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We consider interaction-induced broken symmetry states of two Weyl semimetal surfaces with
multiple Fermi-arc (FA) states. In the presence of inter- and intra-surface Coulomb interactions,
multiple broken symmetries may emerge which coexist and/or compete with one another. Interlayer
exciton condensates involving different FA flavors are shown to form, with amplitudes determined
by the strength of interactions and the degree of nesting among the arcs. For FA pairs which
are well-separated in momentum with strong nesting, the resulting state is a particle-hole analog
of a Fulde–Ferrell–Larkin–Ovchinnikov (FFLO) superconductor. Intralayer interactions moreover
induce charge density wave (CDW) ordering, so that the most general state of the system is a
supersolid. These orderings in principle carry signatures in non-linear behavior and narrow band
noise in Coulomb drag transport measurements.

INTRODUCTION

Weyl semimetals (WSMs) are three dimensional topo-
logical systems with an even number of band-touching
points (Weyl nodes) in their bulk band-structure [1, 2].
Because of their intrinsic topology, non-overlapping sur-
face projections of Weyl nodes connect endpoints of dis-
joint Fermi surface sections known as Fermi-arcs (FAs).
FAs host surface states that disperse in a quasi-one-
dimensional manner. There are extensive ongoing efforts
to identify material candidates for WSMs, both theoret-
ically and experimentally. Examples of such materials
include TaAs [3], NbAs [4] and, more recently, CoSi,
Co3Sn2S2, for which FA modes have been identified in
ARPES and quasiparticle interference experiments [5–7].
Although they may lack topological protections, FAs of
Dirac semimetals, such as Na3Bi and Cd3As2, have been
also identified in recent times [8–13].

Interactions may introduce interesting physics in
WSMs, involving either or both the bulk states and the
FA states. For example, collective excitations confined
to the surfaces are expected to be supported [14–23],
as are bulk excitonic modes and density-wave instabil-
ities [24, 25], among other possibilities [2]. Interesting
effects also occur when two Weyl systems are brought
together. For example, intricate reconstruction of FA
geometry can sometimes occur due to inter-surface tun-
neling [26–28]. In the absence of tunneling, inter-surface
Coulomb interactions may induce coherent particle-hole
processes involving FA states of both surfaces, leading to
new collective excitations and broken symmetry states.
This is the subject of our study. As explained below, we
find that a number of symmetries may break in such sys-
tems: the local gauge symmetry, which conserves particle
number of each layer, due to inter-surface exciton conden-
sation [29], in similarity with other bi-layer systems, such
as in graphene [30–32]; translational symmetry, through
the formation of charge-density-wave (CDW) order; and,
in each case, coherences may set in among different pairs

FIG. 1. Left: Two WSM surfaces with FAs indicated in the
surface Brillouin zones, which are separated by a dielectric
slab of thickness t. Two FAs reside on each surface with
an angle θ between them. Right: Dispersions of the FAs.
White dashed lines indicate Fermi surfaces without interac-
tions. With interactions the Fermi surfaces distort to the solid
white lines, allowing CDW and FFLO order to form with nest-
ing vector ~Q.

of arcs on the same or different surfaces, yielding mul-
tiple ways in which these kinds of orders set in. As we
shall see, while these orderings coexist, they also com-
pete, leading to quantum phase transitions among differ-
ent realizations of the broken symmetries with variations
of the system parameters.

Associated with these broken symmetry states are
Goldstone modes. The broken translational symmetry
characteristic of CDW order leads to phonon modes,
which at zero wavevector becomes a sliding mode that
is generically pinned by disorder [33]. Exciton condensa-
tion yields gapless superfluid modes [34–37] which in such
double layer systems is realized as a dissipationless coun-
terflow current. Moreover, very weak tunneling between
surfaces may yield Josephson-like transport behavior be-
tween them [38, 39]. Such collective behavior can be
observed in a variety of transport experiments [39–43].

As a paradigm of such systems, we consider a setup
of two capacitively coupled WSM surfaces, each host-
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ing FAs (see Fig. 1). For simplicity we consider straight
arcs, although our qualitative results do not depend sig-
nificantly on this simplification [see Supplementary Ma-
terial (SM) [44]]. We find that electron-hole coherence
may develop among some or all of the arcs, depending on
their relative angles and interaction strengths. For arcs
on different surfaces with common in-plane wavevectors,
strong interlayer coherence can develop at these com-
mon wavevectors [29]. Interlayer coherence can also de-
velop between arcs on different surfaces whose wavevec-
tors are remote from one another, and surprisingly these
coherences can be stronger than the direct case, partic-
ularly when the the arcs are nested. Such finite mo-
mentum interlayer ordering may be understood as an
exciton condensate analog of the Fulde-Ferrell-Larkin-
Ovchinikov (FFLO) superconductor. We find that these
direct exciton (D-ex) and “FFLO exciton” (FFLO-ex) or-
derings are often both present, but tend to compete, so
that as one type of ordering increases the other shrinks.
With both present, the interlayer coherence should have
spatial oscillations in real space. In addition to this,
intra-layer coherence between arcs on the same surface
yields CDW order.

When CDW and exciton orders coexist, the system is
in a supersolid state [45]. Such order has been considered
for bilayer systems in which Wigner crystals may form
at low electron density [46–48], and tends to be associ-
ated with excitons localizing at sites in a two-dimensional
crystal. By contrast, in the coupled WSM surface sys-
tem, the spatial ordering is determined by nesting vectors
rather than by carrier density, so that there is no strong
locking of the average inter-exciton separation with the
CDW period. Thus we expect the superfluid ordering
to be more robust with respect to disorder than for the
bilayer Wigner crystal system. A unique feature of the
coupled FA system is the possibility of manipulating the
relative strength of the spontaneous orderings by mod-
ifying the twist angle between surfaces, giving this sys-
tem a level of tunability not present in more traditional
materials. The presence of multiple continuously bro-
ken symmetries in this system implies that their super-
fluid modes will be coupled, so that counterflow super-
fluidity may become admixed with CDW sliding. This
could yield threshold behavior in counterflow supercur-
rent, above which narrow band noise is sustained. Detec-
tion of such phenomenology associated with both exciton
and CDW condensation would constitute direct evidence
that the system hosts supersolid order.

Model– For concreteness, we consider a system of two
WSMs with parallel surfaces labeled by an index η = ±1,
a distance t apart, with each surface hosting two FAs la-
beled by an index ξ = ±1, in general not parallel to
one another [Fig. 2(a)]. Each FA joins the projections
of two Weyl nodes onto the surface Brillouin-zone, with
wave functions that decay exponentially in the bulk of
the WSM. The associated decay length diverges at the

FIG. 2. Left: Configurations of the FAs where solid and the
dashed lines denote the states on the two surfaces (η = ±1).
ξ = ±1 are two FAs on the same surface, at momentum region
Rξ. Directions of dispersions are marked by arrows. Pairs

of FAs with ξη = ±1 are nested with momentum ~Q, which
disperse in opposite directions. Right: Self-energy diagrams
which describe spontaneously broken symmetries. kξ, q rep-

resent four vectors, with momenta ~kξ ∈ Rξ. (a), (b) and (c)
gives rise to self-energies for D-ex , FFLO-ex and CDW or-
ders, respectively. stands for any of (η, ξ).

Weyl node projections, which we model by the inverse of
a mass function Mξ(~k) [49]. The single-particle energy

associated with each arc has the form εξ(~k) = ±~vF kξ⊥,
which disperses with the momentum component perpen-
dicular to the ark, kξ⊥. Note the sign of this dispersion
characterizes the helicity of the FA. Further details of the
model are provided in the SM [44].

We model interactions among the electrons by

Hint =
∑
ηη′

∫
~r,~r′

V ηη
′
(~r − ~r′) : ρ̂η(~r)ρ̂η

′
(~r′) :, (1)

where ρ̂η =
∑
ξξ′ Ψ̂η†

ξ Ψ̂η
ξ′ with Ψ̂η

ξ being the field oper-

ator of the (η, ξ) FA. The functions V ++ = V −− and
V +− = V −+ are the intra- and inter-surface Coulomb
interactions, respectively [44]. The decay depth of the
single particle states entering our decomposition of the
field operators Ψ̂η

ξ impacts the matrix elements appearing
when Eq. (1) is written in terms of the non-interacting
FA states; beyond this, our model is two-dimensional.
We do not explicitly include bulk states in our analysis,
although they can be approximately accounted for via
screening in the interactions.

Green’s Function and Broken Symmetry States – With
these simplifications, components of the non-interacting
finite-temperature Green’s function of the WSM sur-
faces are given by G0

ij(
~k, iωn) = δij/(iωn − εi(~k)), where

ωn = (2n + 1)/kBT are the fermionic Matsubara fre-
quencies at temperature T and the i, j subscripts are
composite indices for η and ξ. To describe the broken
symmetry states, we include interactions through a self-
energy matrix Σ, which introduces components in the
Green’s function even for i 6= j, as well as between dif-
ferent wave-vectors. These encode spontaneous ordering
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between different flavors of the fermions as well as pos-
sible translation symmetry breaking. We summarize the
important diagrammatic terms that appear, within the
non-crossing approximation [50, 51], in Fig. 2(b).

In general, the full Green’s function G, non-interacting
Green’s function G0, and self-energy are related by the
Dyson equation, to be solved self-consistently, G = G0 +
G0ΣG. The diagrams illustrated in Fig. 2(b) represent
the last term in this equation. Numerical solution of
these requires integration over momentum, which we ap-
proximate as a discrete sum over limited regions (denoted
by Rξ in Fig. 2(a)) of the surface Brillouin zone in the
vicinities of the FA’s. In addition there is a Mastubara
frequency sum, and the resulting self-energies are then
independent of frequency because our model interaction
is frequency independent. Further details of our numeri-
cal scheme are in the SM [44].

Denoting η̄ = −η and ξ̄ = −ξ, and kξ for the 3-

momentum (~kξ, ωn), we group the self-energies into three
classes. Coherence between FA’s on different surfaces
that do not spontaneously break translation symmetry
have the form Σηη̄ξξ (kξ, k

′
ξ), and represent direct exciton

order (D-ex) [23]. In addition, coherence between FA’s on
different surfaces which are separated in wavevector can
also form, breaking both the gauge symmetry associated
with individual layers and translational symmetry spon-
taneously, resulting in FFLO-ex order. Such ordering
is encoded in self-energy terms of the form Σηη̄

ξξ̄
(kξ, k

′
ξ̄
).

Finally, intra-layer interactions also give rise to self-
energies of the form Σηη

ξξ̄
(kξ, k

′
ξ̄
), which indicate CDW

order within a surface. For simplicity, we neglect the di-
agonal terms in the self-energy Σηηξξ , which are expected
to simply renormalize the non-interacting FA velocities.

Before we discuss our numerical results, several com-
ments are in order. Firstly, for the particular FA ori-
entations shown in Fig. 1, some FAs have parallel sec-
tions with nesting momentum ~Q. Particularly for the
FFLO-ex order, one expects the dominant contribution
of Σηη̄

ξξ̄
( ~kξ,~k

′
ξ̄
) to occur at

~kξ − ~k′ξ̄ = ± ~Q. (2)

Our numerical findings verify this for both FFLO-ex and
CDW orders. Numerical calculations can be greatly sim-
plified by assuming these self-energies vanish except at
this momentum difference. We have compared this to
results where the momentum difference is unconstrained
in a few representative cases, and find rather good agree-
ment [44]. Secondly, we characterize the strength of this
Coulomb interaction by an effective fine-structure con-
stant, α = (c/εvF )/137. Unless otherwise specified, we
assume α = 5/ε, which is consistent with vF ∼ 105m/s.
For the intra-surface interaction we adopt a dielectric
constant ε = 4, while for the inter-surface interaction it
is fixed at unity. We make the wave-vectors and lengths
unitless in terms of a lattice-spacing distance (a0) and we

FIG. 3. Behavior of maximum order parameter magnitudes
with system parameters. Variation with: (a) surface separa-
tion (t); (b) WSM dielectric constant (ε); (c) FA tilt angle
(θ). Solid lines represent numerical results where the con-
straint Eq. (2) is enforced. Results marked by dashed lines
have these constraints relaxed. (d) Critical temperatures of
the three order parameters, in units of T0 (see main text).
θ = 60◦ is used in (a), (b) and (d). Other parameters: for
(a), ε = 2; for (b), t/a0 = 5; for (c), t/a0 = 5, ε = 2.5; for (d),
t/a0 = 5, ε = 2. The separation of the Weyl nodes, as well as

the nesting vector | ~Q|, is taken to be 0.4Å−1.

consider the unit of our energy-scale to be T0 = ~vF /a0.
With a0 ∼ 5Å, we have T0 of the order of 103K.

Competing phases– The numerical results we obtain in-
dicate an intricate competition among the order parame-
ters discussed above. Some typical results are illustrated
in Fig. 3. At large t, for which interactions between sur-
faces are weak, intra-layer CDW order dominates, while
for smaller separation and stronger inter-surface cou-
pling, we find the FFLO-ex order dominates the CDW
order. The competition between them is clearly visible
in Figs. 3(a) and (b), in which we vary the separation be-
tween layers, and hence the relative intra- and inter-layer
interactions. Interestingly, at small separation only the
FFLO-ex order is present, but with increasing separation
a transition occurs in which D-ex and CDW orders set
in, accompanied by a sharp drop in the FFLO-ex order.
This demonstrates the competition among the different
types of order the system supports. Note that for much
of the parameter regime, the simplifying assumption ex-
pressed in Eq. (2) yields results largely consistent with
calculations where this constraint is relaxed, except in
the transition region, where it is necessary to relax the
constraint to correctly capture its second order nature.
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For fixed separation, it is notable that increasing the
tilt angle between the arcs tends to enhance the FFLO-
ex order at the expense of the D-ex and CDW orders, as
shown in Fig. 3(c). This is clearly a consequence of the
strong nesting between the arcs involved in the FFLO-
ex ordering, which persists at all angles. The relatively
stronger stability of the this ordering is also apparent
in the temperature dependence of the order parameters,
illustrated in Fig. 3(d), indicating different critical tem-
peratures for FFLO-ex and CDW orders. Interestingly
we find that the critical temperature of the direct ex-
citon order coincides with that of the intra-layer CDW
order. At low temperatures, all three orders may coex-
ist, and with rising temperature a transition may take
place from such a multiply-ordered phase to a phase with
only FFLO-ex order. This intricate interplay of competi-
tion and cooperation among the different possible broken
symmetries is one of the central results of this work.

Note that the FA dispersions shown in the Fig. 2(a)
are oriented so that nested FAs of opposite surfaces dis-
perse in opposite directions. This supports the FFLO-ex
order. One may also consider situations in which they
disperse in the same direction. This could occur, for ex-
ample, in WSM’s with bulk magnetizations with opposite
orientations. This results in the loss of FFLO-ex order.
Introduction of curvature in the FA’s also tends to sup-
press this order, although does not eliminate it (see SM
[44].)

Goldstone modes and counterflow currents– Our model
system involves four flavors of fermions (specified by η
and ξ), and each has an individually conserved charge
that is encoded by a U(1) symmetry. The mean-field
ground states we find spontaneously break at most three
of these symmetries, so that all our phases respect global
charge conservation. Although in general the six self-

energy terms (Σηη
′

ξξ′ , excluding ξ = ξ′ and η = η′) may

attain non-zero values, their phases, θηη
′

ξξ′ , are not in-
dependent. A close examination of the equations for
the self-energies reveals the relations, θ+−

ξξ + θ++
ξ̄ξ

=

n1π, θ+−
ξξ + θ−+

ξξ̄
= n2π, θηη̄−+ + θηη+− = n3π, where

repeated indices are summed and the ni’s may be 0
or ±1 depending on the parameters. Fluctuations of
the phases that violate the above relations are massive,
but variations which keep these relations intact increase
the energy of the system only when they have spatial
or temporal gradients. Thus we expect our system to
support three gapless Goldstone modes. As detailed
in the SM [44], one may formally derive an effective
action for phase fluctuations valid for small gradients
in terms of three independent phases, θi (i = 1, 2, 3),
S[{θi}] ≈

∑
q

∑
m,n Πmn(q)θn(q)θm(−q), where Πnm(q)

is the polarizability function. The normal modes of S rep-
resent gapless modes, θ̃i, which are linear combinations
of θi. Static spatial gradients in these phases generally
represent supercurrents, (jηξ )l =

∑
i=1,2,3 Γlηξi∇lθ̃i. We

present details of the form of Γ for a simplified model in
the SM [44]; in general it depends on details of the sys-
tem parameters and broken symmetries encoded in the
Σ matrix. The entangling of different types of super-
currents, usually associated with interlayer counterflow
currents [39] or sliding CDW modes [33], is an impor-
tant signature that in the generic case the ground state
of this system is a supersolid. Remarkably, for inversion-
symmetric cases, we find a sum rule,

∑
ξη(jηξ )l = 0, in-

dicating that the system does not support charged su-
percurrents. While natural for particle-hole condensates,
which support counterflow supercurrents, this is less ob-
vious for CDW dynamics which support sliding modes.
We discuss the implications of this below.

Discussion and Summary– We have demonstrated that
parallel surfaces of WSM’s, with each hosting multiple
FAs, in general support broken symmetries within and
between the surfaces. In particular, we show FFLO-
exciton order may completely suppress direct-exciton and
CDW orders, or may coexist with them. In the lat-
ter case the system is a supersolid. The entangling of
orders in such a system is evidenced by its Goldstone
modes, which in general have mixed counterflow - slid-
ing CDW characters. In real systems, sliding behavior of
CDW’s are not observed as a dissipationless current, be-
cause their broken translational symmetry necessary im-
plies they will become pinned by disorder. Nevertheless,
they host unique transport signatures: threshold driving
fields above which the a CDW may depin, and narrow-
band noise with frequency proportional to the current
above threshold [33]. An interesting signature of the su-
persolid character of this system would be the observa-
tion of these signatures in a counterflow experiment.

Several materials represent potential candidates for the
physics described in this study. These include spinel
compounds (such as VMg2O4) [52] and cobalt-based
semimetals (such as Co3Sn2S2). The former has two FAs
on (110) surfaces, which are non-colinear and may serve
as potential hosts for the physics we describe. For cer-
tain surface terminations, Co3Sn2S2 has three FAs which
are oriented at 120o angle with each other. For two such
surfaces oriented at ∼ 180◦ one will have four FAs in ap-
proximately the configuration we consider; the other two
may support their own FFLO-exciton condensation, but
will essentially decouple from the other four FA’s (see
SM [44]).

For simplifications of the numerical analysis, we con-
sidered straight FAs for the non-interacting WSM sur-
faces. As argued in the Ref. 29, in presence of a curva-
ture in the FAs, there is an associated first order phase-
transition with increasing curvature of the FAs. A full
solution for the interacting Green’s function in this case
is numerically challenging; some results are presented in
the SM [44]. Moreover, in our idealization of these sys-
tems we have ignored the presence of bulk states which
may be present at the Fermi energy, and can have fi-
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nite support at the surfaces. Their impact on the broken
symmetry states and associated supercurrents are inter-
esting subjects for further study of these remarkably rich
systems.
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