
This is the accepted manuscript made available via CHORUS. The article has been
published as:

Emergent superconductivity and non-Fermi liquid transport
in a doped valence bond solid insulator

Zi-Xiang Li, Steven G. Louie, and Dung-Hai Lee
Phys. Rev. B 107, L041103 — Published 11 January 2023

DOI: 10.1103/PhysRevB.107.L041103

https://dx.doi.org/10.1103/PhysRevB.107.L041103


Emergent superconductivity and non-Fermi liquid transport in a doped valence bond
solid insulator

Zi-Xiang Li, Steven G. Louie, and Dung-Hai Lee∗

Department of Physics, University of California, Berkeley, CA 94720, USA.
Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA.

In this paper, we study the superconductivity and non-Fermi liquid transport behavior in a
doped valence bond solid insulator using sign-problem-free Quantum Monte Carlo simulation. We
show superconductivity emerges as a function of doping. For a wide temperature range above the
superconducting Tc a pseudogap exists. Moreover, close to the valence bond solid to semimetal
quantum critical point at half filling, we observe linear temperature resistivity when doping is non-
zero.

Introduction

In 1986 P.W. Anderson proposed the resonat-
ing valence bond (RVB) mechanism for the high-
temperature superconductivity discovered in copper-
oxides (cuprates)[1]. In Anderson’s theory, the spins form
an RVB liquid at half-filling. Doping injects charged
holons which condense in the superconducting state.
When the doping density is low the superconductor has a
low superfluid density. This proposal has influenced con-
densed matter physics greatly[2, 3]. The notion of a spin
liquid is regarded as a quantum paramagnetic state with
topological order and anyon excitations[4–7]. Although
there are concrete theoretical examples of spin liquid [8–
10], experimentally a magnetic material that has been
unambiguously established to be a spin liquid is yet to
be achieved. Concerning RVB, recently a density matrix
renormalization group calculation done on 6-leg t-J lad-
ders finds d-wave superconducting pairing emerging from
doping a quantum paramagnet, which supports the RVB
proposal[11].

On a different front, valence bonds may freeze into
the valence bond solid (VBS) phase. The VBS phase
has been established in various theoretical models[12–14]
and realistic materials[15–21]. Remarkably, there exists
a VBS material which becomes superconducting when
VBS order is suppressed by pressure[18]. Hence, it is
an intriguing question is whether superconductivity can
emerge from doping a VBS phase.

In this paper, we carried out a numerically exact quan-
tum Monte-Carlo (QMC) simulation [22, 27] to study a
doped VBS on the honeycomb lattice. (See section I.
of the Supplemental Materials (SM) for details of the
simulation.[28]) At half-filling, as a function of an inter-
action parameter (the P in Eq. (1)), the system goes
from a semimetal phase to an insulating VBS phase (see
Fig. 3(c)). Here the ”valence bond” refers to that of
Pauling (in Benzene), rather than the Heitler-London
singlet bond in RVB. Our results show that the presence
of doping mobile holes destroys the VBS order in favor
of superconductivity. At finite temperatures, there is a
Kosterlitz-Thouless transition. In a wide temperature
range above the superconducting transition, there is a

pseudogap. Moreover, when the interaction parameter is
close to the critical value for the VBS to semimetal tran-
sition, we observed non-Fermi liquid transport behavior.
In the rest of the paper, we detail the above findings.
The model

We consider the following model of spin-1/2 fermions

H = H0 +H1

H0 = −t
∑
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(
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)
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∑
iσ

ψ†iσψiσ

H1 = −P
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Here, ψi,σ annihilates an electron with spin σ on the hon-

FIG. 1. The four-fermion term associated with each hexag-
onal plaquette in H1. The red line represents the hopping
terms in Eq. (2).

eycomb lattice site i, t is the nearest-neighbor hopping
amplitude and µ is chemical potential. Hereafter, we fix
t = 1 as unit of energy. H1 in Eq. (1) is a four-fermion
term defined for each plaquette[29], where

A7=
∑
σ

(ψ†1σψ2σ+ψ†3σψ4σ+ψ†5σψ6σ+h.c.)

B7=
∑
σ

(ψ†1σψ6σ+ψ†5σψ4σ+ψ†3σψ2σ+h.c.) (2)

Here 1, 2, ..., 6 are the six sites of a hexagon arranged in
clockwise order.

When P is large H1 favors the Kekule VBS order
shown in Fig. 2. Such interaction can be generated by
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integrating out the optical phonon associated with the
Kekule distortion. Remarkably, the model Eq. (1) is
amendable to QMC simulation without sign problems
at any filling factor![23–26] (See section II. of the SM
for details.[30]) Note that the interaction in Eq. (1) is
different from that used in Ref. [27]. Under the inter-
action used in Ref. [27] weak VBS order only appears
in a small parameter regime. In contrast, the plaquette
interaction in Eq. (1) favors strong VBS order in a wide
parameter regime, making the investigation of supercon-
ductivity and non-Fermi-liquid behavior emerging from
the doped VBS phase much easier.

FIG. 2. The three-fold degenerate Kekule valence bond solid
ground state.

To study the effects of repulsive interaction we add the
Hubbard interaction

H2 = U
∑
i

(
ni↑ −

1

2

)(
ni↓ −

1

2

)
(3)

to Eq. (1) in later part of the paper. WithH2 the model is
sign-problem-free only at half-filling. However, for hon-
eycomb lattice at low doping, the sign problem is not
severe. This is because of the low density of states as-
sociated with the doped Dirac cone. This allows us to
simulate down to relatively low temperatures.
Half filling

First, we study the ground state properties of Eq. (1)
at half-filling. This is achieved by performing projector
QMC simulation. (See section I. of the SM for the de-
tails of the simulation.[28]) For small P the four-fermion
interaction is an irrelevant perturbation to the Dirac
semimetal phase in the renormalization group sense. In
this phase there are gapless particle-hole excitations at
the Dirac nodes ~K = ( 4π

3 , 0) and ~K ′ = (− 4π
3 , 0). For

large P the four-fermion interaction, H1, triggers the
formation of the insulating Kekule VBS phase shown in
Fig. 2. To quantify the VBS order we compute VBS
structure factor S( ~Q,L), i.e., the Fourier transform of
VBS order parameter correlation function at the order-
ing wavevector ~Q = ~K and ~K ′. To determine the critical
value of P we compute the “RG invariant ratio”

R(P,L)=
S( ~Q, P, L)

S( ~Q+ δ~q, P, L)
− 1,

where δ~q = (0, 4π√
3L

) is the momentum closest to ~Q on a

finite honeycomb lattice with linear dimension L. (See

FIG. 3. (a) The RG invariant ratio R(P,L)= S(~Q,P,L)

S(~Q+δ~q,P,L)
− 1

as a function of P for different L. The crossing of different L
value curves marks the critical Pc ≈ 1.28. (b) The finite size-

scaling plot of L1+ηS( ~Q, P, L) versus L1/ν(P −Pc) where the
value of η ≈ 0.63 and ν ≈ 1.02 are the anomalous dimension of
the VBS order parameter and the correlation length exponent,
respectively. (c) The zero-temperature phase diagram at half-
filling. The statistical errors of QMC simulation are indicated
by error bars, which are even smaller than the sizes of data
points in this figure.

FIG. 4. The RG-invariant ratio associated with the (a) VBS
and (b) SC order as a function of doping for several values of
L at zero temperature.

section III. of the SM for more details.[31]) In the VBS
ordered phase we expect R(P,L) to diverge as L → ∞,
while for the disordered phase R(P,L) should vanish with
increasing L. At the critical point P = Pc, due to the
divergence of the correlation length, we expect R(Pc, L)
to be independent of L .

The results for R(P,L) are shown in Fig. 3(a), from
which we estimate Pc ≈ 1.28. Naively one might ex-
pect the 3-fold anisotropy of VBS order will render the
order-disorder transition first order, as what happens in
the 3-state Potts model. However, in the present situa-
tion, the disordered phase is Dirac semimetal (DSM) and
recent studies show that due to the coupling to gapless
fermions there is emergent U(1) symmetry at the DSM-
VBS transition. As a result, the transition is continuous
and belongs to the chiral-XY universality class [29]. In
Fig. 3(b) we perform finite-size scaling to determine the
anomalous dimension of order parameter η and the cor-
relation length exponent ν, which agrees with previous
studies [29].
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FIG. 5. The numerical zero-temperature phase diagram of
Eq. (1).

Superconductivity at non-zero doping

In this section, we show superconductivity emerges
from the VBS phase upon doping. We consider the
two most probable spin-singlet pairing symmetry: s and
d+id. (On the honeycomb lattice d-wave pairing forms a
two-dimensional (dx2−y2 , dxy) irreducible representation
of the lattice rotation group.) While the doping density is
fixed by the trial wavefunction in zero-temperature simu-
lation, in finite temperature QMC it is fixed by the chem-
ical potential. In section IV. of the SM[32], we show the
doping density versus the chemical potential for several
interaction parameters.

Fixing P at 1.6, which places the system in the VBS
phase at half filling, we study the VBS and SC orders
as a function of doping density, n, at zero temperature.
Within the numerical uncertainty, the vanishing of the
VBS order occurs simultaneously with the onset of an
s-wave SC order. Moreover, the crossing of the RG in-
variant ratios suggests the transition is continuous. The
crossing point of the RG-invariant ratios in Fig. 4(a) and
(b) places the critical doping within (0.03, 0.035). In
Fig. 5 we show the zero-temperature phase diagram.

Of course, there is always the possibility that the
VBS-SC transition is weakly first order with a correla-
tion length exceeding the largest system size we studied.
Moreover, if the transition is indeed continuous it would
constitute an example of Landau-forbidden transition. A
more thorough analysis of the phase transition awaits fu-
ture studies.

To study the normal to superconducting phase tran-
sition as a function of temperature we calculate the SC
susceptibility (see section III. of SM for details[31]) using
the finite-temperature QMC technique. The SC transi-
tion temperature Tc is determined by studying the finite
size scaling behavior of the SC susceptibility. The result
suggests the transition is in the Kosterlitz-Thouless uni-
versality class. At the critical temperature, the finite size
scaling behaviour of the SC susceptibility is

χSC(Tc, L) ∼ L2−η, where η = 0.25.

For P = 1.6 and doping level n = 0.1, we plot the scaled
SC susceptibilities versus the inverse temperature for sev-
eral system sizes in Fig. 6.

FIG. 6. The scaled SC susceptibility versus the inverse tem-
perature for different values of L. The crossing point marks
the Tc of the Kosterlitz-Thouless transition. The plaquette
interaction strength is fixed at P = 1.6 and doping level is
n = 0.1.

The crossing point of different L curves marks the
Kosterlitz-Thouless Tc. Using this procedure, we esti-
mate Tc as a function of P for doping n = 0.1. The
result is shown in shown as the black squares in Fig. 7.
The maximum Tc is about 0.06.

FIG. 7. The numerical P − T phase diagram at doping level
n = 0.1 for 0.6 ≤ P ≤ 2.3. The black square marks the
Kosterlitz-Thouless SC phase transition. In the region above
the curve marked by the blue squares, the resistivity exhibits
linear-T behavior. Below the curve marked by the red circles,
a pseudogap opens.

The pseudogap and non-Fermi liquid transport
behavior

When the temperature drops below a certain crossover
scale T ∗, the short-range VBS correlation sets in. This is
accompanied by the opening of a (pseudo) single-particle
gap. For low doping, the SC phase coherence sets in at a
significantly lower temperature due to the low superfluid
density. This is shown in Fig. 8 for P = 1.6 and n = 0.1.
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FIG. 8. The single-particle spectral function versus ω for
different temperatures. The interaction strength is P = 1.6
and doping level is n = 0.1. The linear system size is L =
15. The Tc is approximately 1/17, and the single-particle gap
opening temperature Tgap is estimated to be 1/6.

The details of how to calculate the single-particle spectral
function via analytical continuation[33] are discussed in
section V. of the SM[34]. In Fig. 7 the curve marked by
the red circles mark the crossover temperatures T ∗ be-
low which the pseudogap opens. When P is larger than
the critical value of the VBS phase at half-filling, pseu-
dogap exists in a wide temperature range. This supports
the origin of the pseudogap being the short-range VBS
correlation.

Because transport near quantum critical points often
exhibits non-Fermi liquid behavior, in the following we
study the resistivity when P is fine-tuned near the crit-
ical value separating the semimetal and VBS phases at
half filling. We calculate the dc resistivity by computing
the imaginary-time current-current correlation function
Λ(τ) = 〈jµ(τ)jµ(0)〉, where jµ is the ~q = 0 component of
the current operator in µ = x or y direction. The optical
conductivity is related to Λ(τ) by

Λ(τ) =

∫ ∞
0

dω

π

ωe−τω

1− e−βω
σ(ω),

with β being the inverse temperature. To deduce the dc
resistivity we use the relation

ρ = πT 2Λ(β/2)−1

in Ref.[35, 36]. In Fig. 9, we show the results for doping
level n = 0.1. Interestingly, the resistivity obeys a
linear-T behavior in a significant temperature window
when P is close to Pc. When P is significantly less than
Pc, the temperature dependence is consistent with the
conventional T 2 behavior. For P > Pc, the resistivity
exhibits an upturn at low temperatures, due to the
opening of the pseudogap in Fig. 8. For a clean system
such as the one in our study, the resistivity is due to the
Umklapp scattering.

The effects of Hubbard interaction

FIG. 9. Resistivity versus temperature for several values of P
near the critical values Pc ≈ 1.28 for the semimetal to VBS
quantum phase transition at half filling. The linear system
size is L = 15.

FIG. 10. The s and d+id-wave SC susceptibilities as
a function of temperature with fixed Plaquette interaction
P/t = 1.5 and Hubbard interaction strength (a) U/t = 0 and
(b) U/t = 2. Due to the reappearing of the sign problem we
only managed to get low-temperature data for linear system
size L = 6.

In the presence of the Hubbard interaction (Eq. (3))
the sign problem reappears at non-zero doping. However,
on the honeycomb lattice, it is not too severe due to the
low density of states associated with the doped Dirac
cone. However, given a system size, the sign problem
does limit how low we can go in temperature. In Fig. 10
we compare the s and d+id-wave SC pairing susceptibil-
ities for two values of U . For U/t = 0 the s-wave pairing
dominates. When we increase U/t to 2 the d+id suscep-
tibility surpasses the s-wave one and exhibits “divergent”
behavior in the temperature range we have studied. In
section VI. of the SM, we show a Curie-Weiss fit of the
d+id SC susceptibility which further corroborates that
d+id SC susceptibility is divergent at zero temperature,
at least for the system sizes we studied[37]. This result
suggests that when the Hubbard interaction is sufficiently
strong the SC emerging from the doped VBS phase is a
chiral superconductor!

Conclusion

Our approximation-free QMC simulation suggests that
when holes are doped into a valence bond solid insulator
superconductivity may emerge. We believe this is be-
cause the mobile holes displace the valence bonds, which
in turn suppresses the valence bond solid order. We have
also shown that the short-range repulsive interaction can
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change the pairing symmetry of superconductivity. In
this work, we come across several interesting phenomena
including the pseudogap, and non-Fermi liquid transport
behavior, which bear resemblance to the cuprates.
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