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We explore the potential of twisted light, a structured beam carrying orbital angular momentum,
as a tool to unveil many-body effects in parabolically confined systems. According to the General-
ized Kohn Theorem, the dipole response of such a multi-particle system to a spatially homogeneous
probe is indistinguishable from the response of a system of non-interacting particles. Twisted light
however can excite internal degrees of freedom, resulting in the appearance of new peaks in the mul-
tipole spectrum which are not present when the probe is a plane wave. We also demonstrate the
ability of the proposed twisted light probe to capture the transition of interacting fermions into a
strongly correlated regime in a one-dimensional harmonic trap. We report that by suitable choice of
the probe’s parameters, the transition into a strongly correlated phase manifests itself as an approach-
ing and ultimate superposition of peaks in the second-order quadrupole response. These features are
observed in exact calculations for two electrons, and well reproduced in adiabatic Time-Dependent
Density-Functional Theory simulations.

I. INTRODUCTION

Twisted light (TL), also known as optical vortices,
designates a family of highly non-homogeneous optical
beams which have single or multiple phase singularities
and carry orbital angular momentum (OAM), among
other interesting features [1–3]. Promising applications
of TL have been identified in areas such as telecommu-
nications [4, 5], quantum computing [6], nanotechnol-
ogy [7–9], and enhanced resolution imaging [10, 11], to
name just a few [12–14]. From a fundamental point of
view, researchers seek to understand the generation, de-
tection, and interaction of TL with matter. The latter
is strongly affected by the spatial structure of the light
field, and the peculiar features of TL have been shown
to produce novel optical effects [14]. For example, rare
transitions in atoms and nanostructures resulting from
new selection rules [15–17], distinct time scales and life-
times [18] and degree of spin polarization for OAM ex-
change in GaAs [19], as well as coherent photon-exciton
dynamics in GaN [20] have been observed. Based on
this recent progress, a variety of new phenomena unde-
tectable by plane waves are expected to be revealed with
TL. Until now there has been an emphasis on studies of
the interaction of TL with single particles, to the detri-
ment of research contemplating the role of interactions
[21–24]. Here we investigate the response of multipar-
ticle parabolically confined systems, notorious for their
many-body effects going undetected when the probe is
spatially homogeneous [25]. We show theoretically key
ways in which the many-body physics can be unveiled
by TL.

Near the ground state, electrons and holes in quantum
wires and dots, ions in Paul traps, and Rydberg atoms in
optical lattices are all well described as systems of inter-
acting particles trapped in parabolic potentials [26–29].

For atoms, the interaction is modeled as a contact po-
tential [30], whereas for electrons and ions the interac-
tion is via a Coulomb potential [25, 31]. The correlation
regime in harmonic traps can be controlled by varying
the particle-particle interaction strength or the confine-
ment ω0, and it also depends on the number of trapped
particles.

By virtue of the high tunability and the availability of
analytic (weak and strong interaction limits) [30, 32, 33]
or very accurate one-dimensional numerical solutions
[34, 35], these systems provide a good testbed for many-
body physics. Moreover, harmonic traps can be realized
experimentally and can be used as quantum simula-
tors to study emergent many-body phenomena such as
superconductivity, superfluidity, quantum phase transi-
tions and topological order [36, 37].

The article is organized as follows. In Sect. II we
describe the Hamiltonian of harmonic traps containing
several interacting particles and briefly review the Gen-
eralized Kohn Theorem. In Sect. III we present the math-
ematical description of twisted light and its interaction
with charged particles. In Sections IV and V we provide
details on the physical system and on the computational
methods, respectively. In Sect. VI we present and dis-
cuss the main results of our study and in Sect. VII we
give a summary and the conclusions.

II. HARMONIC TRAP

The Hamiltonian of N particles of mass m in a har-
monic trap is separable into a center of mass (CM)
part and another part that depends on the internal de-
grees of freedom, H0(r1..rN ,p1..pN ) = HCM

0 (R,PR) +
Hq

0 (q1...qN−1,pq1 ..pqN−1
); the transformation is given

by the Jacobi matrix [27]. The CM system is equivalent



to a single particle with mass M = Nm

HCM
0 =

P2
R

2M
+

1

2
Mω2

0R
2, (1)

where R = (
∑N
i ri)/N and PR =

∑N
i pi. For N =

2 and taking q = (r1 − r2)/
√

2 and pq = (p1 − p2)/
√

2,
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Hq
0 =

p2
q

2m
+

1

2
mω2

0q
2 + Vint(q), (2)

with Vint(q) being the interaction between particles.
Other definitions are valid as long as [R,PR] = i~ and
[qj ,pqj ] = i~ hold.

The Generalized Kohn Theorem (GKT) [25, 26] as-
sumes a harmonic confinement of a many-electron sys-
tem and the applicability of the dipole approximation to
the interaction Hamiltonian between (long wavelength)
light and the confined electrons. Under these two as-
sumptions, the GKT establishes that the response is
given by the center-of-mass degree of freedom, or in
other words, that the electron-electron interaction does
not affect the response. The same two hypotheses are
made in the Harmonic Potential Theorem [38], closely
related to the GKT. The assumption of parabolic confine-
ment holds for realistic quantum dots [27, 28]. For non-
harmonic traps many-body effects can be observed in
the dipole spectrum [39], an effect that has been studied
over the last thirty years [40–42]. Here we explore the
consequences of dropping the second assumption of the
GKT by studying the optical excitation of harmonically
confined electrons with structured light, whose interac-
tion cannot be modeled using the dipole approximation
[43, 44].

III. RESPONSE TO TWISTED LIGHT

In TL a phase singularity associated with the topolog-
ical charge l gives rise to a spatially non-homogeneous
and hollow intensity distribution with vanishing elec-
tromagnetic fields at the beam center. The TL field car-
ries OAM in the direction of propagation. We study the
head-on excitation of a matter system placed at the beam
center; in this case, the OAM carried by the beam is in-
trinsic [3]. In the Coulomb gauge,∇·A(r, t) = 0, and the
scalar potential can be chosen to vanish, Φ = 0. We can
then write the vector potential of a monochromatic TL
field in cylindrical coordinates as [45]

A(r, t) =eiθ[Fqrl(r)e
ilϕeσ

−iσ qr
qz

Fqrl+σ(r)√
2

ei(l+σ)ϕez] + c.c. (3)

with θ = qzz − ωt and frequency given by
ω2 = c2(q2r + q2z), where 1/qr is a measure of the lateral
beam size. The radial profile is described by a Bessel
function Fqrl(r) = A0Jl(qrr) and the polarization vector

is given by eσ = eiσϕ(er + iσeϕ)/
√

2 = (ex + iσey)/
√

2.
To describe the TL-matter interaction we choose the TL
gauge introduced in Ref. [46]. In the TL gauge the in-
teraction with a small, planar and localized structure
placed close to the phase singularity can be written
in a gauge invariant form. For a parallel TL beam,
sign(σ)=sign(l), with circular polarization σ = 1, the in-
teraction becomes HTL

I = [−e/(l + 1)]r⊥ · ∂tA, where e
is the electron charge. We consider a collimated beam
(qr/qz � 1), for which the second term in Eq. (3) can be
neglected and the interaction thus simplifies to a scalar
potential

HTL
I = − ieωFqrl(r)

(l + 1)
[−(x+ iy)eiθ + (x− iy)e−iθ], (4)

where we used that x± iy = r⊥ · (x± iy) and rleilϕ =
(x + iy)l . Near r = 0, we have Jl(qrr) ≈ (qrr)

l/(2ll!).
The interaction with an N -particle compact object
placed at r = 0 is then described by

H l=1
I =

eE0qr

2
√

2

N∑
i=1

(x2i − y2i ) sin(ωt)− 2xiyi cos(ωt), (5)

H l=2
I =

eE0q
2
r

12
√

2

N∑
i=1

(x3i − 3xiy
2
i ) sin(ωt) +

(y3i − 3yix
2
i ) cos(ωt), (6)

where E0 = ωA0. When l = 0 the field couples to the
dipole.

For two particles in one dimension we can rewrite
Eqs. (5) and (6) in terms of CM and Jacobi coordinates
as

H l=1
I =

eE0qr

2
√

2
(2X2 + q2) sin(ωt), (7)

H l=2
I =

eE0q
2
r

12
√

2
(2X3 +Xq2) sin(ωt). (8)

Notice that for l = 1 the interaction with TL is sep-
arable into CM and internal parts; for l ≥ 2, how-
ever, separability breaks down and the system’s re-
sponse can no longer be described as the sum of
the responses of CM and internal systems. For a
weak applied field, the response can be expanded in
a power series of the strength E0. The linear (∝ E0)
and second order (∝ E2

0 ) responses of an observ-
able O satisfy 〈Ô(1)〉 ∝

∑
k〈Ψ0|Ô|Ψk〉〈Ψk|ĤI |Ψ0〉 and

〈Ô(2)〉 ∝
∑
k,m〈Ψ0|Ô|Ψk〉〈Ψk|ĤI |Ψm〉〈Ψm|ĤI |Ψ0〉 [47–

50], where {|Ψk〉} are the eigenstates of H0. As a con-
sequence, only if the interaction and the observable
operators have the same parity will the response be
first order in the perturbation, otherwise the first non-
vanishing response will be of second order. In Table I
we list the dipole (D = 〈−e

∑N
i x̂i〉) and quadrupole
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TABLE I: Selection rules one-dimensional two-particle
harmonic-trap response to TL probe. Poles in brackets.

observable: D̂ = −eX̂ Q̂ = −e(2X̂2 + q̂2)

Ĥl=0
I D

(1)
CM [(2n+ 1)ω0] Q

(2)
CM [2nω0]

Ĥl=1
I D

(2)
CM [(2n+ 1)ω0] Q

(1)
CM [2nω0] + Q

(1)
q [ωq

02n]
Ĥl=2

I D
(2)
CM [(2n+ 1)ω0] Q

(2)
CM+q [2nω0;ω

q
2n2(n+1)]

(Q = 〈−e
∑N
i x̂

2
i 〉) responses of a small (compared to the

beam’s waist) one-dimensional harmonic trap placed at
the TL probe’s center (dark for l > 0), for three dif-
ferent spatial structures of the probe characterized by
l = 0; 1; 2. The superscript labels the order of the re-
sponse and the subscript whether the response is from
the CM, internal, or both. The frequencies of the allowed
transitions are indicated in brackets. D

(1)
CM[(2n + 1)ω0]

corresponds to GKT: for an l = 0 homogeneous probe
the dipole response is equal to the CM response and first
order in the field, with poles at the odd CM transitions
ωCM
0,(2n+1) = (2n + 1)ω0. We focus on the quadrupole re-

sponse where the correlation effects show up (the dipole
response can only reveal the CM spectrum, see first col-
umn of Table I).

In order to evaluate whether a TL probe is able
to capture relevant many-body physics we investigate
the transition into a strongly correlated regime, which
for fixed particle-particle interaction corresponds to the
limit ω0 → 0. As a proof of concept we perform numer-
ical calculations for a system of parabolically confined
electrons. We expect analogous results for multiple-ion
Paul traps. The interaction between electrons is mod-
eled with a soft-Coulomb potential [51, 52]

Vint(q) =
e2√

(
√

2q)2 + a2
. (9)

We use atomic units (a.u.) for all the calculations, ~ =
e = me = a0 = 1, and choose a = 1. In the next Section
we discuss realistic parameters for quantum wires and
TL probes.

IV. PROBE SET UP AND SYSTEM SIZE

To ensure a large beam waist (characterized by 1/qr)
we consider a collimated probe beam, qz = 2π/λ � qr.
The spatial structure of the TL beam can be approxi-
mated as Jl(qrr) ≈ (qrr)

l/(2ll!) near r = 0, which gives
us control over the optical selection rules by varying l
(Eqs. (5-6) are valid in this region). The beam waist 1/qr
is to be tuned such that the system fits well within the re-
gion of validity of this approximation. In Fig. 1 we plot
the spatial structure of TL beams with l = 2 for 3 differ-
ent values of the beam waist. A two-electron quantum
wire is placed at the beam center and characterized by
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FIG. 1: Density (in cyan) of a two-electron quantum
wire with confinement strength ω0 = 0.1/u∗t placed at
the TL beam center. TL beams with l = 2 and lateral

beam waist 1/qr = 3a∗0; 7a∗0; 11a∗0 are shown in purple,
red and green respectively. Near r = 0 we can

approximate J2(qrr) ∝ (qrr)
2 as long as 1/qr � L∗,

where L∗ is a measure of the system’s size.

its ground state electronic density (in cyan in the figure).
The maximum amplitude of the TL probe is weak, but
its variation in space is strong due to the existence of the
phase singularity at r = 0.

For a semiconductor the effective units of length, en-
ergy and time transform as a∗0 = (ε/m∗)a0, Ha∗ =
(m∗/ε2)Ha and u∗t = (ε2/m∗)ut respectively, where ε
and m∗ are the relative permittivity and effective mass
of the material. Taking the FWHM of the ground
state electronic density as a measure of the quan-
tum wire’s length our numeric calculations for ω∗0 =
0.5; 0.2; 0.11/u∗t yield approximate sizes of L∗ = 3; 7; 11
a∗0 for the wires. If ε = 12.4 and m∗ = 0.067, which
gives a∗0 ≈ 10 nm, the lengths correspond to L ≈
30; 70; 110 nm respectively.

From Fig. 1 it is evident that to probe a quantum wire
of size L∗ ≈ 11a∗0, a beam waist of 1/qr ≥ 7a∗0 is enough
to ensure the validity of the approximation J2(qrr) ≈
(qrr)

2/(222!). Within the paraxial approximation 1/qr ≥
7a∗0 implies λ � 2π7a∗0 ≈ 4 × 10−7 m. A safe choice for
l = 2 TL probe and two-electron quantum wires would
be 1/qr ≥ L∗, with λ � 7 × 10−6 m. A similar rationale
can be applied to l = 1 TL beams, but notice that for
l = 1 we have J1(qrr) ≈ qrr/2, which has a larger spatial
derivative than the l = 2 case, therefore the condition on
the minimum waist size is more restrictive for l = 1.

We would like to stress that since TL can be tuned
with high precision in the lab, the requirements for the
proposed set up should not be an impediment. Even less
so if the proposed set up is designed as a quantum sim-
ulator, since in that case one can also tune the harmonic
trap with high precision.
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V. COMPUTATIONAL DETAILS

Before presenting the results of our study we discuss
some relevant computational details of the calculations.
Both the exact and Time-Dependent Density-Functional
Theory (TDDFT) dynamics were computed in Octopus
version 9.0 [53] using a 100 a.u. simulation box with
0.1 a.u. spacing. The exact calculations were done us-
ing the modelmb functionality in Octopus [54] and the
code was modified to output the quadrupole moment in
one dimension.

The interaction with the TL field is modeled as
H l
I = E0f(t)

∑N
i x

(l+1)
i in the calculations. The spatial

dependence is dictated by Eqs. (5-6) and for the time de-
pendence we choose a step function f(t) = rect(t−τ/2),
where τ is the duration of the pulse. For the spectra
shown in the next Section we used a τ equal to the time
step, which is 0.005 a.u.. Other choices of τ as well as a
trapezoidal time function lead to qualitatively identical
results in terms of the position of the peaks, which is the
only feature of the spectra we analyze in this work.

The first-order quadrupole response to the TL probe
can be computed as

Q(1)(ω) = FT [Q(1)(t)]/FT [E(t)] (10)

where E(t) = E0f(t) is the external perturbation due
to the interaction between the harmonic trap and the
TL field. The symmetries of the problem under study
are such that whenever the interaction operator is even
(l = 0; 2) the first-order response Q(1) vanishes (see Ta-
ble I). In this work we focus on the first non-vanishing
quadrupole response. Therefore we analyze the first-
order quadrupole response Q(1) in the case where the
interaction operator is odd (l = 1) and the second-
order quadrupole response Q(2) in the cases the inter-
action operator is even (l = 0; 2). The time-dependent
quadrupole can be computed from the evolution of the
density ρ(x, t) as

Q(t) = −e〈
N=2∑
i

x̂2i 〉 = −e
∫
ρ(x, t)x2dx. (11)

Q(1)(t) in Eq. (10) is simply the variation of the
quadrupole moment due to the action of a TL probe of
odd topological charge l, i.e. Q(1)(t) = δQ(t) = Q(t) −
Q0, with Q0 = −e

∫
ρ0(x, t)x2dx being the unperturbed

quadrupole moment. The second-order frequency re-
sponse is not as straightforward because the hyperpo-
larizability is convoluted with the external field. We take
a pragmatic approach in this work and approximate the
second-order frequency quadrupole response as

Q(2)(ω) ≈ FT [Q(2)(t)]/(FT [E(t)])2, (12)

where Q(2)(t) = Q(t) − Q0 is the variation of the
quadrupole moment due to the action of a TL probe
with even topological charge l. The independence of the
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FIG. 2: Internal potential V (q), eigenvalues εqn and the
singlet energy spacings ωqmn = εqm − εqn in the low

energy region (atomic units). Energy levels in black
(grey) represent singlet (triplet) states. The solid

(dashed) arrows represent the first order Q(1)
q (second

order Q(2)
q ) quadrupole response to a quadrupole

excitation.

peak positions on the shape and duration of the pulse
gives us confidence that the approximation in Eq. (12) is
justified. The contribution of FT [rect(t − τ/2)] is only
significant around ω = 0 and will be ignored here.

In addition to ALDA, we also performed calcula-
tions at the Hartree-Fock (EXX) and Self Interaction Cor-
rected (SIC)-LDA level (not shown). Neither the ground
state densities nor the quadrupole spectra computed us-
ing these approximations improved significantly over
ALDA.

VI. RESULTS

In Fig. 2 we represent the internal potential
V (q) = 1/2mω2

0q
2 + Vint(q), the first eight eigenergies εqk

and first three singlet energy spacings ωqmn = εqm − εqn
for confinement strengths ω0 = 0.5; 0.2; 0.1 a.u.. As
correlation grows we observe the emergence of sev-
eral characteristic features: i) The particles localize
maximally far from each other. This is evident from
the shape of V (q), which transitions from a single to
a double well. This behaviour is also reflected in the
shape of the total density (see inset Fig. 3) and is usually
referred to as low density limit or Wigner crystal in the
literature [55–58]. ii) Increasing deviation of the ground
state wave function from a single Slater determinant
(static correlation), resulting in an increment of the von
Neumann entropy s [59]: sω0=0.5 = 0.07; sω0=0.2 = 0.25;
sω0=0.1 = 0.35. iii) The symmetric and antisymmetric
wave functions become energetically degenerate [60]
as in the case of distinguishable fermions [61, 62],
which can be seen in the approaching of even and odd
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internal levels (black and grey in Fig. 2) [63]. iv) The
internal energy levels become equidistant as in the
case of a single-particle harmonic oscillator; with an
effective natural frequency given by ωqn,n+1 →

√
3ω0/2

as ω0 → 0, consistent with a Taylor expansion of the
Coulomb potential around the classical equilibrium
positions of the particles [32, 64]. We show that, of all
these features, the equidistance between quadrupole
response frequencies (feature iv) can be identified by
means of a TL probe.

The arrows in Fig. 2 represent the quadrupole-
allowed internal transitions in the low-energy region.
Solid arrows connect the ground state with even states
and represent the first-order quadrupole response Q(1)

q ;
these transitions can be excited with a TL probe of l = 1.
Dashed arrows correspond to Q

(2)
q which depends on

two frequencies (two-photon processes). These transi-
tions connect even internal states and can be excited
with a l = 2 TL probe (see Table I).

We envisage a large waist TL beam impinging
head-on at an object placed near the beam center,
such that qrr � 1 and Jl(qrr) ≈ (qrr)

l/(2ll!) (see
Fig. 1), which gives us control over the optical al-
lowed excitations by varying l. The interaction with
the TL probe is modeled as a weak instant field,
H l
I = E0

∑N
i r

(l+1)
i rect(t− 0.0025 a.u.).

In Fig. 3 we plot the quadrupole spectra of two-
electron harmonic traps, for different regimes of confine-
ment ω0. The exact response is shown in black, and in
green we show the TDDFT response computed using
the Adiabatic Local-Density Approximation (ALDA),
for TL probes of l = 0; 1; 2. To analyze the peak positions
we plot the absolute value of the Fourier Transform (FT)
of the quadrupole, Q(ω) = |FT [−e

∫
ρ(x, t)x̂2dx]|, com-

puted from real-time evolution of the electronic density
ρ(x, t). After the perturbation is turned off the system
evolves freely for a total time of T = 2500 a.u.. TL-
matter interaction in the problem under study is mod-
eled as a scalar potential, and can therefore be fully
characterized by density-density response. The imag-
inary parts of Q(1)(ω) and Q(2)(ω) correspond to the
quadrupole polarizability and first quadrupole hyper-
polarizability respectively [65, 66], which can be mea-
sured in an absorption experiment [67, 68].

Interaction with a homogeneous probe l = 0 shown
in the upper panel of Fig. 3 gives the CM quadrupole re-
sponse Q(2)

CM[2ω0]. ALDA reproduces the position of the
peak accurately. For the l = 1 TL probe shown in the
middle panel the quadrupole response is Q(1)

CM[2ω0] +

Q
(1)
q [ωq02, ω

q
04, ω

q
06]. The four internal transitions and

their numerical values are indicated with solid arrows
in Fig. 2. As correlation grows (ω0 → 0) the singlet in-
ternal transitions become equidistant and independent
of the interaction, ωq2n,2(n+1) →

√
3ω0. ALDA shows one

unique peak instead of two for l = 1; this shortcoming is
well understood [69] and can be fixed ad hoc as shown

in Ref. [70], where accurate energies for the transitions
ωq02 and ωCM

02 were found for the same one-dimensional
Hooke’s atom studied here. For the l = 2 TL probe
shown in the lower panel the quadrupole response
is Q(2)

CM+q[ωq02, 2ω0, ω
q
04, ω

q
06, ω

q
24, ω

q
46, ω

q
26], the transitions

are indicated with dashed arrows in Fig. 2. As we move
into the strongly correlated regime the transition fre-
quencies ωq02, ωq24 and ωq46 get closer and so do ωq04 and
ωq26. For ω0 = 0.1 a.u.. they overlap at the theoretical
value ωq2n,2(n+1) →

√
3ω0 and ωq2n,2(n+2) → 2

√
3ω0 re-

spectively, as predicted theoretically for the limit ω0 → 0
[32, 33]. ALDA reproduces the position of the peaks
fairly well in the l = 2 spectra for all ω0, capturing the
approaching and overlapping of the peaks as the con-
finement ω0 decreases and correlation dominates. De-
spite reproducing poorly the ground state density in this
limit [57] (see inset Fig. 3) ALDA’s spectrum seems to get
actually more accurate for small ω0. We may speculate
that the equidistant spacing of the internal energy levels
is easier for the TDDFT approximation to capture be-
cause it renders the response effectively single-particle.

For ω0 = 0.1 and a l = 2 TL probe we observe an
additional peak in the low energy region (≈ 0.15 a.u.)
of the ALDA spectrum (see lowest energy peak in green
spectrum in Fig. 3). The emergence of this spurious peak
coincides with the appearance of a degeneracy between
two ALDA frequencies, namely ωq,ALDA06 − ωq,ALDA04 =

ωq,ALDA02 ≈ 0.17 a.u. We only observe the spurious peak
when such a degeneracy takes place (both in ALDA and
in Hartree-Fock). We hypothesize that this unphysi-
cal peak could be related to the spurious poles plagu-
ing adiabatic TDDFT and Hartree-Fock quadrupole re-
sponse in cases of degeneracy between TDDFT frequen-
cies [71], but further investigation is needed to confirm
this hypothesis.

VII. CONCLUSION

We have shown analytically that, unlike plane waves,
a TL field is able to excite internal transitions in har-
monically confined systems of interacting particles. We
identify several features that characterize the transition
into a strongly correlated regime in a many-particle
harmonic trap. Out of them the degeneracy between
symmetric and antisymmetric wave functions has been
experimentally observed in nanowires and in a one-
dimensional atom trap [55, 72]. We show that another
characteristic feature, namely the equidistance between
internal energy levels, can be revealed in the quadrupole
response after excitation with a TL probe. We present
the numerically exact response of a two-electron quan-
tum wire perturbed with a TL probe of l = 0; 1; 2 and
show that the results can be reproduced with an ab ini-
tio method such as adiabatic TDDFT. The validity of our
findings is expected to hold for an arbitrary number of
particles, as supported by our preliminary ALDA simu-
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FIG. 3: Exact (black) and ALDA (green) quadruple spectrum (in logscale) of a two-electron one-dimensional
harmonic trap excited with an homogeneous l = 0 probe (upper panel), a l = 1 TL probe (middle panel) and a l = 2

TL probe (lower panel). The object is placed at the beam center (dark for l > 0). The ground state densities are
shown in the inset. Numerical values for ωqmn in Fig. 2 (atomic units). See computational details in the text.

lations for three electrons (not shown in this article). We
expect that in the case of a two-dimensional harmonic
trap, the quadrupole response contains information on
the moment of inertia; this may prove useful to study
angular momentum exchange [73] or superfluidity [74].

We conclude that a TL probe can be used for non-
invasive internal state detection and to study correla-
tion effects and novel optical selection rules in harmonic
traps like quantum dots or ion traps. If the TL probe is
replaced by a resonant TL pump it could also be used to
control the internal state of the quantum system. Manip-
ulation and detection of the internal (motional) modes
is key for the implementation of logical gates in ion-trap
quantum computing [29, 75, 76]. The proposed setup
could serve as an analog quantum simulator to control

and study intermediate correlation regimes where no
analytic or numerically accurate solutions are available.
Alternatively it could also be used to characterize the TL
field. Whether a TL probe can provide additional infor-
mation about the degree of correlation in the more gen-
eral case of non-harmonic systems for which GKT does
not apply remains as an open question.
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