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We show that strong electronic repulsion transforms a vortex core from a metallic-type in overdoped regime
to a Mott-insulator at underdoping of a strongly correlated d-wave superconductor. This changeover is accom-
panied by an accumulation of electron density at the vortex core towards local half-filling in the underdoped
region, which in turn facilitates the formation of the Mott insulating core. We find that the size of vortices
evolves non-monotonically with doping. A similar non-monotonicity of critical field Hc2, as extracted from
superfluid stiffness, is also found. Our results explain some recent experimental puzzles of cuprate supercon-
ductors.

Introduction. Topological defects, such as, vortices have
drawn significant research interests ever since Kosterlitz and
Thouless [1, 2] established a melting mechanism mediated by
them. Vortices are low-lying excitations of type-II supercon-
ductors in the presence of magnetic fields. In conventional
superconductors, a magnetic field produces a periodic array
of vortices [3, 4] with a normal metallic core of size ξ with
circulating currents around the vortex on the scale of the pen-
etration depth λ [5]. With increasing field H , the density of
vortices increases. Beyond the critical field Hc2, overlapping
cores suppress pairing amplitude everywhere and the super-
conductor transitions into a metal [3]. The study of vortices in
unconventional superconductors has gathered recent momen-
tum due to several experimental puzzles [6–8].

One such mystery lies in the mapping of local density
of states (LDOS) at the vortex core in cuprate supercon-
ductors, a prototype of strongly correlated d-wave supercon-
ductors (dSC). Differential conductance in cuprates (both in
YBa2Cu3O7−δ [9] and Bi2Sr2CaCu2O8+δ [10]) in optimal
to underdoping region shows a gap structure, while weak-
coupling calculations predict a large accumulation of low-
lying states in LDOS at vortex core for all dopings, δ [11].
Recent experiments find similar significant pileup of the low-
lying states but in the overdoped regime [7]. Several theo-
retical attempts have been made to understand the low dop-
ing anomalous behaviours [12–15], including the genera-
tion of sub-dominant competing orders at vortex core, such
as antiferromagnetic [16–18], s-wave pairing [19], d-density
wave [20, 21] and pair-density wave orders [22], augmented to
weak-coupling descriptions. However, no consensus has yet
been achieved to comprehend the anomaly [7, 23]. The role
of strong correlations on the vortex inhomogeneities, however,
have largely alluded the field of research, see however, [24–
26]. After all, these strong electronic repulsions turn the par-
ent undoped (δ = 0) compound an antiferromagnetic Mott
insulator [27].
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Taking the route of direct inclusion of strong correlations by
removing any double-occupancy within a fully self-consistent
microscopic calculation, our main results in this paper are:
(i) Underdoped d-wave vortex state induces charge accumula-
tion towards local half-filling at the vortex core, and thereby
promotes the emergence of ‘Mottness’. (ii) The changeover
of the nature of the vortex core from being Mott insulating
to metallic with increasing doping, which explains the tun-
neling spectroscopic measurements of LDOS. (iii) The size
of vortices show intriguing non-monotonic behavior. Such
a non-monotonic behavior has other fascinating implications.
For example, our result of superfluid density in the presence
of magnetic field indicates that the upper critical field Hc2,
shows a dome shaped evolution with δ, in agreement with ex-
perimental findings.
Model and methods. Strongly correlated materials can be
described minimally by the Hubbard model [28] with U � t.
In this limit the low energy physics is described by a t − J
model [29]:

Ht−J = −t
∑
〈ij〉σ

P
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∑
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4

)
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Here ĉ†iσ (ĉiσ) is the creation (annihilation) operator of an
electron with spin σ at lattice site i in a two-dimensional
square lattice, Si and n̂i are the spin and electron density op-
erators, respectively, 〈ij〉 denotes nearest neighbor bonds, t
is the hopping amplitude for an electron to its nearest neigh-
bors, µ is the chemical potential fixing the average electron
density ρ, J = 4t2/U is the super-exchange interaction with
U being the onsite Hubbard repulsion strength. Here, P is
the projection operator which prohibits double occupancies
on each lattice site due to the strong onsite repulsive U . The
orbital magnetic field is incorporated through the Peierls fac-
tor: φij = π/φ0

∫ j
i
A.dl, where φ0 = hc/2e is the super-

conducting (SC) flux quantum. We consider a uniform orbital
field H = Hẑ and choose to work with the Landau gauge,
A = Hxŷ.
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The effect of the projection operator is implemented by
the Gutzwiller approximation (GA) [30], where restriction of
double occupancy is removed in expense of renormalizing the
hopping and exchange parameters: tij → gtijt, Jij → gJijJ ,
here g’s are the corresponding Gutzwiller renormalization fac-
tors (GRFs) [30, 31]. GRFs, which depend on local densities
ni, are provided in the Supplementary Material (SM) [32].
Physically, the removal of double occupancy prohibits certain
hopping processes across the bond 〈ij〉, and hence the aver-
age kinetic energy must reduce on that bond from a situation
where double occupancies are allowed. This is incorporated
by the hopping GRFs gtij ≤ 1. Similarly, the overall higher
probability of sites being singly occupied enhances the ex-
change coupling through gJij . The GA formalism has been
verified [37, 38] to agree well with variational Monte Carlo
calculations [39] (where the projections are exact) for homo-
geneous systems. We note that we refer to the strong corre-
lations equivalently with the removal of double occupancy in
this work.

We take advantage of the perfect periodicity of our square
vortex lattice [59] by solving the eigenvalue problem using a
fully self-consistent Bogoliubov de-Gennes (BdG) method on
a unit cell typically of size N = 24 × 48 and then extending
the wavefunction on a system made of typically 16 × 8 unit
cells [11, 17]. We present all energies in units of the hopping
amplitude t and set the temperature T = 0 for our calcula-
tions. We use J = 0.33 – a typical value used for cuprate su-
perconductors [40]. We consider several doping (δ = 1 − ρ)
values ranging from δ = 0.06 (underdoped) to δ = 0.25
(overdoped). To emphasize our key findings, we compared
our results from Gutzwiller inhomogeneous mean-field the-
ory (GIMT) with results from standard inhomogeneous mean-
field theory (IMT), where the effects of projection P are ig-
nored by taking the Gutzwiller factors to be unity, i.e., with
double occupancy being allowed. In IMT, we tune J values
for each doping in such a way that both IMT and GIMT yield
the same d-wave gap when the magnetic field is zero [41].
The details of GIMT and IMT calculations are included in the
SM [32].

d-wave SC order. We begin describing our results by elabo-
rating on the dSC order parameter calculated within the GIMT
framework: 〈ĉiσ ĉjσ〉ψ ≈ gtij∆ij[42, 43]. Here 〈..〉ψ denotes
the expectation value in the truncated Hilbert space with dou-
ble occupancies removed. The spatial profile of the dSC or-
der parameter, ∆OP

d (ri) = J
4 |[g

t
i,i+x̂∆i,i+x̂ + gti,i−x̂∆i,i−x̂−

eibxgti,i+ŷ∆i,i+ŷ − e−ibxgti,i−ŷ∆i,i−ŷ]| (here b ≡ H/φ0) is
shown in Fig. 1. Different panels of Fig. 1 show ∆OP

d (ri)
for representative δ. Away from a vortex core, i.e. near
the boundary of the magnetic unit cell containing a single
SC flux quantum, ∆OP

d attains the homogeneous Bardeen-
Cooper-Schrieffer (BCS) value while it falls at the vortex core.
This conical-shaped fall at the core for overdoped [Fig. 1(a)]
to optimally doped [Fig. 1(b, c)] systems follows the expected
tanh(r/ξ) behavior, where ξ is the SC coherence length [5].
In contrast, the fall of ∆OP

d (ri) shows a strikingly different
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FIG. 1: SC order parameter profiles. d-wave SC |∆OP
d (ri)| pro-

files around a vortex core on a magnetic cell of size 24×24 at differ-
ent doping (δ) values. The fall of ∆OP

d (ri) at the vortex center has
the conventional conical form at δ = 0.25, 0.2, and takes up a form
of a “flat-bottom bowl” at δ = 0.06.

pattern at underdoping [Fig. 1(d)]: The region of the deple-
tion of ∆OP

d (ri) is much wider – near the core-center, the vor-
tex resembles a “flat-bottom bowl”. The weak-coupling IMT
calculations preserve the conical-shaped vortex for all δ, and
shrinks monotonically towards underdoping, see SM [32].
Local charge density at a vortex core. In order to develop
a deeper insight into above results we next study the local
charge density near the vortex core location, rv [60] for differ-
ent δ. In the optimally doped region (δ = 0.2), the spatial den-
sity profile features a weak dip around rv [Fig. 2(a)], consis-
tent with the weak-coupling theory. Upon lowering δ, the nrv
rises rapidly to near unity by δ = 0.06 [Fig. 2(c)]. This en-
hancement of nrv characterizes the emergence of ‘Mottness’
at the vortex core region for an average doping not so close
to unity. Thus, for δ . 0.06 the vortex core becomes insu-
lating and gtij ≈ 0 quenching the kinetic energy at the core.
The effective picture of the underlying normal state in the core
becomes that of an undoped patch of (antiferromagnetic) Mott
insulator, described by a local Heisenberg model. This is quite
unlike the Abrikosov vortex with a metallic core [5]. We note
that the vortex core here is not simply serving as a window
to the underlying normal state in the sense that the underly-
ing normal state at δ = 0.06 without the vortex is not yet a
Mott-insulator. Instead, the Mott vortex core here is a result
of strong correlations and a by-product of charge accumula-
tion due to it. However we should also emphasize that this
limit of vortex core is realized only in the proximity of the un-
doped Mott insulator. The reorganization of the local charge
density at the vortex core as a function of doping is shown in
Fig. 2(d). We find the excess local charge density at the vortex
core changes sign with δ near optimal doping.

The non-linear effects of GRFs in the effective chemical
potential µi, obtained while minimizing the total ground state
energy of the system, play a key role in driving vortex cores
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FIG. 2: Electronic charge density distribution. Local density ni

maps around a vortex core for different δ. At the vortex core, at
δ = 0.2 [panel (a)], ni features a dip, and at δ = 0.1, 0.06 (panel (b)
and (c)]), the electronic charges accumulate to form a hill (with core
density approaching unity). Panel (d) shows the profile of nrv−ρVs
δ. The nrv values are less than ρ for δ > 0.18 and greater than ρ for
δ < 0.18. At δ = 0.06, nrv approaches unity leading to formation
of a Mott insulating core.

towards Mottness, see SM for additional details [32]. Such
effects not only drive the vortex core towards Mottness but
also helps the nearby sites of the vortex core to attain local
half-filling forming a near plateau in ni [Fig. 2(c)]. The oc-
currence of a plateau in ni in the core region is ultimately
connected to the “flat bottom bowl” structure of ∆OP

d . The
charge fluctuations freeze on these sites, as tij ≈ 0, depleting
dSC order over an extended region.

We emphasize that the removal of double occupancy is cru-
cial for the aforementioned charge accumulation at the core
and subsequent effects. Without the removal of double occu-
pancy, we verified that the weak dip in ni at the vortex core,
a feature of overdoping continues until the lowest doping, see
SM [32].
LDOS at the vortex core. The emergence of Mottness has
important implications for the LDOS at the vortex core as
we discuss below. In an s-wave superconductor, Andreev-
like zero-energy bound states [44] were predicted theoreti-
cally to appear in the vortex cores and have also been observed
experimentally in tunneling measurements [45]. For a dSC,
similar accumulation of the low-energy core states (LECS) is
also predicted within IMT calculation [11], even though true
bound states are not found due to the collapse of the d-wave
gap along the nodal directions. Such LECS are reminiscent
of the metallic nature of the vortex core. However, the differ-
ential tunneling conductance map in cuprates shows no sig-
natures of LECS in underdoped to optimally doped samples,
beyond some sub-gap features [9, 10]. In contrast, recent ex-
periments in overdoped samples showed prominent LECS at
the vortex core [7].
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FIG. 3: Local density of states. LDOS at the vortex core (red traces)
and away from the core (blue traces) for δ = 0.2 (a), δ = 0.125 (b),
δ = 0.1 (c), and δ = 0.06 (d). For δ = 0.2, the LDOS features a
mid-gap peak which gradually reduces with decreasing δ. For δ =
0.06, a hard gap opens with sharp peaks at ω ≈ ±Jeff/2. In panel
(d), the vortex core LDOS is scaled up by a factor of 4, for visual
clarity.

To uncover this mystery, we show in Fig. 3 the
LDOS with varying doping δ in GIMT. Within
GIMT, the LDOS is calculated using [41, 46]:
N(ri, ω) = N−1

e

∑
k,n g

t
ii[|ukn(ri)|2δ (ω − Ek,n) +

|vkn(ri)|2δ (ω + Ek,n)], where {ukn(ri), v
k
n(ri)} are the

local Bogoliubov wavefunctions, Ek,n are corresponding
energy eigenvalues (see SM [32]), and Ne is the total number
of eigenstates. As shown Fig. 3(a) the LDOS near the
vortex cores is found to feature a peak near zero-energy for
optimal doping δ = 0.2. We find a similar peak at ω ≈ 0
in LDOS near vortex core for doping δ > 0.2. Thus, LECS
are present in the overdoped to optimally doped region,
which also agrees with the weak-coupling predictions [11].
However, the vortex core LDOS at δ = 0.125 in Fig. 3(b)
shows a depletion in zero energy states and subgap features.
With decreasing doping the low energy states get further
suppressed and no LECS can be seen in Fig. 3(c). Upon
further lowering doping to δ = 0.06, the vortex core LDOS
exhibits a U-shaped (hard) gap, as depicted in Fig. 3(d).
This gap can be explained by the change in the nature of the
vortex core with core density approaching unity for δ = 0.06
as seen in Fig. 2(c). The Mott cluster of sites at the vortex
core, being described by an effective Heisenberg model as
discussed already, features lowest lying excited states beyond
a spin gap ≈ Jeff [43, 47]. The tantalizing similarity of our
finding of LDOS with experiments is truly intriguing. In
IMT calculations, prominent LECS are always present at the
vortex core for all δ, see SM [32].
Non-monotonicity in the core size. The unfolding of Mot-
tness causes an intriguing non-monotonic variation of the core
size with δ, as we examine below.

For definiteness, we define the vortex length scale ξc as
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the distance from the vortex center where the order param-
eter ∆OP

d (i) recovers 80% of its maximum value. The red
trace in Fig. 4(a), representing ξc(δ), captures the two trends
above and below the optimal doping δ ≈ 0.2. For δ > 0.2,
ξc shrinks as the doping value is decreased. This is consis-
tent with the BCS expectation, where ξc ∼ vf/πEgap, with
vf and Egap being the Fermi velocity and the energy-gap, re-
spectively. Since, Egap increases with decreasing δ within a
d-wave BCS description, the vortex core shrinks. In the region
below δ ≈ 0.2, ξc ceases to follow the vf/πEgap trend and
starts to increase continuously as doping is lowered towards
δ → 0. As discussed earlier, in the strong underdoped limit
the congregation of Mott sites makes the variation of ∆OP

d

near the vortex core flatter. Our findings indicate that the en-
hancement of ξc in underdoped regime is intimately connected
with formation of Mott-cluster. It is indeed fascinating that the
non-monotonicity in the vortex state tracks the non-BCS be-
havior [27]. A similar non-monotonic doping dependence has
been theoretically discussed also for the SC coherence length
in strongly correlated superconductors [39].

To further highlight the prominent dependence of the vortex
core size on strong correlations, we also include the trace of
ξc from IMT calculations in Fig. 4(a), which shows only a
monotonic increase with δ in the entire range.
Superfluid stifness and critical magnetic field. Having en-
countered the non-monotonic dependence of ξc with δ, we
next turn our attention to superfluid stiffness Ds which gives
rise to Meissner effect [5]. Here we focus on the δ-dependence
of Hc2 within GIMT framework. In what follows, we calcu-
late Ds using the Kubo formalism [48]: Ds/π = 〈−kx〉 −
Λxx (qx = 0, qy → 0, ωn = 0), where 〈−kx〉 is the average
kinetic energy along x-direction and Λxx(q, ω) is the trans-
verse current-current correlation function. In order to obtain
the Hc2(δ), in Fig. 4(b) we plot Ds as a function of H , at
different values of δ. Because the BdG technique does not
include quantum phase fluctuations of SC order, Ds is not
driven to zero by the fluctuations in the dSC pairing ampli-
tude alone (which are fully included in BdG method). How-
ever, because BdG calculation results in a significant reduc-
tion of Ds to a low value, it is expected that quantum phase
fluctuations, riding on top of the fluctuations in the pairing
amplitude, would guide Ds to zero. We thus consider a small
threshold value of Ds/π = 0.1 to mark off Hc2. Even though
such extraction of Hc2 will not be an accurate estimate of the
upper critical fields, we believe it to represent the qualitative
doping dependence of the true Hc2.

The behavior of the extracted critical field Hc2 in the inset
of Fig. 4(b), features a dome-shaped profile with its maximum
residing at δ ≈ 0.2 (optimal doping). Similar non-monotonic
behavior inHc2 versus δ has been recently observed in cuprate
superconductors [49]. Interestingly, this finding gels well with
the size of vortex core, because in Ginzburg – Landau theory
theories, Hc2 = φ0/2πξ

2, where the coherence length ξ is
the characteristic length scale of the vortex core. Thus a non-
monotonicity in the core size, as seen in Fig. 4(a), implies a
non-monotonicity in Hc2 as well. Interestingly, in cuprates

FIG. 4: Vortex core size and critical magnetic field from super-
fluid density. Panel (a) depicts the variation of the vortex core length
scale ξc as a function of doping, from IMT (blue trace) and GIMT
(red trace) calculations. In IMT, ξc shrinks monotonically with de-
creasing doping. In GIMT, ξc shows a non-monotonic behavior. Val-
ues of ξc are in the unit of the lattice spacing. Panel (b) shows the
variations of superfluid density D0

s as a function of magnetic field
H at different doping values. The threshold value for estimating the
critical magnetic field Hc2 is set at D0

s/π = 0.1, as marked by the
black horizontal line. The inset in panel (b) shows the behavior of the
obtained Hc2 with respect to δ, featuring a dome like profile. The H
values are represented in the unit of φ0.

the maximum of Hc2 occurs near the optimal doping [50, 51],
similar to our findings.
Conclusion. We illustrated how the nature of the vortex core
changes from metallic-type in overdosed regime to a Mott-
insulating one upon approaching undoping of a strongly cor-
related dSC. This changeover is accompanied by accumula-
tion of the electronic charge at vortex core towards half-filling,
which in turn facilitate the formation of Mott insulating core.
It will be interesting to track the charge of vortices using cav-
ity electromechanics measurements [52]. The change of the
nature of vortex explains the anomaly in LDOS with dop-
ings. The shape of the vortices do change as well, leading
to a non-monotonic evolution of the vortex core size, which
in turn explains the experimental signatures of Hc2. These
features stem from the non-BCS features due to the proximity
to a Mott insulator. A high value of Hc2 near optimal dop-
ing is also sometimes associated to the presence of a quantum
critical point in the literature [53]. Our results do not depend
on the presence of any quantum critical point near optimal
doping. However, it will be an interesting future direction
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to connect our findings to a possible quantum critical point.
Possible presence of competing orders can fine-tune the sce-
nario by bringing in additional length scales. It should also
be noted that our real space calculations naturally produce
competing superconducting orders like extended s-wave or-
der. However, the amplitudes of the extended s-wave order is
extremely small and thus unlikely to have a significant effect
on the LDOS. Our findings can have important implications
on properties of other materials like Fe-based superconduc-
tors and twisted bilayer graphene, where strong correlation
physics is believed to play a crucial role [54–57].
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