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We provide a theoretical interpretation of the metallic broken spin–valley (flavor) symmetry states
recently discovered in hole-doped rhombohedral trilayer (ABC) graphene in large electric displace-
ment fields. Our conclusions about the phase diagram and phase transitions combine insights from
ABC graphene electronic structure models and mean field theory, and are guided by the precise
magneto-oscillation Fermi-surface-area measurements of recent experiments. We find that the prin-
ciple of momentum-space condensation plays a key role in determining Fermi surface reconstructions
enabled by broken flavor symmetries when the single-particle bands imply thin annular Fermi seas.
The reconstructed Fermi sea consists of one large outer Fermi surface enclosed majority-flavor states
in reciprocal space area Amaj and one or more small inner hole-like Fermi surfaces enclosed minority-
flavor states in Amin that are primarily responsible for nematic order. The competing groundstates
(valley-Ising, valley-XY and spin-polarized state) have different Amaj/Amin and exchange energy
maximises this ratio and selects valley-XY nematic metal as the lowest energy state. We discuss
how the nematic pockets explain the observed fractionalization of quantum oscillation frequencies,
and propose anisotropic transport and non-linear Hall effect as additional observables.

Introduction. Multilayer graphene systems continue
to surprise researchers with unexpected states of mat-
ter. Zhou et al. [1–3] have recently uncovered rich
phase diagrams in both bernal bilayer (AB) and rhom-
bohedral trilayer (ABC) graphene containing half-metal,
quarter-metal, partially-isospin polarized (PIP) metal,
spin-triplet superconductor, and spin-singlet supercon-
ductor states in a three dimensional parameter space
spanned by the electric displacement field D, the carrier
density ne, and the magnetic field B, see also Ref. [4, 5].
The origin of superconductivity has been studied in
Refs. [6–13]. In this Letter, we explain the pattern of
spontaneous symmetry breaking induced by Coulomb in-
teraction and corresponding Fermi surface reconstruc-
tions observed in the metallic states of ABC trilayer
graphene. We find that the magnetic order and nematic
order are often intertwined at large density due to mo-
mentum space condensation [14] (c.f. valley-XY nematic
metal in Fig. 1).

At low carrier densities |ne| <∼ 2 × 1012 cm−2 and
large electric displacement fields D >∼ 0.2 V/nm, holes
(ne < 0) in ABC graphene occupy low velocity Bloch
states [15, 16] with momenta near one of two inequiv-
alent honeycomb lattice Brillouin-zone corners. These
regions of momentum space are referred to below as val-
leys, and endow electrons with a valley pseudospin in
addition to spin. States in the two valleys are related
by time-reversal symmetry. Because the spin- (s =↑, ↓)
and valley- (τ = K,K ′) projected densities of states are
identical for each spin-valley, the paramagnetic state oc-
cupies the four flavors equally. The broken spin-valley
symmetry states seen experimentally occupy the four fla-
vors unequally, just as magnetic metals occupy majority
and minority spins unequally, and are expected because
the Fermi energy at low carrier densities is small com-
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Figure 1. Zero temperature phase diagram of ABC trilayer
graphene. Fermi surface topologies in the various phases are
indicated schematically. The phase boundaries mark mag-
netic transitions (MT) and Lifshitz transitions which mod-
ify the Fermi surface topology. We distinguish two types of
Lifshitz transitions, annular Lifshitz transitions (ALTs) that
occur when the Fermi level crosses k = 0 energy band max-
ima to form an electron pocket inside an annular hole Fermi
sea, and saddle-point Lifshitz transitions (SPLTs) that occur
when the Fermi level crosses k 6= 0 energy band saddle points
to break the annulus into three separate pockets. At the first
magnetic transition, the paramagnetic annular Fermi sea sup-
ports a pair of Shubnikov-de Haas quantum oscillations with
normalized frequencies f∗ = (0.06, 0.31). The interlayer po-
tential U is proportional to the displacement field D in the
experiment. Superconductivity occurs in the region of the
phase diagram shaded yellow at large hole density close to
the first magnetic transition.

pared to the Coulomb energy per particle. Because of
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the high quality of the ABC graphene devices studied
by Zhou et al., it has been possible to measure mag-
netic oscillations at weak magnetic fields, and in this
way to accurately measure the Fermi sea areas enclosed
by most of the Fermi surfaces present in most phases.
Magneto-oscillations do not on their own distinguish dif-
ferent symmetry-broken states and do not provide the
information about Fermi surface shapes. These we in-
fer by combining insights from ABC trilayer graphene
electronic structure models and mean field theory calcu-
lations [17] that are corroborated by features that ap-
pear in resistance vs. ne and D maps, in addition to the
thermodynamic compressibility data [1–3]. We detail our
band structure model and mean-field calculations in the
Supplemental Material [17].

Fig. 1 is our main result and it explains the evolution
of the ground state as the hole density decreases and in-
teractions increase in importance. As shown in Fig. 1, at
large interlayer potential U the first transition is an annu-
lar Liftshitz transition (ALT) at which an electron pocket
emerges in the interior of the hole Fermi sea. This annu-
lar Fermi sea undergoes a first magnetic transition (1st
MT) to a valley ordered state accompanied by a strong
Fermi surface reconstruction; i.e., the number of Fermi
surfaces (per spin) is reduced from four to two and the
annulus near k = 0 is removed. This state is suscepti-
ble to nematic broken symmetries that give rise to small
crescent-shaped Fermi surfaces, which explain the small
quantum oscillation frequencies reported in Ref. [1, 3].
We identify such a valley ordered state as a valley-XY
nematic metal [18]. When the hole density is further low-
ered, the crescent-shaped (nematic) Fermi surface shrinks
and leads to a negative electronic compressibility as re-
ported in Figs. 1d,g of Ref. [1]. The crescent-shaped
Fermi surface disappears at a second magnetic transition
(2nd MT) to a spin-polarized half-metal. As the hole
density is lowered even further, a second ALT changes
the topology of the spin-polarized half-metal to an an-
nular shape. Both the paramagnetic phase ALT (blue
line) and the spin-polarized state ALT are prominent ex-
perimentally because they lead to easily identified peaks
in resistance along the lines from (ne , D) = (−1.2, 0) to
(−1.8, 0.28) and from (−0.6, 0) to (−1.1, 0.5) in Fig. 1e of
Ref. [3], respectively. At small U , there is only one mag-
netic transition because the paramagnetic metal avoids
the transition into a valley-XY nematic metal. In what
follows, we first address the instability of a paramagnetic
metal with an annular Fermi sea [19], then the properties
of magnetic metals.
Annular Fermi sea. Depending on ne and U , the

single-particle bands can have one of three distinct Fermi
surface topologies (see Fig. 1): a simply-connected Fermi
sea, a Fermi sea with three disjoint pockets, and an annu-
lar Fermi sea. With decreasing hole density, the annular
topology appears at the ALT when the Fermi level inter-
sects a shallow local valence band minimum at k = 0, and

persists to the saddle-point Lifshitz transition (SPLT) at
which the annulus splits into three pockets and the den-
sity of states diverges logarithmically. We focus below
on the experimentally demonstrated instability of the C3-
distorted annular Fermi sea, which occurs well before the
SPLT is reached and is therefore not simply because of
the large density of states at the Fermi level.

Each reciprocal-space area Aν enclosed by a Fermi
surface ν leads to a normalized quantum oscillation fre-
quency

fν =
Aν

(2π)2 |ne|
, (1)

that we interpret as fraction of (electron or hole) charge
carriers in Fermi pocket ν. The annular Fermi sea has an
exterior hole-like Fermi surface (with area Aouter) and an
interior electron-like Fermi surface (with area Ainner), see
Fig. 2(a), such that the hole carrier area is A0 = Aouter−
Ainner. The two Fermi surfaces lead to two quantum
oscillation frequencies f = (finner , fouter) according to
Eq. (1) [20]. The paramagnetic metal partitions holes
equally into the four flavors α = {K ↑,K ↓,K ′ ↑,K ′ ↓},
i.e.,

nα ≡
ne
4
∀α, (2)

which implies A0/(2π)2 = |ne|/4 for an annular Fermi
sea.
Valley-XY nematic metal. As the inner Fermi sur-

face of the paramagnet becomes larger, occupied hole
momenta are more widely dispersed and this leads to
a reduction in the long-range Coulomb exchange energy
[19]. We identify this reduction as the driver of the first
magnetic transition, which occurs near Ainner/A0 ≈ 0.24
and therefore with normalized quantum oscillation fre-
quencies

f∗ ∼ (0.06, 0.31). (3)

The fact that these frequencies are nearly independent of
U emphasizes that Fermi sea shape is more important in
driving the instability than hole density.

The first magnetic transition leads to strong flavor po-
larization and Fermi surface reconstructions where the
majority-flavor states have a large hole-like Fermi surface
with no annulus. Since the outer Fermi surface Aouter has
a large Fermi velocity, it is energetically favorable to re-
tain a small minority-flavor hole pocket centered at k 6= 0
to limit its expansion. For a given ne, the exchange en-
ergy favors the valley-XY state over the spin-polarized
and valley-Ising states illustrated in Fig. 2 because the
outer Fermi surface of its valley-mixed quasiparticles has
C6 symmetry and can therefore enclose a larger area for
given Fermi radii. The relationship between the spin–
valley SU(4) magnetic anisotropy energy and the area of
the inner Fermi surface is illustrated in Fig. 2(b,c) for
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Figure 2. Mean-field valence bands and Fermi surfaces of competing states at ne = −1.4× 1012 cm−2 and U = 60 meV (yellow
star in Fig. 1): (a) the paramagnetic metal, (b–c) the valley-XY nematic metal and (d) the spin nematic metal. The yellow,
green, and blue regions are respectively occupied by zero, one, and two holes. The paramagnetic metal has independent Fermi
surfaces in all valley–spin sectors, as illustrated in panel (a). In the ordered region all magnetic states gain roughly the same
amount of total energy relative to the paramagnetic state, (∆Ep.h.

tot ∼ 200 µeV for the illustrated case) by lowering exchange
energy ∆Ep.h.

ex ∼ 1500 µeV per hole at a cost in band energy. Their energy differences between the different ordered states
(∼ 1 to 20 µeV per hole) is mainly determined by the characteristics of the inner nematic Fermi sea. The magnetic anisotropic
energy in the SU(4) spin–valley space first minimizes the area of the inner hole Fermi sea, measured by the quantum oscillation
frequencies f , and then breaks rotational symmetry to make the inner surface more compact. The arrows in (c) suggest the
sliding degree-of-freedom of the crescent-shaped Fermi sea. This mean-field calculation was performed with an accuracy of
<∼ 1 µeV per hole.

valley-XY polarized states and in Fig. 2(d) for a spin-
polarized state. The first magnetic transition leads to the
discontinuous changes in quantum oscillation frequencies
from the paramagnetic state values f∗ to the ones shown
in Fig. 2. Although the candidate ordered states differ
little in energy, they do have distinct quantum oscilla-
tion frequencies. The values reported in Ref. [3] support
our identification of the valley-XY state as the ground
state in this region of the phase diagram. Note that the
quantum oscillation data put a severe constraint on the
many possible magnetic states in the large SU(4) Hilbert
space, see Ref. [17]. In particular, an intervalley coherent
state (valley-XY) without nematicity cannot explain the
sudden jump in the oscillation frequencies at the phase-
boundary.

We now explain the crescent shape of the reconstructed
inner Fermi sea of the valley-XY metal shown in Fig. 2(c).
Note first that the valence bands have a ring of max-
ima at kVBM ∼ k0(cos(θ), sin(θ)) where k0a ∼ 0.05
and 2π > θ ≥ 0. When a point on the ring rises
above the Fermi level it nucleates a hole-like Fermi sea.
Such Fermi sea nucleation can be understood as a form
of momentum-space condensation introduced by Heisen-
berg [14]. Because the energy dispersion along the ra-
dial direction is steep, due mainly to strong non-local
exchange-splitting, whereas the dispersion along the ring
of valence band maximum is anomalously flat, the nucle-
ated Fermi sea has the shape of a crescent. Furthermore,
the crescent Fermi sea wants to be as compact as possi-
ble to increase the exchange energy from the long-range
Coulomb interaction. Thus, although the reconstructed

inner Fermi seas in Fig. 2(b,c) have the same area, their
total energy differ because of the relative compactness of
their Fermi seas. The single-crescent state is the most
compact and hence has the lowest energy.

The order parameter of the crescent Fermi sea can be
characterized by a traceless symmetric tensor

N̂ij = D̂ij −
1

2
tr
(
D̂
)
δij , (4)

where i, j ∈ {x, y} and D̂ is the Drude tensor

D̂ij =
∑

ν=1,2...NF

∫ (
vν,ivν,j
|vν |

)
dk‖,ν

(2π)2~
. (5)

Here vν(k) = ∇εν(k) is the Fermi velocity and ν =
1, 2, . . . , NF enumerates the Fermi surfaces. The eigen-
values of N̂ij define a nematic order parameter N =

|det D̂|1/2/ tr D̂. The values for the single-crescent and
double-crescent states are N = 4% and N = 6%, respec-
tively. This nematicity can lead to transport anisotropy
below the transition temperature, that we predict will
be most prominent close to the phase boundary of the
first magnetic transition. While the single-crescent ne-
matic Fermi sea breaks time-reversal symmetry, the re-
sulting intrinsic anomalous Hall conductivity is negligible
σxy ∼ 10−7e2/h. This is because the Bloch-bands in the
valley-XY state are topologically-trivial (with zero Chern
number) and the Berry-curvature changes rapidly along
the single-crescent Fermi surface. Nevertheless, the ne-
matic state leads to a significant Berry-curvature dipole
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Figure 3. Transition from a nematic valley-XY phase to the
valley-XY half-metal and to the spin-polarized half-metal as
a function of decreasing hole density ne at fixed interlayer po-
tential U = 62 meV. (a) The evolution of the Fermi sea for
valley-XY and spin ordered states, where the ground states
are shaded light blue. The valley-XY ordered state undergoes
a Lifshitz transition (LT) upon which it loses its inner pock-
ets before going through the second magnetic transition (2nd
MT). (b) Quantum oscillation frequencies fν (big markers) of
the Fermi surfaces shown in panel (a), and chemical potential
µ (small markers) as the electron density increases.

[21]

Λ =
∑

ν=1,2...NF

∫ (
Ων

vν
|vν |

)
dk‖,ν

(2π)2~
, (6)

where Ων is the Berry curvature evaluated on the Fermi
surface ν. For the single-crescent state in Fig. 2(c), we
find |Λ| ' 0.26 a ∼ 0.7A◦ [17] which is comparable to the
Berry curvature dipole estimated experimentally in other
systems [22] so this is potentially observable through the
non-linear Hall measurement [21, 23].

The crescent Fermi sea is fragile in the sense that it
costs very little energy to deform and slide it around the
ring of valence band maxima at kVBM as indicated in
Fig. 2(c). We can control the center of the crescent Fermi
sea on kVBM by minimising H̃ = HMF − µnem ρ(kVBM)
where µnem is a Lagrange multiplier, HMF is the mean-
field Hamiltonian, and ρ(kVBM) is the density matrix at
kVBM [17]. The pinning potential which favors particu-
lar crescent orientations is <∼ 1 µeV per hole [24]. When
the crescent Fermi sea becomes small, it costs very little
energy to split it into two or more smaller crescents. We
attribute the fractionalization of the small quantum os-
cillation frequencies reported in Ref. [3] as the system ad-
vances deeper into the valley-XY phase, to this fragility.

Second magnetic transition. As the hole density de-
creases in the valley-XY metal phase, the paramagnetic
region enclosed by the crescent Fermi sea shrinks as
shown in Fig. 3(a) and increases the valley-XY order
parameter. This leads to a decrease of chemical poten-
tial µ as shown in Fig. 3(b) and explains the observed
(slightly) negative inverse compressibility κ = ∂µ/∂ne in
the PIP phase of Ref. [1]. Note that the sharp drop in
chemical potential close to ne ∼ −1.51× 1012 cm−2 and
−1.52 × 1012 cm−2 is because the exchange energy be-
comes more negative when one of the two nematic pock-
ets shown in Fig. 3(a) becomes significantly larger than
the other. This leads to a bifurcation of the small fre-
quency. When the nematic Fermi sea disappears com-
pletely, N = 0 and f = (0, 0.5). The valley-XY half-
metal is then characterized by a single compact Fermi
surface with C6 rotational symmetry (for each spin). Al-
though the C6 Fermi surface is closer to a circle, com-
pared to the spin-polarized half-metal which only has C3,
the content of the wavefunction in the valley-XY metal
changes dramatically over the enclosed area. The valley-
XY half-metal eventually undergoes a second magnetic
transition to a spin-polarized half-metal, as shown in
Fig. 1 and indicated by the arrow in Fig. 3(a). Although
this is a first-order phase transition, there is no change
in f because both states are half-metals, and no change
in N because both states lack nematicity. Their phase
boundary, however, can easily be shifted by an in-plane
spin-polarizing Zeeman field [1–3]. The transition to the
spin-polarized half-metal can be understood as a reset
transition [1, 25–27], at which the minority spin Hilbert
space becomes inactive while there is still equipartition
of density in the majority spin Hilbert space:

nK↑ = nK′↑ =
ne
2

, nK↓ = nK′↓ = 0. (7)

As the hole density is lowered, a Lifshitz transition cre-
ates an annular topology in the (majority) ↑-spin Fermi
sea and the same symmetry-breaking pattern repeats in
the ↑-spin Hilbert space as the density of holes is further
lowered.
Spin-fluctuation and spin-orbit interactions. At

weaker displacement fields, the Fermi velocity of the
outer Fermi surface is smaller at the first magnetic transi-
tion than it is at large U, |ne|, especially where it is close
to the three SPLT momenta. It is hence favorable to
make a direct transition from the paramagnetic state to
the spin-polarized half-metal [28]. Proximity to a transi-
tion between a paramagnetic metal and a ferromagnetic
metal is known to suppress spin singlet superconductiv-
ity [29] and valley-singlet superconductivity [30], explain-
ing the termination of singlet superconductivity at small
D seen in Ref. [3], which occurs despite an increasing
density of states. The direct transition from the param-
agnetic state to the spin-polarized half-metal leads to a
sudden jump of quantum oscillation frequencies directly
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from f∗ to f = (0, 0.5). In our mean-field calculations,
this direct transition continues to zero displacement field
(U = 0), as shown in Fig. 1. In experiment, however, the
magnetic phase fades away at small displacement field
and blends into the paramagnetic phase. We attribute
this behavior to spin fluctuations that become important
when the electric displacement field is small. The dis-
placement field can suppress spin fluctuations because
it increases the strength of spin-orbit coupling [31–33],
providing the magnetic anisotropy needed for spin-order.
Summary and discussion. The magnetic order recently

discovered [1–3] in metallic ABC trilayer graphene is
unusual because it involves valley as well as spin de-
grees of freedom, and because the quasiparticle bands
imply that the unordered paramagnetic states have an-
nular Fermi seas. By combining mean-field theory with
a model that captures pertinent electronic structure de-
tails, we are able to account for the phase transitions
observed experimentally and shed light on the nature of
the different phases. In particular we identify the ex-
perimental partially-isospin-polarized (PIP) state as a
valley-XY nematic metal. A potential direct probe for
such order is the atomic-scale local density of states, as
was recently observed in scanning-tunneling microscopy
measurements of a valley-XY magnetic insulator under
strong magnetic field [34]. We find that, as in con-
ventional itinerant electron magnets, the magnetic con-
densation energy greatly exceeds a much smaller mag-
netic anisotropy energy. The SU(4) spin–valley magnetic
anisotropy energy controls a competition between val-
ley and spin-polarized states, which are very close in en-
ergy throughout the phase diagram. We predict that
the valley-XY metal, which is stabilized at large inter-
layer potential, is nematic because small minority-hole
pockets break rotational symmetries in order to become
more compact, driven by the energetic expense of ex-
panding the outer Fermi surface. The nematicity of these
states should be observable through transport anisotropy
and the non-linear Hall effect. When the minority-holes
are absent at low hole densities and at low displacement
fields, spin order is preferred over valley order. In clos-
ing, let us briefly mention the possibility for the small
nematic Fermi sea to crystallize into a Wigner crystal
state that breaks both translation and C3 symmetry. In
the spirit of Ref. [35], at sufficiently low density of holes,
such anisotropic Wigner crystal states can have lower en-
ergy than the nematic fluid and conventional hexagonal
Wigner crystal states due to the ring of Van Hove singu-
larities in k-space.
Note added. Recently, we found that Ref. [36] discusses

momentum condensation (“flocking” effect) in Bernal bi-
layer graphene with three disjoint Fermi pockets whose
microscopic origin is similar to the formation of nematic
Fermi surface we discuss here in ABC trilayer graphene.
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