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We employ a time-dependent real-space local density-of-states method to study the movement
and fusion of Majorana zero modes in the 1D interacting Kitaev model, based on the time evolu-
tion of many-body states. We analyze the dynamics and both fusion channels of Majoranas using
time-dependent potentials, either creating Walls or Wells. For fast moving Majoranas, we unveil
non-equilibrium signatures of the “strong-zero mode” operator (quasi parity degeneracy in the full
spectrum) and its breakdown in the presence of repulsive Coulomb interactions. Focusing on form-
ing a full electron after fusion, we also discuss upper and lower limits on the Majorana speed needed
to reduce non-adiabatic effects and to avoid poisoning due to decoherence.

Introduction. Majorana zero modes (MZMs) gener-
ate considerable interest because of potential applica-
tions in quantum information and computation [1–3].
MZMs obey non-Abelian exchange statistics. Because
they are topologically protected from local perturbations
and disorder, they are of value as possible qubits [4–6].
Signatures of MZMs are expected to develop in tunnel-
ing conductance experiments as zero bias peaks [7–9].
The simplest setup to realize Majoranas are quantum
wires, where MZMs develop at the two edges [1, 14]. For
ferromagnetic atomic chains with strong spin-orbit cou-
pling placed over a superconductor, MZMs were indeed
reported at the edges in spatially and spectral-resolved
scanning tunneling experiments [10, 11]. In nanowires,
most theoretical work neglect repulsion among particles.
However, Coulomb repulsion plays an important role in
1D MZMs because it suppresses the pairing-induced bulk
gap and can destroy topological protection [12, 13].

The movement of Majoranas and detection of fusion
channels are important for quantum-information pro-
cessing [14, 15]. MZMs behave as Ising non-Abelian
anyons [4, 16] and obey the fusion rule [15]: γ×γ = I+ψ,
meaning two MZMs can fuse into the vacuum I or into
an electron ψ. The fusion process requires a slow adi-
abatic movement of Majoranas, achieved by applying
properly adjusted time-dependent local gates to the topo-
logical superconducting wire [14]. The rapid progress in
quantum-wires with tunable local gates [14, 15, 17] pro-
vides a promising platform for creation, movement, and
fusion of Majoranas [18].

Motivated by experimental progress in nanowires [19],
here for the first time we employ a computationally-
intensive time-dependent real-space local density-of-
states LDOS(ω, j, t) method to observe the movement
and fusion of Majoranas in the interacting Kitaev model.
The uniqueness of our effort is that we can study Majo-
rana movement at any speed by properly choosing the
time dependence of gate voltages, namely we can ac-
cess the non-equilibrium situation away from adiabatic-
ity, difficult to reach by theoretical tools. LDOS(ω, j, t)
of moving Majoranas and fusion outcome can be mea-
sured in tunneling spectroscopy experiments based on

gate-control nanowire devices [19, 20]. Compared to pre-
vious studies based on single particle states, here we use
the exact-diagonalization method for the time evolution
of the many-body states of interacting electrons in the
1D Kitaev model up to 16 sites. We address the out-
of-equilibrium properties and fusion rules of MZMs, via
sequential application of time-dependent chemical poten-
tial gates. For fast moving non-interacting MZMs, using
the time-dependent LDOS, we find the signature of a
“strong-zero mode” operator in LDOS(ω, j, t) [21, 22].
Remarkably, we found the total spectral weight at ω = 0
remains conserved (almost identical to the case of slow
moving Majoranas). However, with interaction V , de-
pending on its strength and switching time τ , we find
loss in spectral weight at ω = 0 and breakdown of the
strong-zero mode properties. Furthermore, we provide
the time scale to observe the fusion rules of interacting
Majoranas. Although it is widely expected that for “adi-
abatic” movement of MZMs their fusion will lead to the
formation of a fermion or vacuum states, only via cal-
culations as presented here, that allows for any speed
for the MZMs, is that we can establish how “slow” the
movement must truly be in practice.
Model and Method. We consider the time-dependent

interacting 1D Kitaev model for spinless fermions with
open boundary conditions to anchor MZMs:

H(t) = −th
N−1∑
i=1

(
c†i ci+1 +H.c.

)
+ V

N−1∑
i=1

(nini+1) +

∆

N−1∑
i=1

(cici+1 +H.c.) +

N∑
i

µi(t)ni, (1)

where ni = c†i ci and c†i (ci ) is the fermionic creation (an-
nihilation) operator, th is the hopping amplitude, and
∆ is the p-wave pairing strength. The time dependent
Hamiltonian H(t) (Eq.1) commutes with the parity op-

erator P = eiπ
∑

j nj [23, 24]. The time dependence is
incorporated in the chemical potential µi(t) as:

µi(t) = 0 (i < i0), µi(t) = µ (i > i0),
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FIG. 1. Schematic representation of the transfer of the right
edge MZMR to site i0 − 1 in a 1D Kitaev chain. The on-
site chemical potential at any site can be tuned using time-
dependent local gates with quench rate 1/τ . Large (small) τ
corresponds to slow (fast) motion of MZMR. Blue squares de-
note the topological region (with µi<io = 0) while red squares
denotes the non-topological region (with µi>io = µ) for this
Wall case. For the Well, the red region has a negative µ.

µi(t) = µ
n∆t

τ
(i = i0), (2)

where 1/τ is the quenched rate, ∆t = 0.001 is the small
time step we used, and n is the integer number of those
steps, such that the on-site chemical potential µi(t) at i =
i0 increases approximately linearly from 0 to µ in a time τ
(defined as the switching time of the local gate at site i =
i0). The sequential application of onsite gates µi(t) on
the right half of the 1D chain, creates a moving Wall for
µ > 0 (or moving Well for µ < 0), separating topological
from non-topological regions at site i = i0. Equating our
number of sites with number of gates in a coarse-grained
approach, this process leads to the movement of the right
edge Majorana zero mode (MZMR) from the edge i = N
to site i0 − 1 in a finite time t = NRτ , with NR the
number of sites where the chemical potential reached its
maximum value (here being |µ| = 12) at time t (Fig. 1).

To calculate the time-dependent local density-of-states
(at zero temperature), we first time evolve the ground-
state wave function |ψ(0)〉 up to time t = NRτ , us-
ing the time-dependent Hamiltonian H(t) as: |Ψ(t)〉 =

T exp
(
−i
∫ t
0
H(s)ds

)
|ψ(0)〉, where T is the time order-

ing operator [25]. Then, we calculate the double-time
Green function G(t, t′) [26], using the time-independent
Hamiltonian Hf = H(t = tf ) at time tf = NRτ :

Gelecj (t, t′) = 〈Ψ(t)|c†je
iHf t

′
cje
−iHf t

′
|Ψ(t)〉. (3)

The time-dependent LDOSelec(ω, j, t) for electrons is the
Fourier transform with respect to t′ of the local-Green
function at site j: LDOSelec(ω, j, t)=

=
1

π
Im

∫ T

0

dt′ei(ω+iη)t
′
iGelecj (t, t′). (4)

where we use T = 70 for the integration, and broaden-
ing η = 0.1. Similarly we obtained the LDOShole(ω, j, t)
for holes, using the Fourier transform of the Green func-
tion Gholej (t, t′) = 〈Ψ(t)|cj(t′)c†j |Ψ(t)〉. The total lo-
cal density-of-states at site j is, thus, LDOS(ω, j, t) =
LDOShole(ω, j, t) + LDOSelec(ω, j, t).
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FIG. 2. Slow movement of Majoranas. (a) Local density-of-
states LDOS(j, ω, t) vs. site j, at time t = 0 and for ω = 0.
The sharp peaks at sites j = 1 and j = 12 in LDOS(j, ω =
0, t) represent Majorana edge modes for different values of
V and µj = 0 (for 1 < j < 12). Inset: LDOS(ω) vs. ω
at site j = 12 using broadening η = 0.1. Site-dependent
LDOS(j, ω, t) at ω = 0 and time t/τ = 6 for V = 0, 0.5, and
1.0 with τ = 36, 60, and 72, respectively, for: (b) Positive
µ (Wall). Inset shows the site-dependent density 〈n(j, t)〉 at
t/τ = 6 for µR = 12. (c) Negative µ (Well). Inset shows the
site-dependent density 〈n(j, t)〉 at time t/τ = 6 for µR = −12.
L = 12 sites and th = ∆ = 1.0 were used.

Slow movement of Majoranas. For fusion or braiding
of MZMs, it is required to transfer the Majoranas slowly,
close to the adiabatic limit [27, 28]. Figure 2(a) shows the
real-space local density-of-states LDOS(ω = 0, j, t = 0)
vs. site j, with µi = 0 (for all sites), and at th = ∆ = 1.
For small or zero V , these peaks are sharply localized at
the end sites (i = 1 and 12), whereas for robust V the
ω = 0 peaks are slightly delocalized over a few sites. In
the inset, we show LDOS(ω) at time t = 0 at the end site
j = 12 and several V ’s. We find a sharp peak at ω = 0,
signaling a MZM mode at the end site. Integrating in
ω the LDOS(ω,j = 12) at V = 0.0 gives spectral weight
0.48, close to the analytically expected value 0.5 [29].

Next, with sequential application of the time-
dependent chemical potential µj(t), the right edge
MZMR (at site j = 12) is moved to the middle site (j = 6)
in a time t = NRτ (i.e. t/τ = NR = 6 because we travel 6
sites). We study cases τ = 36, 60, and 72, for interaction
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FIG. 3. Slow Majorana fusion using µ(t) > 0 (Wall), ∆ = 1,
at V = 0.0, 0.5, and 1.0, with τ = 36, 60, and 72, respectively.
Upper panels show Majoranas fusion for the initial state with
parity P = −1. (a) Electron LDOSelec(ω) after moving a
MZM from j = 12 to j = 1. (b) Hole LDOShole(ω) at t/τ =
11 and site j = 1. (c) Charge density 〈n(j = 1, t)〉 vs. time
t, varying V . Lower panels show Majoranas fusion for the
initial state with parity P = +1. (d) Electron LDOSelec(ω)
at t/τ = 11 and site j = 1, (e) Hole LDOShole(ω) after
moving a MZM from j = 12 to j = 1. (f) Charge density
〈n(j = 1, t)〉 vs. time t.

strengths V = 0.0, 0.5, and 1.0, respectively. In this case,
|ψ(t)〉 remains close to the degenerate ground-state space
(larger values of V require a slower-rate of increase in the
onsite µi0(t)). As shown in Fig. 2(b), for µ = 12 (i.e.
when creating a potential Wall), the LDOS(ω = 0, j, t)
has peaks at sites j = 1 and j = 6 at time t/τ = 6,
indicating that a slow transfer of MZMR from j = 12 to
j = 6 occurred. The average density 〈n(j, t)〉 is close to
zero for j ≥ 7, while it is close to 0.5 for j ≤ 6 (inset
of Fig. 2(b)). Interestingly, at µR = −12 (when creating
a potential Well), the effect of interaction increases. In
the non-topological region (j ≥ 7), each site is occupied
by one fermion, whereas in the topological region (j ≤
6) the mean occupancy is close to 0.5. With nonzero V ,
to minimize the Coulomb interaction between fermions at
the topological to non-topological boundary, the fermions
near the boundary become inhomogeneously distributed
(Fig. 2(c), inset). This delocalizes MZMR over more sites
as V increases (Fig. 2(c)).

Slow fusion of Majoranas. For the fusion of Majo-
ranas, we move the right edge MZMR slowly all the way
to the left end (site j = 1) using sequential operations
of µ(t) in a time interval t = 11τ (see caption Fig. 3).
At t = 0, for V = 0, th = ∆ = 1, with µi = 0 (for
all sites), the system has degenerate many-body ground
states (|ψ1〉 and |ψ2〉). These degenerate ground states
have different fermionic parity P = ±1. At t = 0, we
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FIG. 4. Fast movement of Majoranas using a small quench
rate τ = 1, µ(t) > 0 (Wall), and for the initial state with
parity P = −1. (a) Site-dependent LDOS(j, ω, t) at ω = 0,
for V = 0.0, 1.0, and 2.0, after moving the right MZM from
site 12 to 8. Electron LDOSelec(ω) and Hole LDOSelec(ω)
at site j = 8, for (b) V = 0.0, (c) V = 1.0, and (d) V = 2.0.

start the time evolution with those initial states |ψs〉
(s = 1 or 2) up to t/τ = 11, to confirm both fusion
channels (Electron : Ψ and V acuum : I). For positive
chemical potential, µ(t) > 0 (Wall) and the initial states
|ψs〉 with parity P = −1, the electron LDOSelec(ω) at
j = 1 shows a sharp peak close to ω = 0, for V = 0, 0.5,
and 1 (Fig. 3(a)). Meanwhile, the hole LDOShole(ω) at
j = 1, displays no peak (Fig. 3(b)). The time-dependent
density 〈n(j = 1, t)〉 at site j = 1 takes values one at
t/τ = 11, giving a clear indication of the formation of a
single electron (spinless) at site j = 1 after Majoranas
fusion (Fig. 3(c)). On the other hand, for the initial
state |ψs〉 with parity P = +1, the hole LDOShole(ω)
displays a sharp peak close to ω = 0, for V = 0, 0.5, and
1 (Fig. 3(e)). The electron LDOSelec(ω) has no peak at
t/τ = 11, see Fig. 3(d). The density 〈n(j = 1, t)〉 at j = 1
approaches zero (Fig. 3(f)), confirming a vacuum state at
t/τ = 11. Because the MZM spreads over more than one
site as V grows, density fluctuations occur at site j = 1
as compared to V = 0 (Figs. 3(c,f)) (for the slow fusion of
Majoranas, in the presence of a time-dependent potential
Well see [40]).

Fast movement of Majoranas. Changing µ(t) employ-
ing a faster rate (smaller τ), leads to a fast movement
of MZMsR generating non-adiabatic effects [30, 31]. The
faster change in µ(t) results in a finite overlap of the
time-evolving wave-function |ψ(t)〉 with excited states of
the instantaneous Hamiltonian H(t). Starting the time
evolution with initial states |ψs〉, with parity P = −1 for
µ(t) > 0 (Wall) and using all eigenvectors {|n〉} of the
instantaneous Hamiltonian H(t) the electron LDOS at
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finite time t = NRτ can be written as: LDOSelec(ω, t) =

−1

π
Im

(∑
m,n

〈Ψ(t)|c+j |n〉〈n|cj |m〉〈m|Ψ(t)〉
en − em + ω + iη

)
, (5)

where η = 0.1, and the rest of the notation is standard
(as reference for L = 12 the number of states is 4,096).

Figure 4(a) shows LDOS(ω, j, t) after moving the
MZM from j = 12 to j = 8 for different values of
Coulomb interaction V and with fast quench rate τ = 1.
For V = 0, and for this faster change in µ(t) the peak
values of LDOS(ω, j, t) almost remain the same as com-
pared to slower changes in µ(t) (Fig. 2(b)). On the other
hand for the same faster moving MZMs but for a fi-
nite repulsion V , there is a significant reduction in the
peaks magnitude of LDOS(ω, j, t) (at sites j = 1 and
j = 8) with increasing V . For larger values of V , the site-
dependent LDOS(ω, j, t) indicate finite overlap between
left and right MZMs (Fig. 4(a)). Figures 4(b,c,d) con-
tains the electron LDOSelec(ω) and hole LDOShole(ω)
vs. ω at site j = 8, for different values of the Coulomb
interaction V at time t/τ = 4. Using full-diagonalization
of H(t), we find for V = 0 and ∆ = 0.9 [32] that all
many-body eigenstates of H(t) come in pairs with op-
posite parity P = ±1 and the states of each pair are
almost degenerate (the parity degeneracy of all many-
body states is compatible with a strong zero mode oper-
ator [21, 22]). The equal peak heights of LDOSelec(ω, t)
and LDOShole(ω, t) at ω = 0 in Fig. 4(b) (with spectral
weight 0.5), can be associated with the presence of such
strong-zero mode operator when in non-equilibrium. The
spectral weight is dominated by only a few higher energy
degenerate-pair states, all with comparable weight, con-
tributing to ω = en − em = 0 (with |m − n| = 1) in the
LDOSelec(ω, t) (Eq. 6) and LDOShole(ω, t).

This strong zero mode operator is immune to decoher-
ence [33], potentially leading to topological qubits with
infinite coherence time [34] This occurs because they are
topologically protected due to global parity conservation
and quasi-degenerate paired states in the full spectrum
(involving opposite fermion parity) [21, 35]. This pro-
tection survives as long as the left and right MZMs do
not overlap with each other. However, increasing V , the
peaks of LDOSelec(ω, t) and LDOShole(ω, t) start split-
ting and the peak values are no longer equal in magnitude
(Fig. 4(c,d)). Furthermore, at large V the electron and
hole parts of LDOS show peaks away from zero and these
peaks are largely splitted. The split in LDOSelec(ω, t)
and LDOShole(ω, t) peaks is due to the breakdown of
degeneracy of higher excited paired states increasing V .
Fast Fusion of Majoranas. In real Majorana nanowire

setups, it is necessary to move the Majoranas with suffi-
cient speed to be faster than the quasi-particle “poison-
ing” time [15, 36–38]. Here, we present the minimum
required switching time of local gates for fast moving
MZMR, so that we obtain a full electron after the fusion

of left and right MZMs. To fuse Majoranas, starting with
the initial state having parity P = +1, we moved at var-
ious speeds the right MZMR all the way to the left end
(site j = 1).
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FIG. 5. Fast Majorana fusion using µ(t) < 0 (Well) at
various τ ’s, for the initial state with P = +1. The right
MZM is moved from site j = 16 to 1. (a) LDOSelec(ω) at
site j = 1 and (b) LDOShole(ω) at j = 1, for V = 1, ∆ = 0.6,
and L = 16.

In Figs. 5(a,b), we show the fusion of Majoranas using
a potential Well (µ(t) < 0) with ∆ = 0.6, V = 1, and for
the system length L = 16. For these parameters, we be-
lieve our system is closer to realistic setups [39] for exper-
iments [10, 11]. However, for negative chemical potential,
after the formation of an electron at site j = 1 the repul-
sive nearest-neighbor V leads to the split in ground state
energy (approximately of order V [40]), causing an energy
shift in peak values of LDOSelec(ω) and LDOShole(ω) in-
creasing τ . Also, increasing τ (slower-motion of MZMR),
the peak at ω = V for LDOSelec(ω) starts increasing,
while the LDOShole(ω) peak value at ω = V decreases.
At τ = 48, we obtain a sharp electron peak close to
ω = 1.0, whereas the LDOShole(ω) peak vanishes to zero
as τ grows (Figs. 5(a,b)). Specifically, this shows the for-
mation of a full electron at τ = 48 for ∆ = 0.6, V = 1,
and L = 16.

In terms of SI units the switching time per gate, for
V = 1 corresponds to τ~/∆ ∼ 0.17ns to 5.2ns (using
τ = 48, and ∆ = 180µeV or ∆ = 6µeV as in previ-
ous literature [18, 36]). Independently, the quasiparti-
cle “poisoning” time in nano-wire systems has been esti-
mated in a broad range 10ns to 10ms [36, 37]. Because in
the worse case of 5.2ns, eight gates require a total time
41.6ns to move adiabatically the Majorana, and since this
number is close to the poisoning time, we conclude that
there should be a time range where moving Majoranas
in chains can occur adiabatically before poisoning occurs
for V = 1. As V increases, the situation deteriorates be-
cause we must use larger τ to form a full electron after
fusion (see for larger V in [40]).

Conclusions. We performed real-time dynamics and
fusion of Majoranas in the interacting 1D Kitaev model
using sequential application of time-dependent chemi-
cal potentials (gates). We show that the movement
and fusion outcomes can be monitored using the time-
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dependent local density-of-states, and should be observed
in tunneling spectroscopy experiments [19]. We find that
for non-interacting and fast moving Majoranas, the near
degeneracy of MZMs exists even in many higher energy
states and MZMs remain topologically protected. How-
ever, for the interacting case, with increasing V we find
a decrease in spectral weight at ω = 0 in the time-
dependent local density-of-states Furthermore, we esti-
mate the minimum required switching time of local gates
to form a full electron after the fusion. Due to ad-
vancements in fabricating Majorana nanowires [19, 41]
with long quasiparticle poisoning time [36, 37], and con-
sidering our estimations for the times needed for adia-
batic movement, we believe proper Majorana movement
could be realized in realistic gate-control nanowire de-
vices [19, 20, 42].

Note Added. After completion of this work, we be-
came aware of an experimental realization of the two-
sites Kitaev chain employing two quantum dots coupled
through a short superconducting semiconducting hybrid
(InSb nanowires) [43]. In this experiment, they were
able to tune the hoping (th) and pairing term ∆ close
to th = ∆. Interestingly, using tunneling spectroscopy
measurements they showed the signature of two localized
Majorana modes on each quantum dot close to th = ∆.
This experimental realization of a minimal Kitaev chain
opens the possibility of an experimental confirmation of
our predictions about Majorana fusion (at th ∼ ∆) using
arrays of quantum dots.
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