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Momentum space entanglement entropy probes quantum correlations in interacting fermionic
phases. It is very sensitive to interactions, obeying volume-law scaling in general, while vanishing
in the Fermi gas. We show that the Rényi entropy in momentum space has a systematic expansion
in terms of the phase space volume of the partition, which holds at all orders in perturbation
theory. This permits, for example, the controlled computation of the entropy of thin shells near the
Fermi wavevector in isotropic Fermi liquids and BCS superconductors. In the Fermi liquid, the thin
shell entropy is a universal function of the quasiparticle residue. In the superconductor, it reflects
the formation of Cooper pairs. Momentum space Rényi entropies are accessible in cold atomic
and molecular gas experiments through a time-of-flight generalization of previously implemented
measurement protocols.

Consider a many-body quantum system described
by a wavefunction |ψ〉. For any partition of the sys-
tem into regions A and Ā the nth Rényi entropy is

Sn(A) =
1

1− n
ln Tr [ρnA] (1)

where ρA = TrĀ|ψ〉〈ψ| is the reduced density matrix
of subsystem A. Real space partitions have been
extensively studied, as the scaling of Sn(A) with
the size of A characterizes ground state properties
in equilibrium [1–4] as well as dynamical properties
out of equilibrium [5–9]. The spectrum of eigen-
values of ρA can also probe the physical excitation
spectrum [10] and the dynamical phase at non-zero
temperature [11–13].

Real space Rényi entropy has been measured
in systems of ultracold bosonic atoms [14, 15]
and trapped ions using several protocols [16, 17].
Such measurements provide important experimen-
tal tests of quantum thermalization in isolated sys-
tems. Modified protocols have also been proposed
for measuring real space entanglement in fermionic
systems [18, 19].

For translation-invariant fermionic systems, it is
natural to consider partitions of |ψ〉 in momentum
rather than real space (real space cuts are discussed
in Refs. [4, 20]). Momentum space entanglement is
extremely sensitive to interactions: in the ground
state of the non-interacting Fermi gas, Sn(A) = 0
for any momentum partition A. Generic interactions
couple all momentum modes to one another, which
implies that Sn(A) ∼ V |A|, where V is the volume
of the system and |A| is the k-space volume of A
(volume-law scaling) [21]. The entropy per mode,
sn(A) ≡ Sn(A)/V |A|, thus characterizes the effect
of interactions in the system.

In this manuscript, we compute sn(A) in the
ground state of an isotropic Fermi system with short-

FIG. 1. The second Rényi entropy per mode s2(A↑δk)
for a spin-polarized, thin shell partition near the Fermi
wavevector (inset). Here, g(εF ) is the density of states
at the Fermi energy, and the arrows in the inset indicate
virtual processes that contribute to the entropy of the
interacting ground state. The entropy is controlled by
the quasiparticle residue zkF in the Fermi liquid, the
gap ∆ in the superconductor, and vanishes in the Fermi
gas.

range interactions (see Eq. (4)). This model real-
izes a Fermi liquid when the interactions are repul-
sive and a s-wave superconductor when they are at-
tractive. In both phases, the lowest energy modes
lie in thin shells near the nominal Fermi wavevec-
tor kF , which is a natural regime to search for
universal phenomena (see Fig. 1 inset). Below,
Aδk denotes the set of modes with momenta in the
range [kF − δk, kF ], and its spin-up (down) polar-

ized counterparts are A↑δk(A↓δk).

We show that correlations between the different
modes in Aδk vanish as δk → 0, such that the en-
tropy Sn(Aδk) is simply the sum of the single mode
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entropies. In the main text, for simplicity, we ar-
gue that this holds within a certain Gaussian ap-
proximation for the interacting system. The supple-
mental material generalizes this argument, relaxing
the Gaussian approximation by using diagrammatic
techniques to relate the entropy to the free energy
of interacting fermions on pants-like manifolds (see
Fig. 2).

In the Fermi liquid, as the single mode entropy
arbitrarily close to the Fermi surface is characterized
by the quasi-particle residue zkF , the Rényi entropies
of thin shell cuts have universal forms. For example,
the second Rényi entropy is given by

s2(Aδk) −→
δk→0

2 ln

[
2

1 + z2
kF

]
+O(δk/kF ). (2)

In the s-wave superconductor, BCS theory pre-
dicts the presence of a superconducting gap ∆ and
Cooper pairing of fermions with opposite spin and
momenta. Non-trivial momentum space partitions
must trace out “half” of a Cooper pair; for parti-
tions invariant under the transformation k → −k,
this requires that the partition is spin-polarized. For
A↑δk, the second Rényi entropy is given by

s2(A↑δk) ∼

{
π(1− 2−1/2)∆/(vF δk), vF δk � ∆

ln 2, vF δk � ∆

(3)
where vF is the Fermi velocity. The saturation to
the value ln 2 reflects Cooper pairing throughout the
thin shell. These results for the Fermi liquid and
superconductor are summarized in Fig. 1.

Existing experimental protocols to measure real
space entropy [16, 17] can be simply generalized
to momentum space, as the underlying procedures
do not prefer a particular single-particle basis prior
to final measurements. We discuss the general-
ized schemes further below. Several groups have
measured single-atom-resolved correlations in mo-
mentum space in various ultra-cold bosonic and
fermionic systems in the last few years [22–26], and
have paved the way for the Rényi entropy measure-
ments that we propose.

Momentum space entanglement has been previ-
ously studied in chiral and non-chiral fermionic sys-
tems. In the chiral quantum Hall setting, mo-
mentum space partitions are designed to probe the
physics of a real space edge [10, 27], so their physics
is quite different. In a chiral nonlinear Luttinger
liquid, quantum many-body scars may be diag-
nosed by their low momentum-space entanglement
entropies [28]. In the non-chiral setting, various fea-
tures have been reported in model studies in disor-
dered systems [29–32], related spin chains [33–35],

Luttinger liquids [36, 37], Hubbard models [38, 39]
and field theories [40–43].

Fermi Liquids— Consider the following model of
an isotropic Fermi liquid:

H = H0 +H1

H0 =
∑
k,σ

(k2/2m− εF )︸ ︷︷ ︸
ξk

f†kσfkσ

H1 =
U

V

∑
k1+p1=k2+p2

f†k2↑f
†
p2↓fp1↓fk1↑

(4)

where f†kσ (fkσ) are fermion creation (annihilation)
operators with momentum k and spin σ, U is the
interaction strength, and εF is the Fermi energy.
Throughout this manuscript, we take |ψ〉 to be the
ground state.

Let us warm up by considering A = {kσ} a single
spin polarized mode. In this case, number conserva-
tion dictates that ρA is diagonal in the Fock basis
with entries 〈nkσ〉 and 1 − 〈nkσ〉. The single mode
Rényi follows immediately,

Sn({kσ}) =
1

1− n
ln
[
〈nkσ〉n + (1− 〈nkσ〉)n

]
(5)

If the mode lies near the Fermi surface, the occupa-
tion 〈nkσ〉 ≈ (1 ± zkF )/2 where we take +(−) for
k inside (outside) the Fermi surface. Accordingly,
the single mode entropy near the Fermi surface is an
elementary function of the quasiparticle residue.

In general, going beyond a single mode is analyt-
ically challenging in an interacting state. As an ap-
proximate approach, we start by neglecting all mul-
timode connected correlations. This “Gaussian ap-
proximation” to the Renyi entropy is computed by
taking the true one-body density matrix

Gk′σ′;kσ = 〈f†k′σ′fkσ〉 (6)

restricted to the modes in A and using the Peschel
result for non-interacting fermions [44],

SGn (A) =
1

1− n
tr ln

[
G|nA + (1−G|A)n

]
(7)

For the Fermi liquid, momentum and spin conser-
vation dictate that G|A is already diagonal for kσ-
space cuts with eigenvalues given by the occupations
〈nkσ〉. With reference to Eq. (5), we find that the
Gaussian approximation predicts that the Rényi en-
tropy is simply the sum of the (exact) single mode
entropies,

SGn (A) =
∑
kσ∈A

Sn({kσ}) (8)
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FIG. 2. The imaginary time manifold for pants in kσ-τ space with various waists W , arising in the computation
of the Rényi entropy: (a) the normalization free energy F (n)(∅) (“tubes”), (b) the single mode Rényi free energy

F (n)({qσ}) (“low-rise jeans”) and (c) the A Rényi free energy, F (n)(A) (“pants”), all shown for n = 2. Vertical axis
shows imaginary time extending from 0 to nβ, with boundaries cut and glued according to the markers. Horizontal
axis is schematic representation of kσ space.

For general partitions A, this approximation is un-
controlled. For example, if A is the entire system,
the true entropies vanish while Eq. (8) predicts an
extensive positive value. On the other hand, SGn
is clearly exact for A consisting of a single spin-
polarized mode. More generally, short-range inter-
actions in real-space lead to long-range interactions
in kσ-space with an interaction strength that scales
inversely with the volume V , as discussed in the
Supplemental Material. Perturbatively, the associ-
ated connected correlations vanish for finite sets of
modes; we thus expect that the Gaussian approx-
imation is accurate for sufficiently small cuts A in
kσ-space.

More precisely, in the appendix [45] we show that

Sn(Aδk)−
∑

kσ∈Aδk

Sn({kσ}) ∼ O((δk/kF )2) (9)

holds to all orders in perturbation theory in the cou-
pling U . Formally, we obtain this result by relating
the various Rényi entropies in Eq. (9) to the free en-
ergy F (n)(W ) of systems of interacting Grassmann
fermions on pants-like manifolds in kσ-space and
imaginary time with varying waist regions W (see
Fig. 2). Comparison of the diagrammatic expansion
for F (n) on each of those manifolds allows us to show
that the terms which contribute to Eq. (9) are indeed
controlled by δk at all orders. The reader might find
it instructive to compare our approach with those
of Refs. [46, 47], which compute fermionic entropies
without manifold embeddings.

Putting Eqs. (5), (8) and (9) together for a cut
Aδk near the Fermi surface recovers the universal
result quoted in the introduction, Eq. (2).
Superconductors— As the Cooper pairs in a s-

wave superconductor are composed of fermions with
opposite spin and momentum, it is natural to focus

on spin-polarized partitions A↑ of momentum space.

In this case, spin symmetry dictates that
Eqs. (6), (7), (8) still provide the Gaussian approx-
imation to the Renyi entropy. In particular, G|A↑

is diagonal and the anomalous correlator 〈fk′σ′fkσ〉
vanishes when restricted to A↑. Note that the Gaus-
sian approximation with non-vanishing anomalous
correlators in A is different from that given in Eq. (7)
(see, e.g. [44]).

Furthermore, as the discussion leading up to
Eq. (9) suggests, the relationship between the single
mode entropies and that of thin shells holds quite
generally, although one needs to take into account
symmetry breaking correctly. In the appendix, we
show that Eq. (9) holds for spin-polarized partitions
A↑ in the presence of s-wave superconducting order.
In sum, the spin-polarized thin shell Rényi entropies
can be computed using Eqs. (7)-(9) as is.

Of course, in order to actually compute SGn (A↑),
one needs to know the occupation numbers of the
{k ↑}modes in the shell. BCS theory provides a self-
consistent mean field approach to computing these
occupations,

〈f†k↑fk↑〉 =
1

2

(
1− ξk√

ξ2
k + |∆|2

)
(10)

where |∆| is the gap. Straightforward algebra pro-
duces,

Sn(k ↑) = ln 2 +
1

1− n
ln

bn/2c∑
r=0

(
n

2r

)(
ξ2
k

ξ2
k + |∆|2

)r
(11)

The scaling of sn(A↑δk) with |∆| depends on its
relative size with the energy scale of the thin shell.
In the small gap limit |∆| � vF δk, we can expand
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(11) in powers of |∆/ξk| or |ξk/∆| to obtain

Sn(k ↑) ≈

{
n

4(n−1) |∆ξ
−1
k |2, |ξk| > |∆|

ln 2− n|∆ξ−1
k |−2/2, |ξk| < |∆|

(12)
Summing up all contributions leads to the result in
Eq. (3), which confirms the following simple intu-
ition. When |∆| � vF δk, all modes within the thin
shell are strongly hybridized, resulting in the sat-
uration of sn(A↑δk) to the maximal value ln 2. On

the other hand, when |∆| � vF δk, sn(A↑δk) scales
linearly in |∆|/vF δk, since only modes within a re-
gion |∆| around the Fermi surface are strongly hy-
bridized.
Free Dirac Transitions— Within BCS theory,

the superconducting gap ∆ exhibits an essential sin-
gularity at Ug(εF ) = 0. The thin-shell momentum
space entropy shown in Fig. 1 inherits this singular-
ity. It is natural to conjecture that this is connected
to the presence of a spectral gap for U < 0, and
that in analogy with real-space entanglement, mo-
mentum space entropy can exhibit non-analyticities
in response to gap-inducing perturbations. We test
this hypothesis by computing the second Rényi en-
tropy of spin polarized momentum balls around a
Dirac point in D spatial dimensions. On tuning the
mass m, we find a generic non-analyticity

s2(A↑) ∼ |m|D ln |m| (13)

in the free theory (see appendix). We leave the ex-
tension to the interacting critical theory to future
work.
Measurement Protocol— A series of experiments

with ultra-cold bosons have demonstrated that real
space Rényi entropy can be measured by prepar-
ing copies of a quantum state and interfering them
appropriately [14, 15]. Here we briefly review this
protocol, which has been extended theoretically to
fermionic systems as well [18, 19], and generalize it
to momentum space.

Begin with two identical copies of a quantum state
in a pair of optical lattices; typically these are pre-
pared by independent but identical time evolution
in each copy. A beam splitter then interferes the
two copies by freezing each of their dynamics and
allowing for tunneling between them using an opti-
cal superlattice. This operation maps fermions in
the first (a†) and second (b†) copies as:

a†i,σ →
a†i,σ + b†i,σ√

2
; b†i,σ →

b†i,σ − a
†
i,σ√

2
(14)

Microscopy techniques are then used to measure site
and spin-resolved particle densities, from which the

second Rényi entropy of an arbitrary real space par-
tition is calculated [48].

Prior to measuring particle densities in real space,
this protocol does not privilege any particular single-
particle basis; it is the measurement basis which de-
termines the partitions that can be accessed. Re-
placing real-space microscopy with a time-of-flight
(TOF) single-atom-resolved measurement [22–26]
enables the computation of momentum space Rényi
entropies in near-term experiments. In TOF, the
atoms are released from the optical lattice and ab-
sorption imaging is used to reconstruct the initial
momenta [49].

Discussion— We have shown that mo-
mentum space entanglement Sn(A) in the
ground state of interacting fermionic sys-
tems permits a systematic expansion in the
phase space volume of A (shell width δk →
0).Thisisanalogoustothesystematicexpansionoftherealspaceentanglemententropyinsubsystemsize`→
∞.

In real space, the coefficient of the leading term
is universal in gapless phases, where it captures the
central charge in 1D critical systems [1–3] and the
geometry of the Fermi surface in higher D [4, 20]. In
momentum space, we find that the leading contribu-
tion to the entanglement entropy of thin shells near
the Fermi surface depends only on the quasiparticle
residue zkF . An interesting avenue for future work
is to compute the O(δk2) contribution, where we ex-
pect the Landau parameters to play a role as they
reflect the correlations between k-modes.

The one dimensional interacting Fermi system re-
alizes a Luttinger liquid where zkF = 0. Despite the
more dramatic reorganization of the ground state
from the non-interacting Fermi sea, we nonetheless
expect s2(Aδk) = 2 ln 2 + O(δk). This follows by
applying our results to the parquet-diagram based
perturbative treatment of the Luttinger liquid [50];
it would be interesting to check this in a direct multi-
mode calculation, building on Ref. [35].

The detailed understanding of real-space entan-
glement has fed into great improvements in matrix-
product based numerical techniques [51–53]. As
the phase space expansion gives systematic con-
trol of entanglement in momentum space, we ex-
pect similar positive feedback on the development
of momentum-space based algorithms [39, 54–56].
Separately, momentum-space based quantum Monte
Carlo techniques on manifolds of the type in Fig. 2
should give direct access to thin shell entropies [57–
59].

Our diagrammatic proof shows that the lead-
ing term in δk is given by the sum of the exact
single mode entropies for short-range interactions
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and choices of spin-polarization in the thin shell
A. We expect these arguments can be extended to
Coulomb interactions and more complicated sym-
metry breaking patterns. This paves the way to sys-
tematically explore momentum-space entanglement
in more complicated phases such as unconventional
superconductors, antiferromagnets and electron ne-
matics.
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