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We propose a physical witness for dynamically detecting topological phase transitions (TPTs) via
an experimentally observable out-of-time-order correlation (OTOC). The distinguishable OTOC
dynamics appears in the topological trivial and non-trivial phases due to the topological locality.
In the long-time limit, the OTOC undergoes a zero-to-finite-value transition at the critical point of
the TPTs. This transition is robust to the choices of the initial state of the system and the used
operators in OTOC. The proposed OTOC witness can be applied into the systems with and without
chiral symmetry, e.g., the lattices described by the SSH model, Creutz model, and Haldane model.
Moreover, our proposal, as a physical witness in real space, is still valid even in the presence of
disorder. Our work fundamentally brings the OTOC in the realm of TPTs, and offers the prospect
of exploring new topological physics with quantum correlations.

Topological phase transitions (TPTs) are fundamen-
tally interesting in modern physics because these go be-
yond the paradigm of traditional phase transitions asso-
ciated with symmetry breaking [1]. It offers a non-trivial
paradigm for the classification of matter phases, and thus
is attracting enormous attention in condensed matter
physics [2–5], optics [6], and non-Hermition physics [7].
The occurrence of TPTs involve the gap-closing-and-
opening of band (the change of system topology) with
symmetry preserving. According to the extended bulk-
boundary correspondence, the nth-order TPT in a d-
dimensional (dD) system leads to the appearance of
a (d − n)-dimensional gapless boundary state in the
topological non-trivial phase [8–19]. This symmetry-
protected boundary state has strong robustness to disor-
der [20–22] and defects [23]. It can be used to realize topo-
logical lasers exhibiting robust transports [23–27], topo-
logical protected quantum coherence [28, 29], and quan-
tum state transfer [30]. Thus, the detection of TPTs is a
key for exploring topological physics. To quantitatively
distinguish the topological trivial and non-trivial phases,
normally one calculates topological invariants (e.g., wind-
ing number and Chern number) in momentum space [31].
However, identifying TPTs with those commonly used
topological invariants is not suited for disorder systems
where it is difficult to give the Hamiltonian in momen-
tum space. Then, it becomes a significant task to identify
TPTs via a new physical witness in real space that is ro-
bust to disorder.

The OTOC, defined as O(t) = 〈W †(t)V †W (t)V 〉 with
W (t) = eiHtWe−iHt, was proposed in investigating the
holographic duality between a strongly interacting quan-
tum system and a gravitational system [32–37]. Here W
and V are initially commuting operators [38]. Different
from the normal time-order correlation function char-

acterizing classical and quantum statistics [39–43], the
OTOC can quantify the temporal and spatial correla-
tions throughout many-body quantum systems, which is
closely related to information scrambling. Thus, it is
a widely used tool for diagnosing chaotic behavior [44–
62], many-body localization [63–70], entanglement [71–
75], and quantum phase transitions [76–82]. Here, many-
body localization is a kind of many-body phenomenon
in the nonequilibrium system caused by many-body in-
teractions. This is essentially different from TPTs that
describe the change of topological structure of systems.
Under the frame of band topology theory, normally the
TPTs occurs in the system without the many-body inter-
actions. Moreover, the OTOC can also be implemented
experimentally [83–87] by connecting the time reversal to
the Loschmidt echo technique [88–90]. Further exploiting
OTOC dynamics in topological systems may open a new
door for completing the challenging problem of identi-
fying TPTs in the presence of disorder. Until now, the
relation between OTOC and TPTs remains largely un-
explored, which may substantially advance the fields of
quantum correlation and topological physics.

Here we propose an OTOC witness for dynamical de-
tecting TPTs in lattice systems. As shown in Fig. 1(a),
the constructed OTOC becomes an experimentally ob-
servable fidelity [83] of a final state ρf projected onto an
initial state ρ0 by defining V = V ρ0 = |ψ0〉〈ψ0|, i.e.,

O(t) = tr[ρ0e
iHtW †e−iHtρ0e

iHtWe−iHt] = F (t). (1)

Due to the topological locality, the long-time limit of
the OTOC O(t → ∞) undergoes a zero-to-finite-value
transition along with the system entering into the non-
trivial phase from the trivial phase. This sudden change
is not limited by the choices of the operators V (cor-
responding to the initial state of system) and W . In



2

FIG. 1. (a) A schematic illustration of implementing the
OTOC, which is equal to the fidelity F (t) = tr[ρ0ρf ] [73, 83].
First, the initial state ρ0 evolves to the state ρ1(t) under
T− = e−iHt. Second, the system changes from ρ1(t) to ρ2(t)
after the operation of W . Lastly, the system evolves backward
to get the final state ρf under T+ = eiHt. (b, c) Schemes of
the 1D SSH model and Creutz model, which describe the lat-
tice systems with chiral symmetry. (d, e) Phase diagrams
of the NN SSH model: the OTOC versus εt and ν for (d)

W = a†1,Aa1,A and (e) W =
∑N−1

n=1 a
†
nσ3an, where N = 200,

|ψ0〉 = |1, A〉, and d1 = d2 = 0. The topological non-trivial
and trivial phases are denoted as TNP and TTP, respectively.

comparison with previous methods of detecting TPTs [5],
the proposed OTOC, as a witness in real space, can be
applied in disordered systems. Moreover, it is not only
suitable for the systems with chiral symmetry described
by the nearest-neighbor (NN) Su-Schrieffer-Heeger (SSH)
model, next-next-nearest-neighbor (NNNN) SSH model
and Creutz model, but also can be used to the systems
without chiral symmetry, such as 2D lattices described
by the Haldane model and Qi-Wu-Zhang model. We also
demonstrate the validity of the OTOC witness for detect-
ing second-order TPTs. Our work fundamentally broad-
ens the realm of OTOC by bringing it in the next stage
of application in topological physics.

Detecting TPTs in the systems with chiral symme-
try.—Without loss of generality, we choose the 1D SSH
model and Creutz model depicted in Figs. 1(b,c) as
examples for demonstrating the validity of detecting
TPTs with OTOC in the systems with chiral symmetry.
The corresponding system Hamiltonians can be written

as [31, 91–93]

Hs =
∑
n

{νna†nσ1an+[(ωna
†
n+1+εηa

†
n+2)

σ1+iσ2
2

an+h.c.]},

(2a)

Hcr =
∑
n

{η0a†nσ1an + η′0[a†n+1

σ1−iσ3
2

an + h.c.]}, (2b)

where the number of cells is N , σj (j = 0, 1, 2, 3) is

Pauli operator, and a†n = (a†n,A, a
†
n,B) is the annihilation

operator of the unit cell n with sublattices A, B. For
the SSH model with Hamiltonian Hs, ωn = ε(1 + d1rn)
[or νn = ε(ν + d2r

′
n)] is the intercell (or intracell) hop-

ping strength. Disorder with the dimensionless strengths
d1, d2 has been included here, and rn, r′n are the in-
dependent random real numbers chosen from the uni-
form distribution [−0.5, 0.5]. Physically, ε is the char-
acteristic intercell strength, ν is the ratio of intra- to
inter-cell hopping in the clean system, and εη is the
NNNN hopping strength. Here, Hs is reduced to a stan-
dard Hamiltonian of the NN SSH model when η = 0.
For the Creutz model with Hamiltonian Hcr, the ar-
rows indicate the sign of the hopping phase, and η0
(η′0) is the vertical (horizontal and diagonal) hopping
strength. The above models possess a chiral symme-
try with a well-defined chiral operator C1d, which can
reverse the energy of the system, i.e., C1dHC−11d = −H
(H = Hs, Hcr), where C1d =

∑N
n=1 a

†
nσ3an for the SSH

model and C1d =
∑N
n=1 a

†
nσ2an for the Creutz model.

Let’s first consider the case of no disorder, i.e., d1 =
d2 = 0, the NN (and NNNN) SSH model and Creutz
model feature the TPTs at ν = 1 (and η = 0, 1)
and η0 = η′0, respectively [31, 91–93]. To identify the
topological non-trivial and trivial phases in real space,
in Fig. 2, we numerically calculate the OTOC dynam-
ics with Eq. (1), which involves the backward evolution.
Note that, Fig. 2 includes the results for choosing differ-
ent OTOC operators V and W . It clearly shows that,
both for the SSH model and Creutz model, the distin-
guishable OTOC dynamics appears in the non-trivial
and trivial phases. Specifically, the OTOC evolves to
a finite value and almost zero in the topological non-
trivial and trivial phases, respectively [see the insets of
Figs. 2(b,d,f)]. This relates to the physical mechanism
that the information does scramble in the trivial phase,
while this scrambling is suppressed immensely in the non-
trivial phase. There exists a zero-to-finite-value transi-
tion in the long-time limit of the OTOC, when the system
enters into the non-trivial phase from the trivial phase.
This distinguishable OTOC dynamics is robust to the
initial state of the system (i.e., the operator V ), which
could be a single-site occupation or multi-site occupation
state. Moreover, the averaged OTOC becomes discrete
at the critical point, when the initial state is the eigen-
state of the system whose eigenvalue has the lowest ab-
solute value [94]. Figure 2 also shows that the OTOC
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FIG. 2. The dependence of O(t→∞) on ν, η, and η0/η
′
0 for

(a,c,e) W =
∑L

l=1 a
†
l,Aal,A and (b,d,f) W =

∑N−1
n=1 a

†
nσjan

[j = 3 for (b,d) and j = 2 for (f)]. Panels (a,b), (c,d),
and (e,f) correspond to the systems described by the NN
SSH model, NNNN SSH model, and Creutz model, respec-
tively. The initial states are set as (a,c,e) |ψ0〉 = |1, A〉,
(b,d) |ψ0〉 =

∑M
m=1(−1)m−1|m,A〉/

√
M and (f) |ψ0〉 =∑M

m=1(−1)m−1(|m,A〉 + i|m,B〉)/
√

2M . Insets: the evolu-
tion of the OTOC for different values of ν, η and η0/η

′
0 when

M = 1. The lines and dots correspond to the fully numeri-
cal simulations obtained by Eq. (1) and the analytical results
obtained by Eqs. (3,4), respectively. Other system parame-
ters are N = 200, d1 = d2 = 0, (a,b) η = 0, (c,d) ν = 1. The
TNPs and TTPs are indicated by the gray shadings and write
areas, respectively.

witness is not limited by the choice of the operator W .
In our proposal, the operator W can either a few-site
(including single-site) operation on sublattice A (e.g.,

W =
∑L
l=1 a

†
l,Aal,A, L = 1, 2, 3) or a multi-site opera-

tion on sublattices A and B (e.g., W =
∑N−1
n=1 a

†
nσjan,

j = 2, 3), and the chosen operators W neither com-
mute nor anti-commute with the system Hamiltonian,
i.e., [W,H]± 6= 0.

To fully show the dependence of the OTOC witness
on system parameters, we also calculate the analytical
solution of O(t) under the condition of N � 1. Let’s
consider the NN SSH model as an example, and choose

|ψ0〉 =
∑M
m=1

(−1)m−1

√
M
|m,A〉, where M = 1 corresponds

to the case of single-site occupation state, i.e., |ψ0〉 =
|1, A〉. Here, m and A/B in state |m,A/B〉 represent the
mth cell and sublattice A/B, respectively. Correspond-

ing to W =
∑L
l=1 a

†
l,Aal,A and W =

∑N−1
n=1 a

†
nσ3an, we

respectively obtain [94]

O(t)≈ [1/

N∑
n=0

ν2n+

N∑
k=1

2ε2ν2 cos(λ
(k)
+ t)

(N + 1)(λ
(k)
± )2

sin2(
kπ

N + 1
)]4 (3)

and

O(t)≈ [1/

N∑
n=0

ν2n+

N∑
k=1

2ε2ν2 cos(2λ
(k)
+ t)

(N + 1)(λ
(k)
± )2

sin2(
kπ

N + 1
)]2 (4)

for L,M = 1. Here λ
(k)
± = ±ε[1 + ν2 + 2ν cos( kπ

N+1 )]1/2

and k = 1, 2, . . . , N . Note that the above equations re-
quire ν 6= 0, and ν = 0 means that the hopping cannot
occur in the intracells, corresponding to O(t) = 1. The
similar analytical results for L,M > 1 are shown in the
supplementary material [94]. As shown in Figs. 1(a,b),
the analytical solutions also present a zero-to-finite-value
transition of OTOC at the critical point of TPTs. This
conclusion is valid for both the cases of choosing W as a
single-site operation and a multi-site operation. Figures
2(a,b) show a very good agreement between the analyt-
ical solutions and the fully numerical simulations, which
demonstrates the validity of our solutions.

Now let’s discuss the influence of disorder on our pro-
posal by choosing the NN SSH model as an example. The
proposed OTOC witness for identifying the TPTs is also
suitable for disordered systems. As shown in Figs. 3(a,b),
O(t→∞) still undergoes the zero-to-finite-value transi-
tion along with the occurrence of the TPTs, even when
weak disorder is introduced into the system. In terms
of information, this transition originally comes from the
topological locality in the non-trivial phase. Specifically,
the information scrambling occurs in the trivial phase,
and is suppressed immensely in the non-trivial phase.
Similar as the case of no disorder, this result is robust
to the choices of the operator W . Figures 3(a,b) also
show that the above distinguishability of the OTOC dy-
namics disappears in the strong disorder regime (e.g.,
d > 4). Physically, this is because the TPTs, together
with the symmetry-protected boundary state, will disap-
pear as the disorder is too large. Figures 3(c,d) further
demonstrate the vanishing of the topological non-trivial
phase induced by strong disorder. Moreover, the pro-
posed OTOC witness can also be considered as an order
parameter of the topological phase diagram, and predict
topological Anderson insulator physics [94]. It is consis-
tent with previous works in Refs. [20, 22], which further
verify the validity of our OTOC witness.

Detecting TPTs in the systems without chiral symme-
try.—The proposed OTOC witness for identifying the
TPT is not limited to the above systems with chiral sym-
metry, but is applicable for the systems without chiral
symmetry, such as 2D lattice systems described by the
Haldane model and Qi-Wu-Zhang model. As shown in
Fig. 4(a), the Haldane model on the honeycomb lattice
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FIG. 3. (a,b) The dependence of O(t → ∞) on ν for dif-

ferent disorder strengths d when (a) W = a†1,Aa1,A and (b)

W =
∑N−1

n=1 a
†
nσ3an. (c) The value of O(t → ∞) versus d

for different choices of the operator W when ν = 0.2. (d)
The evolution of the OTOC for different d indicated by the
circles in (c). Here all data are averaged over 30 indepen-
dent disorder configurations, and we have chosen N = 200,
d2 = 2d1 = d, and |ψ0〉 = |1, A〉. The TNPs and TTPs are
indicated by the gray shadings and write areas, respectively.

has Hamiltonian [106, 107]

Hha =η1
∑
〈j,j′〉

c†jcj′+η2
∑
〈〈j,j′〉〉

eisjj′φc†jcj′+µs
′
∑
j

c†jcj , (5)

where c†j (cj) is the creation (annihilation) operator of the
jth site, and the summation indexes cover all sites. The
symbol µ in last term denotes the sublattice potential,
where s′ = +1 and s′ = −1 correspond to sublattices
A and B, respectively. Here, η1 and η2 are the real-
valued nearest- and next-nearest-neighbor hopping am-
plitudes, respectively. The next-nearest-neighbor hop-
ping contains the phases sjj′φ with sjj′ = ±1, which
can break the time-reversal symmetry. The system has
no chiral symmetry and is a paradigmatic example of
2D lattice featuring TPTs. For example, the parameter
ranges |µ/η2| < 3

√
3 and µ/η2 = other correspond re-

spectively to the topological non-trivial and trivial phases
when φ = π/2. Similar as the procedure used in 1D sys-
tems with chiral symmetry, we numerically calculate the
OTOC dynamics with Eq. (1) to identify the occurrence
of TPTs in real space. As shown in Fig. 4(b), the zero-to-
finite-value transition of O(t→∞) can still be observed
when the system enters into the topological nontrivial
phase from the trivial phase. The similar results can also
be obtained in the system described by the Qi-Wu-Zhang
model [94].

Application to the second-order TPTs.—Higher-order
topological insulators, as an extension of the topological
insulators, have recently attracted extensive attention [8–

FIG. 4. (a) Scheme of the Haldane model, where the unit
cell consists of sublattices A and B. (b) The dependence of
O(t → ∞) on µ/η1 for different cell numbers when |ψ0〉 =

|1, A〉 and W =
∑

j c
†
jcj (the summation index j only cover

all sublattice B). Here we have chosen η1 = η2 and φ =
π/2. The red and blue lines correspond to the cell numbers
of 4× 4 and 20× 20, respectively. (c) Scheme of the 2D SSH
model with gauge flux π penetrating any plaquette. (d) The

dependence of O(t → ∞) on ν′/w for W = a†1,1a1,1 (black

curve) and W = a†1,1a1,1 + a†1,3a1,3 + a†3,1a3,1 (blue curve)
when |ψ0〉 = |1, 1〉. The TNPs and TTPs are indicated by
the gray shadings and write areas, respectively.

19]. High-order TPTs usually can be identified by de-
tecting the boundary states in real space. For example,
the topological protected corner states have been used to
identify the second-order TPT in a 2D system [108–111].
Here, our proposed OTOC witness is also applicable for
detecting second-order TPTs. As shown in Fig. 4(c), we
take the extended 2D SSH model with non-zero gauge
flux as an example, and its Hamiltonian reads [111]

H2s(k) =(ν′ + w cos ky)τ0 ⊗ σ1−w sin kyτ3 ⊗ σ2
− (ν′ + w cos kx)τ2 ⊗ σ2−w sin kxτ1 ⊗ σ2, (6)

where k = {kx, ky} are the wave number, and ±ν′ (±w)
is the intracell (intercell) hopping strength. This system
features a second-order TPT when increasing the value of
ν′/w, i.e., ν′<w and ν′>w corresponding to the topolog-
ical non-trivial and trivial phases, respectively. To iden-
tify the occurrence of second-order TPTs, in Fig. 4(d),
we numerically calculate the OTOC in the lattice sys-
tem with 20 × 20 cells when the different OTOC oper-
ators W are considered. Figure 4(d) clearly shows the
distinguishable OTOC dynamics in the topological non-
trivial and trivial phases. Both for W = a†1,1a1,1 and

W = a†1,1a1,1 +a†1,3a1,3 +a†3,1a3,1, the zero-to-finite-value
transition of O(t → ∞) appears at the critical point of
the second-order TPT. Moreover, the system is initially
in the corner site (1, 1) (i.e., |ψ0〉 = |1, 1〉), which is exper-
imentally feasible. Here (x, y) represents a lattice point in
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the square lattice, and |x, y〉 denotes the state occupying
in the site (x, y). The creation (annihilation) operator of
the site (x, y) is denoted by a†x,y (ax,y).

Experimental implementation and conclusions.—
Regarding experimental implementations, the trapped
ion [83, 112–115] is an ideal candidate for our proposal.
We consider a set of 2N trapped ions with excited and
ground states arranged along a 1D chain as the SSH
model. First, the system is initialized in ρ0 = |1, A〉〈1, A|
by applying a π pulse to excite the first ion in the chain
into its excited state [113–115]. Then, one should make
the system evolve under the Hamiltonian for a time t to
the state ρ1(t) = e−iHtρ0e

iHt. Subsequently, applying
the operator W to get ρ2(t) = W †ρ1(t)W . When
the operator W is a single-site operator on sublattice
A, it can be achieved by removing the polarizations
of the ions except for that of the first ions by using
selective pulses [83, 113–115]. Next, inverting the sign
of H by the spin echo technique (i.e., applying a π
pulse to reverse the polarization of one of the ions) [88]
and making the system evolve again for t to obtain
the final state ρf = eiHtρ2(t)e−iHt [89, 90]. Finally,
the OTOC can be obtained by measuring the overlap
of the final state with respect to the initial state
via a fluorescence detection [83, 115], similar as the
many-body Loschmidt echo technique. For 2D lattice
systems, the OTOC measurement is similar to that of
the 1D lattice systems except for the construction of the
model. Note that our proposal is not limited to this
particular architecture, and could be implemented or
adapted in a variety of platforms that have full local
quantum control [84–86, 116–121], such as a nuclear
magnetic resonance quantum simulator [84–86] and
superconducting qubit [116–118].

In conclusion, we have proposed an OTOC witness in
real space for identifying TPTs in general lattice systems
with or without chiral symmetry. Our proposal is robust
to the choices of the initial state of the system and the
used operators in OTOC. It is also suitable for disordered
systems, and can predict topological Anderson insulator
physics in the strong disorder regime. Moreover, the pro-
posed OTOC witness can be used to detect not only first-
order TPTs, but also second-order TPTs. Applying it
into non-Hermitian systems [94], the TPTs can be identi-
fied without implementing the transition from non-Bloch
to Bloch theory. The generality of our proposal leads to
that the proposed OTOC witness has predictive power
in detecting TPTs. For example, we could construct the
OTOC witness by preparing the system initially being in
the first site and choosing a single-site operation as the
W operator, even in a situation where we don’t already
understand the structure of a 1D lattice.
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Ozawa, L. Le Gratiet, I. Sagnes, J. Bloch, and A. Amo,
Lasing in topological edge states of a one-dimensional
lattice, Nat. Photonics 11, 651 (2017).

[25] H. Zhao, P. Miao, M. H. Teimourpour, S. Malzard, R.
El-Ganainy, H. Schomerus, and L. Feng, Topological hy-
brid silicon microlasers, Nat. Commun. 9, 981 (2018).

[26] M. Parto, S. Wittek, H. Hodaei, G. Harari, M. A. Ban-
dres, J. H. Ren, M. C. Rechtsman, M. Segev, D. N.
Christodoulides, and M. Khajavikhan, Edge-Mode Las-
ing in 1D Topological Active Arrays, Phys. Rev. Lett.
120, 113901 (2018).

[27] G. Harari, M. A. Bandres, Y. Lumer, M. C. Rechtsman,
Y. D. Chong, M. Khajavikhan, D. N. Christodoulides,
and M. Segev, Topological insulator laser: Theory, Sci-
ence 359, 1230 (2018).

[28] Y. Bahri, R. Vosk, E. Altman, and A. Vishwanath, Lo-
calization and topology protected quantum coherence at
the edge of hot matter, Nat. Commun. 6, 7341 (2015)

[29] W. Nie, Z. H. Peng, F. Nori, and Y.-x. Liu, Topolog-
ically Protected Quantum Coherence in a Superatom,
Phys. Rev. Lett. 124, 023603 (2020).

[30] N. Y. Yao, C. R. Laumann, A. V. Gorshkov, H. Weimer
L. Jiang, J. I. Cirac, P. Zoller, and M. D. Lukin, Topo-
logically protected quantum state transfer in a chiral

spin liquid, Nat. Commun. 4, 1585 (2013).
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[78] C. B. Daǧ, K. Sun, and L. -M. Duan, Detection of Quan-
tum Phases via Out-of-Time-Order Correlators, Phys.
Rev. Lett. 123, 140602 (2019).
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