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We reveal a prethermal dynamical regime upon suddenly quenching to the vicinity of a quantum
phase transition in the time evolution of 1D spin chains. The prethermal regime is analytically
found to be self-similar, and its duration is governed by the ground-state energy gap. Based on
analytical insights and numerical evidence, we show that this dynamical regime universally exists
independently of the location of the probe site, the presence of weak interactions, or the initial
state. The resulting prethermal dynamics leads to an out-of-equilibrium scaling function of the
order parameter in the vicinity of the transition. Our theory suggests that sudden quench dynamics,
besides probing quantum phase transitions, may give rise to a universal critical slowing down near
the critical point.

Out-of-equilibrium quantum many-body physics has
recently been at the forefront of theoretical and experi-
mental investigations in condensed matter physics [1] due
to recent impressive progress in the control and precision
achieved in quantum synthetic matter [2–11]. Not only
have concepts from equilibrium physics been extended
to the out-of-equilibrium realm such as with dynami-
cal phase transitions [12–16] and dynamical scaling laws
[14, 17–22], but there have also been concerted efforts
to probe equilibrium quantum critical points (QCPs)
and universal scaling laws through quench dynamics
[17, 19, 21, 23–29] or with infinite-temperature initial
states [30–32]. Such techniques obviate the need for un-
dertaking the usually difficult task of cooling the system
into its ground state over a range of its microscopic pa-
rameters in order to construct its equilibrium phase di-
agram. The underlying concept behind these works is
of the Landau paradigm [12], i.e., it is based on non-
analytic behavior in the long-time dynamics of a local
order parameter. This indicates that, in principle, such
nonanalytic behavior may be used to extract equilibrium
criticality that manifests itself dynamically.

It is well known that relaxation times of order pa-
rameters (OP) diverge at QCP after adiabatic quenches
[9, 33, 34]. Such divergent behavior of the order param-
eter is a signature of the nonanalyticity at the QCP and
is often referred as critical slowing down. While the cur-
rent focus of the literature is to utilize sudden quenches
in probing the QCP, how the relaxation time of the or-
der parameter behaves around the QCP after a sudden
quench has not been sufficiently explored [19, 21, 33, 35–
37]. In fact, intriguingly, it has been found that some
1D short-range models relax the fastest at the QCP
[21, 33, 35, 36], contrary to the common intuition of criti-
cal slowing down. Dynamical order parameters for these
models also do not exhibit nonanalyticity at the QCP
[21, 36, 38].

In this Letter, we introduce boundaries to short-range

1D spin systems and probe single-site OPs. This reveals
a universal prethermal regime upon suddenly quenching
to the vicinity of a QCP, when a nonanalyticity of the dy-
namical order parameter is present at the QCP. Phrased
differently, we show the presence of critical slowing down
of order parameter dynamics near a QCP after a sud-
den quench. Intuitively, we find that the duration of the
prethermal regime is determined by the inverse energy
gap. The universality of the regime holds true for differ-
ent probe sites, initial conditions, and weak integrability
breaking. Further, we analytically and numerically show
that this critically prethermal regime gives rise to a non-
linear scaling function for the dynamical order parameter
in the reduced control parameter of the QCP. We present
our discussion based on a paradigmatic model of QCPs,
the transverse-field Ising chain (TFIC).

Our work provides new insights on probing quantum
criticality in sudden quench dynamics: Quantum critical-
ity does not only affect the stationary regime, but its sig-
nature is also visible in a new dynamical regime emerging
before the stationary regime. Therefore, sudden quench
dynamics does not only probe quantum phase transitions
as has been found so far by many [23–27, 29, 40], but also
gives rise to a universal and critical slowing down near
QCP.
Dynamical regimes of TFIC.— The short-range TFIC

with interaction strength ∆ is given by

H = −J
N−1∑
r=1

σzrσ
z
r+1 −∆

N−2∑
r=1

σzrσ
z
r+2 + h

N∑
r=1

σxr , (1)

where σx,zr are the Pauli spin matrices on sites r, h is the
transverse-field strength, N is the length of the chain,
and we fix J = 1, which sets the energy scale of the sys-
tem. In equilibrium, the TFIC has two phases, i) the
ferromagnetically ordered phase for h < hc and ii) the
paramagnetic disordered phase for h ≥ hc, where hc is
the QCP. At ∆ = 0, this model becomes the nearest-
neighbor (n.n.) TFIC with a QCP hc = 1, and the
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Figure 1. The edge magnetization Cr=1(t) for the Hamilto-
nian Eq. (1) with ∆ = 0 after a quench in the transverse-field
strength from hi = 0 to the vicinity of the QCP at hc. The
red-dotted curve is plotted based on Eq. (3) for a semi-infinite
chain [39]. The blue-squares are values of |C1(t, h)| obtained
numerically for the open-boundary TFIC with a system size
of N = 1440, the method of which is detailed in Ref. [40]. The
panels show the three regimes of time evolution separated by
green vertical lines: the decay regime with a power-law decay
∼ t−3/2 (dashed-gray line) on the left, the prethermal regime
in the middle and the quasi-stationary (q.s.) regime on the
right. The horizontal black line is 1 − h2, the q.s. value for
r = 1. The onsets of prethermal and q.s. regimes are marked
with green balls. As a comparison, the yellow dotted-dashed
line plots |Cr=3(t, h)| away from the QCP at h = 0.8hc for
N = 1500 spins and a quench from hi = 0 where there is no
prethermal regime.

model is integrable. The QCP shifts to favor order upon
introducing interactions with ∆ > 0. The order param-
eter for this QCP is the magnetization averaged over all
sites; when it is finite, it indicates spontaneous symme-
try breaking in the ground state and the system is in the
ordered phase.

We consider as initial state the ground state |ψ0〉 of
H at initial value hi of the transverse-field strength,
and then we quench the latter to a value h. In a
periodic chain, the single-site magnetization Cr(t) =
〈ψ0|σzr (t) |ψ0〉, at any site r, decays exponentially to
zero for any h [21, 38, 41, 42], and hence Cr(t → ∞)
does not host nonanalyticity at the QCP [21, 38]. On
the other hand, in an open-boundary chain, Cr(t) sta-
bilizes to a finite nonzero value when t → ∞ at any
r within a finite distance to the boundary, so long as
hi < h < hc. This dynamical regime is called quasi-
stationary (q.s.) regime [40, 43]; see Fig. 1. For h ≥ hc,
Cr(t→∞) = 0 is suggested by numerical results [40, 43]
and some analytical arguments [40]. In our joint paper
[40], a kink observed at the QCP becomes sharper as the
system size increases, and this suggests a nonanalyticity

in Cr(t→∞). The origin of this nonanalyticity depends
on the presence of zero modes which are induced in the
open-boundary chain [40]. In particular, for the edge
magnetization (r = 1) with ∆ = 0 and hi = 0, there
exists a simple analytic form in the infinite time limit
C1(t→∞) = 1−h2 ≡ Cqs1 for h < 1 and C1(t→∞) = 0
for h ≥ 1 [40, 43, 44].

The single-site magnetization at any r away from the
QCP approaches the q.s. regime as t−3/2 after an expo-
nential decay so long as hi < h [43]. Upon quenching
to the vicinity of the QCP the decay trend is described
only by the power law t−3/2. Additionally, an intermedi-
ate dynamical regime emerges preceding the q.s. regime
(see Fig. 1)—the nonequilibrium response dips below the
q.s. value and eventually ramps up to it. Figure 1 shows
the time evolution of the edge magnetization C1(t) when
the system is quenched from hi = 0, e.g., |ψ0〉 = |↑↑ . . . ↑〉
to h = 0.999, in the integrable (n.n.) TFIC both numeri-
cally and analytically [39], where we observe this interme-
diate regime marked as prethermal regime. The onsets tpt
and tqs of the prethermal and q.s. regimes, respectively,

are where the decay roughly ends, i.e. t
−3/2
pt ∼ Cqs1 , and

where a stationary value is attained in the time evolution,
respectively (vertical lines in Fig. 1). To probe and char-
acterize this prethermal regime, we first define a reduced
control parameter hn ≡ (hc−h)/hc as the distance to the
QCP and δCr(t, hn) ≡ Cr[t, h = hc(1 − hn)] − Cr(t, h =
hc), which we name critical response. As hn → 0,

Cqs1 (hn) ≈ 2hn, we arrive at tpt ∝ h
−2/3
n . The punch-

line of our paper is that when hn → 0 and t � 1, the
critical response for general r takes the universal form

δCr(t, hn) = Cqsr (|hn|)f∆,hi
(hnt), (2)

where f∆,hi
(hnt) depends on the weak interaction

strength ∆ and the initial condition hi. Note that
Cqsr (|hn|) is the q.s. value in the ordered phase, while Eq.
(2) works on both sides of the QCP. Further, f∆,hi

(hnt)
is a continuous function of hnt that satisfies f∆,hi

(hnt =
0) = 1/2 and f∆,hi

(hnt) = 1 − f∆,hi
(−hnt). When

|hn|t � 1, f∆,hi(hnt) approaches 1 in the ordered phase
(hn > 0) and approaches 0 in the disordered phase (hn <
0), demonstrating the nonanalyticity in the q.s. value
across the QCP. We plot f∆,hi

(hnt) for hi = 0 and
hnt > 0 in Figs. 2(a) and 2(b), for ∆ = 0 and ∆ = 0.1
[45], respectively.

Eq. (2) suggests that the onset of the the q.s. regime
scales with hn as tqs ∝ h−1

n , hence the duration of
the prethermal regime follows ∆t ≡ tqs − tpt ∝ h−1

n .
As the energy of the zero-momentum state in the inte-
grable TFIC is εk=0 = hn [46], the prethermal duration
∆t ∝ ε−1

k=0 is inversely proportional to the single-particle
energy gap. The prethermal regime lasts longer as we ap-
proach the QCP, motivating the name critically prether-
mal regime and justifying δCr(t, hn) as the critical re-
sponse.
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In the following, we analytically derive f∆,hi
(hnt) for

the edge magnetization at ∆ = 0 and hi = 0, and numer-
ically demonstrate that it holds true for different probe
sites r.
Prethermal regime in the integrable TFIC.— The edge

magnetization has an analytic series expression whose
derivation can be found in [40],

C1(t, h) =

∞∑
m=0

(−1)m

(2m)!
(2t)2mNm(h2), (3)

Nm(h2) =

m∑
n=1

Nmnh
2n, Nmn =

1

m

(
m

n− 1

)(
m

n

)
,

where Nm(x) are the Narayana polynomials [47, 48].
Eq. (3) also describes the two-time edge correlators in the
Kitaev chain at infinite temperature [30]. It has an ana-
lytical expression C1(t, h = 1) = J1(4t)/(2t) at the QCP
[40] where J1(t) is the Bessel function of the first kind.
Additionally, we note that Eq. (3) is a generating func-
tion of Narayana polynomials and can be expressed in
terms of inverse Laplace transform of a closed form func-
tion [49]. This alternative expression is useful in probing
the critically prethermal regime and deriving f∆,hi(hnt).
The critical response in the vicinity of the QCP hn → 0
follows [49]

δC1(t, hn) = Cqs1 (|hn|)
[
−1

2
J0(4t) + f(hnt)

]
+ O(h2

n), (4a)

f(hnt) ≡
1

2
−
∞∑
n=1

(−hnt)2n−1

(2n)!
χn, (4b)

where χn ≡ (−1)1−n21−2n(2n − 2)!/(n − 1)!2.
δC1(t, hn)/Cqs1 (hn) for hn = 0.005 based on Eq. (4a)
is plotted as a black-solid line in Fig. 2(a). Here the
term − 1

2C
qs
1 (|hn|)J0(4t), where J0(t) is the Bessel func-

tion of the first kind, introduces oscillations that be-
come negligible when t � 1. This term also origi-
nates from a high frequency expansion in the derivation
[49], which is why it is only an early-time effect, and
hence nonuniversal. The function f(hnt) can be writ-
ten in terms of a generalized Hypergeometric function

f(hnt) = 1
2 + (hnt)

2 1F2

[{
1
2

}
;
{

3
2 , 2
}

;−(hnt)
2
]
[49], and it

is plotted in Fig. 2(a) with a dotted-red line. In con-
trast to the nonuniversal term, f(hnt) originates from
a low frequency —long-wavelength— expansion in the
derivation, and hence providing extra evidence that the
prethermal regime is critical. Let us note in passing that
the rescaling of time with hn that emerges from the mi-
croscopic calculation is consistent with the Ising univer-
sality class (ν = z = 1) [46].

Next we demonstrate Eq. (2) in the ordered phase us-
ing numerics for a finite-size system (N = 1440). Because
our numerics is based on the cluster theorem in the space-
time limit [38], we obtain numerical values of |Cr(t, hn)|,

and hence use δ|Cr|(t, hn) ≡ ||Cr(t, hn)| − |Cr(t, 0)|| to
approximate δCr(t, hn) [40, 50]. Our numerical data
shows that, for hn → 0, and t� 1, δCr(t, h) for different
choices of r are proportional to each other. Hence defin-
ing ηr = Cqs1 (hn)δ|Cr|(t′, hn)/δ|C1|(t′, hn), we found nu-
merically that ηr does not depend on t′ as long as t′ � 1
[51]. For the edge spin, η1 = Cqs1 (hn) by definition.
Refs. [43, 52] show that the q.s. values of the bulk spins
have an exponentially decaying spatial profile in r, sug-
gesting ηr ≈ Cqs1 (hn)e−(r−1)/ξ(hn), where ξ(hn) is the
correlation length [49]. Then the q.s. regime value at
any r tends to zero linearly in hn as hn → 0.

Fig. 2(a) plots δ|Cr|(t ≥ 50, hn)/ηr for all r =
1, 3, 6, 9, 12 quenched from an initial state hi = 0 to
hn ∈ [9× 10−4, 0.05]. The colors, from dark blue to light
cyan, correspond to decreasing hn, respectively. The
time axis is rescaled by the distance to the QCP, hn. For
Fig. 2(a), t′ = 280 is chosen in ηr. The data collapses
on top of each other, and matches well with the analyt-
ical function f(hnt) for hnt � 0.1. Therefore, we have
numerically demonstrated the validity of Eq. (2) for dif-
ferent probe sites r > 1 in the ordered phase, and hence
f0,0(hnt) = f(hnt).

Discussion for ∆, hi 6= 0.— In this section, we dis-
cuss Eq. (2) and f∆,hi

(hnt) for general ∆ and hi. We
present the case of ∆ = 0.1 as an example of the near-
integrable model which can be treated with quench mean-
field theory (qMFT) [40, 45]. In this case, the QCP is
shifted to hc ≈ 1.165, and numerical evidence shows that
the location of the nonanalyticity observed in the dy-
namical order parameter is no longer equal to the QCP
[40]. Hence in [40], we define a dynamical critical point
(DCP) based on the nonanalyticity following Ref. [27],
and find it to be hdc = 1.1437. Since qMFT maps the in-
teracting problem back to a noninteracting problem, we
also apply single-particle energy gap analysis in [40], and
show that the gap for this noninteracting model indeed
closes at hdc = 1.1437. Therefore, it is natural to antic-
ipate that a possible critically prethermal regime should
emerge around hdc for ∆ 6= 0, motivating a definition of
the reduced control parameter as hn = (hdc − h)/hdc.

Fig. 2(b) verifies Eq. (2) for ∆ = 0.1 in the ordered
phase using qMFT numerics for r = 1, 3, 6, 9, 12 quenched
from an initial state hi = 0 to hn ∈ [8.74× 10−4, 0.0557].
Our joint work [40] shows that for small ∆, Cqs1 (h) =
α(hνdc − hν) where α and ν are numerically extracted
as α = 0.81 and ν = 1.81 for ∆ = 0.1. Note that for
α = 1, ν = 2 and hdc = hc = 1, we recover the q.s. value
of the edge spin in the integrable TFIC Cqs1 (h) = 1− h2.
Hence, Cqs1 (hn) = αhνdc [1− (1− hn)ν ], and we use this
expression to define η1. ηr for r 6= 1 are defined simi-
larly as in the integrable case. Importantly, we find that
all data for δ|Cr|(t ≥ 50, hn)/ηr collapse on top of each
other, which confirms the validity of Eq. (2) for small
∆ 6= 0. However, the data does not match with the
function f0,0(hnt) (red-dotted line in Fig. 2(b)), suggest-
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Figure 2. Numerical rescaled critical response δ|Cr|(t, hn)/ηr for (a) ∆ = 0, the integrable TFIC and (b) ∆ = 0.1, a near-
integrable TFIC quenched from hi = 0 to hn ∈ [9 × 10−4, 0.05] (colorbar). The system size is N = 1440 and the numerical
data is for probe sites r = 1, 3, 6, 9, 12. The rescaling factor ηr = Cqs

1 (hn)δ|Cr|(t′, h)/δ|C1|(t′, h) is independent of the choice
of t′ and can be understood as the numerical evaluation of the q.s. value Cqs

r (hn). For the plots, t′ = 280. As a comparison,
the analytical value of δC1(t, hn)/Cqs

1 (hn) is plotted in (a) (black-solid) and r = 1 f0,0(hnt) = f(hnt) in Eq. (4b) (red-dotted)
is plotted in both (a) and (b). (c) The dynamical OP for the integrable TFIC with cutoffs t∗ = 20 and tl = 330. The
numerical data for different r collapse on top of δC1(tl, hn), Eq. (6) (red-dotted). When tl is in the decay (tlhn � 1) or
q.s. (tlhn � 1) regimes, the data is described by Cqs

1 (hn)/2 (dashed-black line) and Cqs
1 (hn) (solid-black line), respectively,

both linear in hn when hn � 1. When tl is in the prethermal regime (hntl ∼ 1), the data deviates from the linear functions in
the two ends.

ing that f∆,hi
(hnt) depends on ∆. In the SM, we verify

Eq. (2) numerically for hi 6= 0 and show that f∆,hi
(hnt)

also depends on hi.

For all ∆, hi and r considered, Cqsr (|hn|) ∼ |hn|
as hn → 0. Specifically, when ∆ = 0, Cqsr (|hn|) =

22−r|hn|+ O(|h3/2
n |) for ∆ = 0, and Cqs1 (hn) ≈ ανhνdchn

for ∆ = 0.1. The case of hi 6= 0 is discussed in Ref. [40].
The linear scaling of Cqsr (|hn|) in hn results in the self-
similarity of the critical response: When hn → 0, t � 1
and κt � 1, δCr(t, hn) = κδCr(κ

−1t, κhn) where κ is a
rescaling factor.

Scaling of dynamical OP near QCP.— Finally, we
probe the critically slowed down prethermal regime in
the ordered phase (hn > 0) by studying the scaling of a
dynamical OP defined with a finite long-time cutoff tl:

δCr(tl, hn) ≡ 1

tl − t∗

∫ tl

t∗
dt δCr(t, hn), (5)

where t∗ is a short-time cutoff with negligible influence
on the value of δCr(tl, hn) [49]. This newly introduced
dynamical OP extends beyond the current paradigm of
probing the dynamical scaling near a QCP at infinite
time, and enables the discussion of experiments often
limited by finite coherence times. Here we can imagine
tl as an experimentally (or computationally) the longest
time accessible. The temporal cutoff can be extended to
tl →∞ if desired.

When t∗ = 0, Eq. (4b) together with Eq. (2) suggest
that the dynamical OP for ∆ = 0 and hi = 0 is given by

[53]

δCr(tl, hn) = Cqsr (|hn|)

[
1

2
−
∞∑
n=1

(−hntl)2n−1

2n× (2n)!
χn

]
+ O(hnt

−1
l ) +O(h2

n). (6)

δCr(tl, hn) for r = 1 is plotted in Fig. 2(c) as the red-
dotted line for tl = 330. When tl � 1 and hn → 0,
the first line of Eq. (6) gives a good approximation of
δCr(tl, hn). For hntl � 1 and hntl � 1, tl probes the
beginning of the prethermal ramp and the q.s. regime,
respectively. In these regimes, we observe δC1(tl, hn) ≈
1
2C

qs
1 (hn) (dashed-black) and δC1(tl, hn) ≈ Cqs1 (hn) =

1− (1− hn)2 (solid-black), respectively. Both are linear
in hn for hn � 1, and connected through a nonlinear
crossover when hntl ∼ 1 holds, and hence when tl probes
the prethermal ramp.

Similar to the previous discussion, we numerically de-
fine δ|Cr|(tl, hn) as the time average of δ|Cr|(t, hn) be-
tween t∗ and tl. To demonstrate that the dynamical
OP has a similar scaling behavior for different r, we
rescale the data using ηr and plot δ|Cr|(tl, hn)Cqs1 (hn)/ηr
in Fig. 2(c). Note that δ|Cr|(tl, hn)Cqs1 (hn)/ηr =

δ|Cr|(tl, hn) for r = 1 by definition. The linear-to-
linear crossover in δCr(tl, hn) for small hn > 0, demon-
strated in Fig. 2(c), is universal for any ∆ and hi, and
robust against changing tl [49], while the shape of the
nonlinear crossover depends on f∆,hi

(hnt). This is sug-
gested by Eq. (2), where f∆,hi(hnt) has universal limiting
properties and Cqsr (hn) always has linear scaling in hn.
To demonstrate the universality, we plot the numerical
data of δ|Cr|(tl, hn)Cqs1 (hn)/ηr for ∆ = 0.1, hi = 0 and
∆ = 0, hi = 0.1 in the SM.
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Conclusion and outlook.— We discover critical slowing
down in the open-boundary TFIC upon suddenly quench-
ing to the vicinity of the QCP. This critical slowing down
is expressed in Eq. (2) universally for any probe site, weak
interactions or the initial state, and rigorously proven for
a special case. Analytical analysis leads us to reveal self-
similarity in the dynamics and find that the duration of
the prethermal regime diverges as one approaches to the
QCP because of the gap closing. The critically prether-
mal regime in the near-integrable TFIC is also evident
in time-dependent density-matrix renormalization group
calculations [54]. Therefore our conclusions for weakly in-
teracting TFIC are valid beyond the qMFT method. An
interesting question to answer in the future is whether
Eq. (2) is applicable in strongly interacting TFIC.

Emerging dynamical universality in suddenly quenched
TFIC suggests the presence of critical slowing down in
other open-boundary short-range spin chains, e.g., XXZ
chain [36]. Critical slowing down should also be mani-
fested in other system observables that host a late-time
non-analyticity in their sudden quench dynamics [27].
How generic the critical slowing down in sudden quench
dynamics beyond the Ising universality is an exciting fu-
ture prospect.
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