison between exact electron conductance,
I/V of model (1) in the non-interacting IQH case and the
data of Ref. [37] (Fig. 11f). The model parameters are
|∆/a| = 2.64 meV, |Γ/a| = 2.83 meV, 2πα/a = 2.8 meV,
Eosc. = 4.06 meV and θ = 0.9π.

dependent features seen in [37] (in particular Fig. 5f),
without requiring the proximity to the superconductor
to drive the system to a local PZM-harboring phase.
Exact Solution for the ν = 1 case— We also ascertain
the validity of our model by analyzing the case of IQH,
in which our model can be written as a non-interacting
electron system. The Hamiltonian in Eq. (1) is quadratic
in fermionic operators and is exactly solvable. We ob-
tain a non-perturbative expression for the scattering ma-
trix and the differential conductance, with the derivation
given in App. A, [52]. We then continue to compare the
temperature dependence of the conductance as calculated
in the exact solution and the perturbative analysis dis-
cussed above. Moreover, we compare the conductance
dependence on bias between the exact solution and the
experimental data of [37]. In the absence of dissipation
and at the limit L→∞, we obtain the known result

dI/dV |V=0 = (e2/h) sgn{|Γ| − |∆|}. (5)

These two possible values correspond to the two symme-
try protected phases of Kitaev’s wire model [8]. In the
presence of dissipation we expect |dI/dV | < e2/h.

For finite finger length L we find Tomasch oscillations
[54], i.e., an interference effect due to reflection from
both ends of the finger, with an associated energy pe-
riod Eosc. = hu/(2L). Note that these interference effects
are not incorporated in the previous perturbative calcu-
lations of Eqs. (4). Note that the experimental data in
Ref. [37] shows an asymmetric bias dependence. To ex-
plain this feature, we use a complex valued Γ = |Γ|eiθ
which breaks bias symmetry for electrons. This allows
us to qualitatively fit the experimental data of Ref. [37]
using our model parameters, as shown in Fig. 4.
Other FQH states— So far, we compared the ν = 1 IQH
state and the ν = 1/m Laughlin FQH states, which fea-
ture a single edge mode. States with multiple edge modes
require more delicate treatment. Qualitatively, we expect
the effect of vortices on such states to depend on the rel-
evance of electron tunneling between the particular edge
and the vortex core states. Interestingly, we find that (see

App. D, [52]) for ν = 2/3 this tunneling is marginal [55],
while for ν = 2/5 electron tunneling is irrelevant. This
is consistent with the behavior seen in the experiment
[37] (in particular Fig. 5f), in which the conductance at
ν = 2/3 plateaus at low temperature as in the ν = 1 case,
while the conductance for ν = 2/5 is similar to that seen
for ν = 1/3.

In summary, the ultimate cause for the qualitatively
different behavior we find in various quantum Hall states
is the different level of suppression of electron tunneling
into metallic reservoirs [46]. When this suppression is
strong enough, it allows for a phase that supports local
PZMs even in the presence of dissipation, and allows an
enhanced CAR signal relative to that obtained in the
IQH case.
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