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A growing body of work suggests that planar Josephson junctions fabricated using supercon-
ducting hybrid materials provide a highly controllable route toward one-dimensional topological
superconductivity. Among the experimental controls are in-plane magnetic field, phase difference
across the junction, and carrier density set by electrostatic gate voltages. Here, we investigate wide
planar Josephson junctions based on an epitaxial InAs/Al heterostructure, embedded in a supercon-
ducting loop, probed with integrated quantum point contacts (QPCs) at both ends of the junction.
For a large range of gate voltages, a closing and reopening of the superconducting gap is observed
that appears strongly correlated at the two ends of the junction. The reopening occurred roughly
at in-plane magnetic field B∥ ≃ 0.2 T, was uniform across multiple devices, and tunable with phase
bias. A narrower range of the junction gate voltage, covering roughly 10% of the operable gate space,
supports a zero-bias conductance peak (ZBCP) that appears upon reopening of the gap. However,
the height, shape, and even presence of ZBCPs typically differed between the ends, suggesting weak
end-to-end correlation. Theoretical modeling suggests an orbital-effect driven mechanism for the
gap-reopening. Within this model, the gap reopening represents a topological phase transition when
associated with a zero-energy state. While several features of the experimental data are captured
by our model, the lack of end-to-end correlation of ZBCPs in the experiment suggests the absence
of an uninterrupted topological phase along the junction, presumably due to disorder. Deliberately
tuned local end dots show distinctly different phenomenology, particularly with respect to phase
bias, providing a check on possible topological and non-topological interpretations.

I. INTRODUCTION

Planar superconductor-normal-superconductor (SNS)
Josephson junctions (JJs) with sufficient spin-orbit cou-
pling can exhibit one-dimensional topological supercon-
ductivity in the presence of a magnetic field applied par-
allel to the SN interfaces. Theoretically, the N region
under these conditions acts as a quasi-one-dimensional
topological wire bounded by trivial superconducting
walls, with Majorana zero modes at its ends [1–3]. Com-
pared to alternative nanowire platforms [4–8], planar JJs
have a new experimental knob, the phase difference be-
tween bounding trivial superconductors, which can lower
the magnetic field required to observe a topological phase
transition, as reported in recent experiments in Al/InAs
[9, 10], Al/HgTe [11] and NbTiN/InSb [12].

Previous studies on related structures [9] demonstrated
the formation of a zero-bias conductance peak (ZBCP)
at one end of an Al/InAs planar JJ device. The parallel
magnetic field, B∥, at which the ZBCP first appeared
depended on the phase difference, ϕ, across the junction,
first appearing at ϕ ∼ π, as expected for a topological
phase transition [1, 2]. A related effect was reported by
Ren et al. [11], who found that the ZBCP appears in
a diamond-shaped region in the ϕ–B∥ plane. Ke et al.

observed an expected minimum of critical current at a
gate-voltage dependent value of B∥ [12]. Dartiailh et al.
reported a similar signature and additionally detected a π
phase shift of the current-phase relation associated with
revival of the supercurrent [10].

Here, we investigate topological superconductivity in
planar JJs using a device design that helps preserve a
hard superconducting gap in wide leads in the presence
of B∥. This goes beyond our previous investigation of
planar JJs [9], where superconducting leads were narrow
compared to the superconducting coherence length. In
nanowires, or in Josephson junctions with narrow super-
conductors (nanowire limit), the topological phase has
a weak dependence on ϕ, is strongly tuned by the Fermi
energy and appears at relatively large values of B∥ [3]. In
contrast, in a junction made of semi-infinite superconduc-
tors (Josephson junction limit), topological transitions
are tuned primarily by varying ϕ and B∥, with weak
dependence on the Fermi energy. Additionally, phase-
biasing allows the topological phase transition to occur
at low values of B∥, including at B∥ = 0 in an ideal
junction biased at ϕ ∼ π [1, 2].

Our junctions are embedded in a superconducting
loop, allowing controlled biasing of ϕ using externally
applied flux, and the junction region can now be probed
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FIG. 1. Planar Josephson junction device.
(a) Schematic of a planar Josephson junction consisting
of two superconducting leads (blue) in epitaxial contact with
the underlying semiconductor (brown). Between the leads
of width w = 1.8µm was a semiconductor (normal) region
of width wn = 100 nm and length l = 1.6µm. The nominal
thickness wz ∼ 20 nm of the active semiconductor region,
where the electron wave-function is expected to be confined,
contains two barriers and the InAs quantum well. Red dots
schematically indicate the positions of theoretically predicted
Majorana zero modes in the topological phase. (b) Schematic
cross section shows the Al/InAs heterostructure with layer
thicknesses along with dielectric and gate layers. Leads and
junction were covered by 15 nm of HfO2 dielectric deposited
by atomic layer deposition and Ti/Au electrostatic gates.
(c) False-color electron micrograph of a representative device.
The superconducting leads have meandering perforations
to allow partial depletion below using gate voltage VSC.
Leads are connected by a superconducting loop allowing
phase biasing of the junction using a small out-of-plane
magnetic field B⊥. Tunnelling spectroscopy is performed
using quantum point contacts at the junction ends, controlled
by voltages Vqpc,top and Vtop on the top and Vqpc,bot and
Vbot on the bottom. The InAs layer forms the top-end ohmic
contact, and a Ti/Au layer forms the bottom-end ohmic
contact.

at both ends via tunnelling spectroscopy using quantum
point contacts (QPCs). This feature goes beyond pre-
vious planar JJ experiments, and is particularly impor-
tant for testing topological interpretations of our data.
In tuned ranges of junction gate voltage, we observe a
closing and reopening of the superconducting gap with
increasing B∥, along with a concurrent appearance of a
ZBCP at one or both ends of the junction. The gap re-
opening and the appearance of a ZBCP both depend on
ϕ and remain concurrent when ϕ is modulated by flux.
The closing and reopening of the superconducting gap,
together with the formation of a ZBCP is a fundamental
signature of a topological phase transition, and to the
best of our knowledge, never observed before in any plat-

form that can support topological superconductivity, in-
cluding previous planar Josephson junction experiments.
Additionally, the reduction of the field scale for the obser-
vation of ZBCPs to B∥ ≃ 0.2 T, compared to B∥ ≃ 0.6 T
in Ref. [9] reflects that our devices operate closer to the
Josephson junction limit.
We investigate a simple model of the system that in-

cludes spin-orbit coupling as well as both Zeeman and
orbital effects of the in-plane magnetic field. The or-
bital effect is due to the finite thickness of the Al-InAs
heterostructure stack, and was not considered in pre-
vious investigations of topological superconductivity in
planar JJs. The role of orbital effects in the context
of topological superconductivity has been investigated
in nanowires [13–15]. Superconducting phase bias con-
trolled topological superconductivity, which is closely re-
lated to the orbital effect driven mechanism discussed
here, is also emerging as an alternative to Zeeman-driven
topological superconductivity, and is aimed at overcom-
ing the unwanted effects of large magnetic fields associ-
ated with the latter [16, 17]. For realistic parameters,
the model exhibits a topological phase for ∼ 10% of pa-
rameter space examined. The model also shows non-
topological near-closings of the gap. Topologically triv-
ial situations are also explored, particularly focusing on
the possibility of zero-energy states arising from confining
potentials near the system edge. We compare theoreti-
cal predictions for both topological and non-topological
scenarios against experimental data.

II. DEVICE

Planar JJ devices were fabricated using an InAs-based
heterostructure grown on an InP wafer, with epitaxial Al
as the topmost layer of the heterostructure [see Fig. 1(b)].
In0.75Ga0.25As barriers separate the InAs quantum well
from the Al layer above and the In1−xAlxAs graded
buffer below. The heterostructure design is optimized
with considerations relevant for topological superconduc-
tivity [18]. The In0.75Ga0.25As layer between Al and InAs
layers serves as a tunneling barrier. Controlling the tun-
neling rate between the Al and InAs layers is key to
obtaining the desired balance between superconductiv-
ity (from Al) and semiconducting properties (from InAs)
such as a high spin-orbit coupling and large electron g-
factors, necessary for topological superconductivity [19].
The composition of the In0.75Ga0.25As barrier and its
thickness (10 nm) were optimized to meet these require-
ments. Strong superconducting proximity effect arises,
even though the barrier is insulating, since the elec-
tron wave function has a substantial probability density
close to the Al layer, resulting in high superconductor-
semiconductor interface transparencies [20]. High quality
SNS junctions, with S-N interface transparencies ranging
from 0.7 – 0.9, have been reported using similar material
systems [21, 22].
The JJ and superconducting loop were fabricated by
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a combination of selective wet etching of Al (using
Transene D etchant) and deep wet etching of the het-
erostructure stack to form a mesa and U-shaped trench.
A Ti/Au layer contacting a patch of the mesa (with Al
removed) serves as a sub-micron internal ohmic contact
allowing bottom-end tunnelling spectroscopy through a
QPC inside the superconducting loop. Patterned HfO2

dielectric was deposited using atomic layer deposition
(ALD) to allow the Ti/Au layer contacting the internal
ohmic contact to pass over the superconducting loop. A
second layer of ALD HfO2 was then deposited on the en-
tire chip followed by patterned deposition of Ti/Au gates
to electrostatically control the junction and QPCs. The
JJ (width wn = 100 nm, length l = 1.6µm) was cov-
ered by a gate above the second ALD layer, energized
by gate voltage V1 relative to the leads to control carrier
density and mean free path in the junction [Fig. 1(c)].
Dependence of density and mobility on gate voltage was
investigated in a Hall-bar geometry made from the same
material, with similar dielectric and top gate (see Sup-
plementary Material Fig. S12 [23]).

The Al layer in the leads (width w = 1.8 µm)
was etched to form meandering perforations (width ∼
100 nm); related structures were theoretically studied
in [24, 25]. These perforations allowed depletion of the
semiconductor below and laterally when the gate volt-
age covering the leads was set to a large negative value,
VSC ∼ −3 V. Depletion in the meanders resulted in an
improved hard superconducting gap up to B∥ ∼ 0.5 T
as shown in Fig. S2 [23]for tunnelling spectroscopy in a
lead-like structure. The measured induced gap at B∥ = 0
was ∆∗ ≃ 0.2 mV, essentially identical to the supercon-
ducting gap of thin Al, ∆Al ≃ 0.2 mV, suggesting the
high interface transparency between the Al layer and the
InAs 2DEG [26, 27]. Other lead designs, such as a uni-
form array of circular perforations, were explored. These
geometries suffered from unwanted phase jumps in the
presence of a perpendicular magnetic field, presumably
due to flux trapping by the circular perforations. We
therefore adopted the meandering geometry which avoids
flux trapping, but still allows a relatively spatially uni-
form superconducting proximity effect in the underlying
semiconductor.

The two leads are connected through a superconduct-
ing loop (with undepleted electron gas below) with area
∼12 µm2 allowing phase biasing of the junction by the
application of a perpendicular magnetic field, B⊥. One
flux quantum, Φ0 = h/2e, through the loop corresponds
to B⊥ ∼ 0.17 mT, small compared to the field that closes
the induced gap under the Al (B⊥ ∼ 10mT) or that
drives the Al normal (B⊥ ∼ 40mT). Split gates con-
trolled by voltages Vqpc,top and Vqpc,bot electrostatically
define constrictions at the top and bottom of the junc-
tion to serve as QPC tunnel barriers. Gate voltages Vtop
and Vbot, which control densities in the normal regions
outside the QPCs, are typically fixed at ∼ +100 mV.
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FIG. 2. Tunnelling spectroscopy as a function of in-
plane magnetic field. Differential conductance, G, as a
function of source-drain bias VSD and magnetic field B∥ along
the junction, showing a closing of the superconducting gap
followed by reopening and concurrent appearance of a ZBCP
in (a) Device 1, with V1 = +86 mV, VSC = −1.5 V, Vqpc,top =
−0.31 V, Vqpc,bot = −3.0 V, Vloop = −3.0 V.. (b) Device 4,
with V1 = +18 mV, VSC = −3.5 V, Vqpc,top = −0.369 V,
Vqpc,bot = −0.352 V, Vloop = −3.0 V.

III. RESULTS AND DISCUSSIONS

We first focus on tunnelling spectra at one end of the
junction, and then examine spectra measured simultane-
ously at both ends of the junction. We studied a total
of 10 devices of identical design, that showed largely uni-
form behavior (see Appendix C for a summary).
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A. Gap reopening with a zero-bias state

Figure 2 shows differential conductance, G, as a func-
tion of source-drain bias VSD measured at the top of the
junction (outside the loop) as a function of B∥ applied
along the junction for two devices. To compensate spu-
rious flux through the superconducting loop due to sam-
ple misalignment, G was measured as a function of B⊥ at
each value of B∥ and reconstructed to plot the B∥ depen-
dence at fixed flux (see Methods). Figure 2 is for the case
of zero flux, Φ = 0. Top QPC gates were tuned to operate
in the tunnelling regime, where G is roughly proportional
to the local density of states (see [28], Sec. 11.5).

In Device 1, at B∥ = 0, we measured a gap ∆ ∼
80 µeV, which increased to ∆ ∼ 100 µeV at B∥ ∼ 0.05 T.
Above 0.1 T, a dense but discrete set of tunnelling peaks
approach zero bias, closing at B∥ ∼ 0.2 T. With fur-
ther increase of field, the gap reopened, and a ZBCP ap-
peared, separated from the gapped states. A maximum
gap of ∼ 20− 30 µeV was observed in the reopened state
before it closed again at B∥ ∼ 0.5 T. In both devices,
gap-reopening occurred at B∥ ∼ 0.2 T, and the reopened
gap was of similar magnitude.

Focusing on the structure of the ZBCP, we observe
ideal ZBCP behavior in Device 4 that remains stuck until
the gap closes [Fig. 2(b)]. Deviations from ideal ZBCP
behavior are also observed. For instance, in Device 1,
the ZBCP begins to deviate from zero bias and splits for
B∥ ≃ 0.4 T[Fig. 2(a)]. The splitting of the ZBCP, both
its magnitude and the value of magnetic field where it
occurs, is influenced by the phase bias ϕ (Fig. S4 [23])
and the chemical potential (Fig. S6 [23]). Furthermore,
we note that the split peaks sometimes show asymmetric
tunneling conductance amplitudes. Similar behavior is
also seen in Device 2 (Fig. S5 and Fig. S7 [23]).

To aid understanding, we first investigate a disorder-
free theoretical model that extends the models developed
in Refs. [1, 2]. The proximity-coupled semiconductor is
treated as a parabolic band, approximated within a tight-
binding model, with effective mass of m∗ = 0.026me,
where me is the free electron mass, and Rashba spin-
orbit coupling α = 15 meV nm. The superconducting
leads are represented by a pairing potential ∆ ∼ 140 µeV.
The in-plane field B∥ induces both a Zeeman coupling
and an orbital effect. The Zeeman coupling is charac-
terized by an energy scale EZ = gS(N)µBB∥/2, where µB

is the Bohr magneton, with g-factors gN = −8 in the
junction and gS = −4 in the leads, based on literature
values [29, 30]. The orbital effect is due to the finite cross
section of the device, γwz(wn + 2w) ∼ Φ0/0.2 T, where
γ = 0.4 is a phenomenological parameter obtained from
the leads spectroscopy (see Fig. S2 [23]). As discussed
below, this orbital field scale (∼0.2 T) emerges naturally
in the model and is not put in by hand. The orbital effect
is included by considering a bilayer structure with com-
plex hopping between layers [31] and a linearly increasing
superconducting phase difference between the layers and
across the junction (see [28], Sec. 6.4 and [32], Sec. 2.9).
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FIG. 3. Theoretical model of topological phase transi-
tion. Dispersion of the Andreev bound states in a Josephson
junction with periodic boundary conditions as a function of
momentum k along the junction, parallel to the S-N interfaces
(measured in units of kF =

√
2m∗µN/ℏ) at phase difference

ϕ = 0 for three different values of the Zeeman field: (a) The
spectrum is fully gapped at B∥ = 0. (b) At B∥ = 0.21 T,
the gap at k = 0 closes. (c) At B∥ = 0.3 T, the gap at
k = 0 has reopened, implying a topologically inverted su-
perconducting gap. The gap at non-zero momentum remains
non-zero throughout. (d) Andreev bound state spectrum of a
finite-length planar Josephson junction (l = 4µm) with open
boundary conditions. The closing and reopening of the super-
conducting gap at B∥ = 0.21 T is followed by the appearance
of a Majorana state at zero energy (red), signaling a transi-
tion to the topological phase.

In the model, the quasi-one-dimensional junction sup-
ports Andreev bound states with momentum dispersion
as shown in Fig. 3, where k is momentum parallel to
the SN interfaces. At zero field [Fig. 3(a)], the spectrum
shows a momentum-dependent superconducting gap that
is induced by lateral proximity effect from the leads. At
B∥ ∼ 0.2 T a topological phase transition occurs, sig-
naled by a closing of the gap at k = 0 [Fig. 3(b)]. Increas-
ing B∥ further reopens the gap, as illustrated in Fig. 3(c)
for the case B∥ = 0.3 T. Notice that the spectrum re-
mains gapped at finite k ∼ ±kF throughout this field
range. Correspondingly, in a Josephson junction with
open boundary conditions, the bulk remains gapped away
from the transition point. Figure 3(d) shows the model
spectrum in a finite-length junction undergoing a gap
closing at B∥ ∼ 0.2 T and reopening, accompanied by
the appearance of a zero-energy state. The zero-energy
state observed in the model corresponds to a Majorana
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is modulated periodically as a function of B⊥. The period corresponds to Φ0 = h/2e through the superconducting loop. (b)
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the superconducting gap reopens with a stable ZBCP. (d)–(f) Theoretical spectra as a function of the flux at three values of
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correspondence). The simulations take into account the inductance L = 2 nH of the flux loop. This reduces the degree of phase
modulation of the superconducting gap (see Methods).

zero mode.

B. Flux dependence

We next examine the effects of phase bias on subgap
spectroscopy. Figures 4(a-c) show tunnelling spectra as
a function of B⊥ at different values of B∥ in Device 1.
At B∥ = 0 [Fig. 4(a)], the induced superconducting gap
is modulated periodically as a function of B⊥ with a pe-
riodicity of ∆B⊥ ∼ 170 µT, corresponding to one flux
quantum Φ0 = h/2e through the loop. The maximum
(minimum) induced gap is ∆ ∼ 80 µeV (50µeV) at in-
teger (half-integer) flux through the loop. Around half
flux quantum values, sharp switches are observed, which
we attribute to phase jumps due to the large inductance
of the loop, L ∼ 2 nH [21] (see Methods).

Increasing B∥ from zero, the phase-dependent states
initially moved to lower energy up to the first gap clos-

ing. Figure 4(b) shows the phase-dependent spectrum
at B∥ = 0.23 T, corresponding to the first gap closing
in Fig. 2(a). Within each flux lobe, a bowtie-shaped set
of states crossing zero energy was observed, creating a
gapless spectrum. When the in-plane field was increased
to B∥ = 0.27 T, the gap reappeared along with a ZBCP
[Fig. 4(c)]. The ZBCP displays no observable depen-
dence on B⊥, while the gap shows strong phase depen-
dence with the lowest-lying energy level at E ∼ 30 µeV.
In contrast to the phase-dependent spectrum at B∥ = 0
[Fig. 4(a)], spectra at finite parallel field [Figs. 4(b-c)] are
asymmetric in phase bias within each lobe [2, 35–37].

The numerical bound-state spectrum was determined
as a function of Φ, including the effect of loop inductance
(see Methods). Figures 4(d-f) show numerical spectra
with variation of the magnetic flux at three values of B∥.
At zero in-plane magnetic field [Fig. 4(d)], the spectrum
is spin degenerate and all Andreev bound state energies
are periodically modulated as a function of Φ. At inter-
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FIG. 5. Two-ended tunnelling spectroscopy at the two ends of the junction. Differential conductance measured
as a function of source-drain bias VSD and in-plane magnetic field B∥ (a) GT the top end and (b) GB at the bottom end.
The phase bias is set to Φ = 0. Both ends display a closing and reopening of the gap at B∥ ∼0.22 T followed by a zero-bias
conductance peak. Simultaneous differential conductance measured at the top end and bottom end as a function of source-drain
bias VSD and out-of-plane magnetic field B⊥ for different values of in-plane magnetic field B∥. (c) and (d) At B∥ = 0, the
superconducting gap is modulated periodically at both ends as a function of B⊥ with the same periodicity and zero relative
phase difference. (e) and (f) At B∥ = 0.2 T, the spectrum at both ends becomes gapless for all values of B⊥. (g) and (h)
At B∥ = 0.3 T the superconducting gap reopens with a stable zero-bias conductance peak at both ends of the device. Gate
voltages were V1 = +189 mV, VSC = −2.6 V, Vqpc,top = −6 mV,Vtop = −0.1 V, Vqpc,bot = −265 mV, Vbot = +0.2 V, and
Vloop = −3.0 V.

mediate magnetic fields [Fig. 4(e)], the system is trivial
in some range of Φ and topological in another range. In
the topological region, a zero-energy state appears in the
gap. These regions are separated by a gap-closing transi-
tion. For higher magnetic fields [Fig. 4(f)], the spectrum
becomes topological for all values of Φ and the junction
hosts a stable zero-energy state. The orbital effect from
the in-plane magnetic field also induces a phase shift in
the spectrum, such that the flux lobes are not symmetric
about Φ = 0 at non-zero values of B∥.

We next examine the effect on the spectrum when B∥
was tilted by small angles in the plane of the junction. As
shown in Figs. S8 (a-c) [23], a tilt angle of ∼ 20◦ closed
the reopened gap. Similar behavior is seen in the model,
though with greater sensitivity to tilt, as seen in Figs. S8
(d-f) [23].

C. Correlated gap-reopening in two-ended
spectroscopy

Next, we investigate simultaneous tunnelling spec-
troscopy at both ends of the device using the two QPCs
in Device 3. Differential conductances GT and GB, mea-
sured at the top (top row of Fig. 5) and bottom (bottom
row of Fig. 5) of the junction show correlated modula-
tion of the superconducting gaps at the two ends as a
function of B⊥ with flux switches occurring at the same
values of B⊥ at both ends [Figs. 5(c) and 5(d)]. The sizes
of the superconducting gaps at the two ends are differ-
ent, with ∆T ∼ 50 µeV at the top and ∆B ∼ 120 µeV
at the bottom. In the presence of an in-plane magnetic
field, the gaps at the two ends disappeared simultane-
ously at B∥ ∼ 0.2 T before reopening and undergoing a
final gap closure at B∥ ∼ 0.48 T. A gapless spectrum at
B∥ ∼ 0.2 T was seen for all values of B⊥ [Figs. 5(e,f)]. At



7

a b
V

1 (
m

V
)

V
S

D
 (μ

V
)

IT, 3ω (pA)

0 0.2 0.4

-100

-50

0

50

100

150

200

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

0 0.2 0.4

-100

-50

0

50

100

150

200

-2.5

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

2.5Ф=0

V
1 (

m
V

)

IB, 3ω (pA)

B|| (T) B|| (T)

Ф=0

B|| (T)

μ N
 (m

eV
)

QEgap (μeV)

Ф=0

c

FIG. 6. Two-ended third harmonic of the tunnelling current at the two ends. Third-harmonic current measured at
VSD = 0 as a function of V1 and in-plane magnetic field B∥ (a) IT,3ω at the top and (b) IB,3ω at bottom of the junction, at phase
bias Φ = 0. A positive signal indicates a zero-bias conductance peak [9]. At B∥ = 0.3 T, we estimate the percentage of V1 space
that produces a positive third harmonic signal as PZ,T ∼ 11% at the top tunnel probe and PZ,B ∼ 13% at the bottom tunnel
probe. (c) Theoretical topological phase diagram in the plane of the parallel magnetic field B∥ and the chemical potential µN

in the normal region (at ϕ = 0). The colors indicate the topological invariant Q, which is +1 (−1) for the trivial (topological)
phase, multiplied by the energy gap. The diagram exhibits appreciable topological regions starting near B∥ ∼ 0.2 T. The
near-closings of the gap at B∥ ∼ 0.2 T are almost independent of µN. These are not k = 0 gap closings and are thus not related
to a class-D topological phase transition [33, 34].

B∥ ∼ 0.3 T, the maximal reopened gaps at the two ends
have different magnitudes, with a smaller gap at the top
end (∆T ∼ 30 µeV) compared to the bottom end (∆B ∼
50 µeV). Both ends display ZBCPs that emerge from the
gap reopening and were reasonably stable for a range
of in-plane magnetic field, phase [Figs. 5(g,h)], as well as
junction gate voltage gate V1. However, their range in V1
was not strongly correlated (see Supplementary Material
Fig. S9 [23]).

In Device 4, apart from measuring similar two-ended
tunneling characteristics as Device 3 (see Fig. S10 [23]),
we also measure the third-harmonic of the tunneling
current simultaneously at both ends of the device at
VSD = 0, while sweeping V1 and B∥ continuously, to iden-
tify correlations between the two ends [Fig. 6(a),(b)]. A
positive signal indicates a zero-bias conductance peak [9].
The first closing of the gap produces a region with inter-
mittent positive third-harmonic current at B∥ ∼ 0.2 T,
reflecting a crossing of states through zero bias, appear-
ing as a vertical feature that has weak dependence on
V1. This appears simultaneously at both ends, showing
the end-to-end correlated nature of this feature, and its
stability over the entire operable range of V1 spanning
300 mV. At B∥ > 0.4 T, the third-harmonic current is
positive for a sizable fraction of V1, associated with a re-
closing of the gap. For 0.2 T ≤ B∥ ≤0.4 T, regions of V1
with positive third harmonic correspond to ZBCPs after
the gap reopening.

This compares well with the theoretical model where
the gap closure around B∥ ∼ 0.2 T is robust, i.e., insen-
sitive to small changes in chemical potential, as shown

in Fig. 6(c). This feature appears as the vertical white
stripe at B∥ ∼ 0.2 T, reflecting a tendency for the gap
to close roughly independent of the chemical potential.
This feature reflects either a topological transition ac-
companied by a zero-energy state or a near-closing of the
gap without a topological transition, depending on rela-
tively small changes in chemical potential or other model
parameters. This is shown in the field spectra evaluated
at different values of the chemical potential [Figs. S3 (a)-
(f) [23]]. Particularly, chemical potentials exist where
the apparent gap closing is not associated with a zero-
energy state [Fig. S3(f) [23]]. This is different from the
Zeeman-effect driven topological transition in nanowires,
where reopening of the gap follows a parabolic profile
in B∥ − µN space, and near-closings of the gap are not
expected.

D. Topological interpretation

These observations indicate that the closing and re-
opening of the gap was strongly correlated at the two
ends. This provides support for the bulk character of
the transition, and argues against spurious effects such as
Andreev-dot physics that typically produce localized fea-
tures only at one device end. Furthermore, the formation
of ZBCPs is correlated with the gap-reopening feature,
as evident from our investigation of the gap-reopening
transition in the experimentally accessible Φ–B∥ plane
[Fig. S4 and Fig. S5 [23]]. To obtain the critical field, Bc,
at which the gap closes and reopens, we track the bow-
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FIG. 7. Numerics of quasi-Majoranas induced by a smooth potential. The panels show the 30 lowest energy levels of
the junction including a lounge-chair potential with parameters f = 0.8, Le = 1µm, Lp = 0.5µm. The spectrum as a function
of B∥ at zero phase difference, shown in panel (a), has a feature resembling a gap reopening associated with the appearance of
the zero-energy states, and therefore it could be confused with the behavior of a true Majorana zero mode. However, in the
presence of a finite phase difference, the gap-reopening feature and the zero-energy state, both disappear, as shown in panels
(b)-(d). (e)–(h) Spectra as a function of the phase difference for different in-plane fields, showing that the zero-energy states
are not stable to phase variation. The phase behavior may therefore help distinguish between a quasi-Majorana state and a
true Majorana zero mode.

tie shaped feature that appears in the phase-dependent
spectra [Fig. S4 (b) [23]], representing gap closure. This
feature evolves with both B∥ and B⊥ and can be tracked
with an uncertainty of ∆B∥ ≃ 0.01 T and ∆B⊥ ≃ 50 µT
in Device 1 (see Fig. S13 [23]). In Device 2, the uncer-
tainties are larger (∆B∥ ≃ 0.03 T and ∆B⊥ ≃ 50 µT, see
Fig. S14 [23]). From this estimation, in Device 1 [Fig. S4
[23]], we obtain that the critical in-plane field required for
gap reopening, Bc = 0.19 T at Φ = −Φ0/2, and progres-
sively increases to Bc = 0.24 T for Φ = +Φ0/2. As the
gap-reopening feature evolves, we observe that the ZBCP
also evolves, and always follows the reopening of the gap,
appearing when B∥ exceeds Bc by about 0.01 – 0.03 T,
for every value of Φ.

The formation of the ZBCP and the reopening of the
gap appear to happen in concert, and are not inde-
pendent events. The formation of non-topological zero-
energy states is not generically expected to exhibit any
correlation with a gap-reopening transition [38–42]. We
also note that the formation of our ZBCPs is qualitatively
different compared to nanowire geometries [6–8, 30, 43],
where a pair of Andreev bound states emerges from the
gap edge at B∥ = 0 and is lowered in energy with in-
creasing magnetic field until the two states coalesce and
stick at zero energy. In contrast, the ZBCPs discussed
above emanate directly from the gap-reopening feature
and their evolution from higher energy states cannot be
discerned. These arguments favour a topological inter-
pretation [42].

E. Non-topological interpretations

The absence of end-to-end ZBCP correlation at the
two device ends is not consistent with clean topologi-
cal superconductivity. This prompts us to consider non-
topological interpretations of our data. Therefore, we
numerically study the behavior of accidental zero-energy
states that are formed due to chemical potential inho-
mogeneity [38, 44, 45]. Such zero-energy states, also
known in the literature as quasi-Majorana states, have
been previously investigated only in the nanowire geom-
etry. As shown in Fig. 7(a), fine-tuned situations are
possible where the system supports a stable zero-energy
state associated with a gap-reopening-like feature. How-
ever, in our model, such zero-energy states were unstable
to variations of phase bias [Fig. 7(b)-(d)] (also see Ap-
pendix F, and Fig. S16 [23]). This does not compare well
with our experiments where both the gap-reopening and
ZBCP were found to be robust against phase variations
[Figs.4, S4 and S5 [23]]. On the other hand, when we
deliberately tuned the device to host end-dots, the zero-
bias Andreev states produced by them were not associ-
ated with a gap reopening, and were unstable to phase
variations, as predicted by theory (see Fig. S17 [23]).

However, we cannot rule out other non-topological sit-
uations where behavior comparable to our experiment
may be reproduced. Since the planar Josephson junc-
tion is a relatively new platform for topological super-
conductivity, we invite further theoretical discussions on
this matter, highlighting that the phase degree of free-
dom may provide a discriminatory probe, absent in the
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nanowire setup, that can help distinguish topological and
non-topological zero-energy states.

IV. SUMMARY

We have presented a detailed investigation of planar
Josephson junctions in the context of topological super-
conductivity. Prominently, the reopening of the gap to-
gether with the presence of zero-bias peaks, and the de-
pendence of these features on phase bias and chemical po-
tential are captured well by our theoretical model where
orbital effects were found to be important for a topolog-
ical superconducting state. Within a topological inter-
pretation, the general lack of end-to-end correlations of
ZBCPs suggests that disorder creates disjointed topolog-
ical segments along the length of the junction. Combined
with nonlocal conductance spectroscopy on the same de-
vices, reported in a separate publication [46], we specu-
late that disorder strength in our systems is low enough
to allow observation of a simultaneous reopening of the
gap on the ends, but not so low yet as to observe an
uninterrupted topological phase. Looking ahead, mod-
est improvements in material quality may allow pristine
topological superconductivity to emerge on this platform.
Combined with recent developments in spatial manipula-
tion of Andreev states using phase textures [47], a near-
term fusion/braiding experiment appears within experi-
mental reach [48].
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Appendix A: Wafer structure

The wafer structure used in this work consists of an
InAs two-dimensional quantum well in epitaxial con-
tact with Al. The wafer was grown on an insulating
InP substrate by molecular beam epitaxy comprising
a 100-nm-thick In0.52Al0.48As matched buffer, a 1 µm
thick step-graded buffer realized with alloy steps from
In0.52Al0.48As to In0.89Al0.11As (20 steps, 50 nm/step),a
58 nm In0.82Al0.18As layer, a 4 nm In0.75Ga0.25As bot-
tom barrier, a 7 nm InAs quantum well, a 10 nm
In0.75Ga0.25As top barrier, two monolayers of GaAs and
a 7 nm film of epitaxially grown Al. The top Al layer was
grown in the same molecular beam epitaxy chamber used
for the rest of the growth, without breaking the vacuum.
Hall effect measurements were performed in Hall bar

devices with Al etched away (see Fig. S12 for Hall ef-
fect measurements [23]). The Hall bar was covered with
the same dielectric material as used in the Josephson
junction experiments, grown under nominally identical
conditions and of the same thickness. A peak electron
mobility µ = 43, 000 cm2/Vs was observed at a car-
rier density of n = 8 × 1011 cm−2, corresponding to a
peak mean free path of le ∼ 600 nm at top gate voltage
VTG = −0.8 V. In the junction experiments, we typically
use Vsc = −3 V to control density under the supercon-
ducting leads and V1 = 0−0.1 V to control density in the
barrier region. Different geometries and lateral gate cou-
pling makes it difficult to compare these voltages directly.
To get a rough idea, however, taking le to be around 600
nm in the junction yields quasi-ballistic motion along the
junction, l ∼ 3le, and ballistic motion across the junction,
wn ∼ le/6.
Transport characterization of a large-area Hall bar

with Al in place yielded a critical field of 2.5 T [9, 49] for
the parent Al layer, considerably larger than field where
the gap closure occurs, ∼ 0.5 T.

Appendix B: Device fabrication

Devices were fabricated using conventional electron
beam lithography. Devices on the same chip were
electrically isolated from each other using a self-
aligned mesa etch process, first by removing Al us-
ing Transene D wet etch, followed by a wet etch in
H2O:C6H8O7:H3PO4:H2O2 (220:55:3:3) to remove the
semiconductor to a depth of ∼ 300 nm. Next, Al was
selectively removed leaving the Josephson junction and
flux loop. A 15 nm thick layer of HfO2 grown at 90◦C
using atomic layer deposition (ALD) was used as the gate
dielectric. Gates were defined using electron beam lithog-
raphy followed by e-beam evaporation of Ti/Au layers
of thicknesses (5 nm/20 nm) for finer structures and (5
nm/350 nm) for the bonding pads. The bottom Ti/Au
ohmic contact (5 nm/350 nm) was formed by etching
away a U-shaped trench in the mesa and then contacting
the InAs 2DEG. No additional surface preparation was

https://doi.org/10.5281/zenodo.5831419
https://doi.org/10.5281/zenodo.5831419
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used. An additional HfO2 layer deposited by ALD and
subsequent lift-off was used to isolate the Ti/Au ohmic
from the superconducting loop and mesa.

Appendix C: Electrical transport measurements

Electrical transport measurements were performed in
an Oxford Triton dilution refrigerator at a base tem-
perature of 20 mK using conventional low-frequency AC
lock-in techniques at 31.5 Hz excitation frequency, an
AC excitation amplitude of 3 µV and a variable DC
voltage VSD for bias spectroscopy. The current through
the device was recorded using a low-impedance current-
to-voltage converter that was attached to the ohmic
contact connected to the superconducting loop. For
measuring the third harmonic of the current, a higher
AC excitation amplitude of 10 µV was used. Mag-
netic field to the sample was applied using a three-axis
(Bx, By, Bz)=(1T, 1T, 6T) vector magnet.
We fabricated 32 devices, of which 10 were measured.

We summarize the behavior of these devices. We also
estimate the probability PZ,T(B), of observing a ZBCP,
which is defined as the percentage of operable V1 gate
space that shows stable ZBCPs at the top (bottom) end.

Device 1: Gap reopening with ZBCP at top end, bot-
tom QPC did not work. PZ,T ∼ 15%.
Device 2: Gap reopening at both ends, ZBCP only at

the top end. PZ,T ∼ 30%.
Device 3: Gap reopening and stable ZBCP at both

ends. PZ,T ∼ 10%, PZ,B ∼ 5%.
Device 4: Gap reopening and stable ZBCP at both

ends. PZ,T ∼ 10%, PZ,B ∼ 10%.
Device 5: Gap reopening and stable ZBCP at both

ends. PZ,T ∼ 5%, PZ,B ∼ 5%.
Device 6: Gap reopening at both ends. Stable ZBCP

at top end. ZBCP at bottom end oscillated as a function
of in-plane magnetic field. PZ,T ∼ 5%, PZ,B ∼ 5%.
Device 7: Gap reopening on both ends. Soft gap at

low fields at both ends.
Device 8: Spectroscopy possible at both ends, how-

ever induced superconducting gap at the bottom end col-
lapsed at B∥ ∼ 150 mT.
Device 9: Spectroscopy not possible at bottom end.
Device 10: No detectable superconducting gap on ei-

ther end.
Theoretical simulation: PZ,T = PZ,B ∼ 9–18%.

Appendix D: Magnetic field alignment

The sample is oriented with respect to the vector mag-
net such that Bx of the magnet is nominally along B⊥,
the field in the direction perpendicular to the plane of
the wafer [Fig. 1(c)] and Bz of the magnet is nominally
parallel to B∥ the field direction along the SN interfaces
[Fig. 1(c)]. However, sample misalignment causes the
magnet Bz to have a small contribution to B⊥, which

controls the flux through the superconducting loop. At
non-zero Bz, it is therefore necessary to identify the pro-
portional amount of Bx that results in constant flux
through the loop. At zero Bz, the value of Bx at which
the superconducting gap is maximised corresponds to
zero and multiples of Φ0, while distinct phase jumps ap-
pear at odd multiples of Φ0/2. This allows us to calibrate
the flux through the device at zero Bz. At finite Bz, the
superconducting gap acquires a phase-asymmetric dis-
persion, and the maxima of the gap cannot be used to
track lines of constant flux. Instead, we use the phase
jumps to identify lines of constant flux through the de-
vice. This allows us to define magnetic fields B∥ and B⊥
that compensate for the finite tilt of the sample.

Appendix E: Estimation of flux loop inductance

The inductance of the superconducting loop is a com-
bination of the geometric inductance and the kinetic in-
ductance of the thin Al layer, and is dominated by the
latter [21]. We estimate the geometric inductance of the
loop as LG ∼ 2.5 pH. The kinetic inductance of a thin
superconductor is proportional to its sheet resistivity and
is given as

LK =
ls
ws

h

2π2e

R□

∆
, (E1)

where ls and ws are the length and width of the supercon-
ducting stripe defining the superconducting loop includ-
ing the meanders that are part of the superconducting
leads, and R□ is the normal-state sheet resistivity of the
Al/InAs layer. ls/ws ∼ 240 in our device and has two
contributions, l1/w1 ∼ 40 for the U-shaped part of the
loop and l2/w2 ∼ 200 arising from the meandering part
of the superconducting leads. The sheet resistance R□
in our material is measured as ∼6 Ω in the normal state
of a large area Al Hall bar [49] and the superconducting
gap ∆ ∼ 200 µeV. This leads to a kinetic inductance
LK ∼ 1.5 nH, and total inductance L ∼ LK ∼ 1.5 nH. In
our numerical simulations of the flux dependence of An-
dreev bound state spectrum, we find that L ∼ 2 nH quali-
tatively reproduces the features observed in the measured
subgap spectra (see Fig. 4).

Appendix F: Model

To model our device, we use an extension of the Hamil-
tonian proposed in Refs. [1, 2] to account for finite thick-
ness and include orbital effects. The model is based
on two layers of a two-dimensional semiconductor with
Rashba spin-orbit coupling. We consider a rectangular
device, with the rectangle divided into three parts by
width: normal region in the middle with width wn, and
superconducting regions on two sides, each of width w.

In the Nambu basis (ψ↑, ψ↓, ψ
†
↓,−ψ

†
↑), the Bogoliubov–de

Gennes Hamiltonian is given by:
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H =

[
−
∂2x + ∂2y
2m∗ − t⊥νx − µ(y) + iα(z) (∂xσy − ∂yσx)

]
τz

+
g(y)µBB∥

2
σx +∆(y, z)τ+ +∆∗(y, z)τ−,

(F1)
where σ, τ, ν are Pauli matrices acting in spin, electron-
hole, and layer basis, respectively. Here m∗ is the effec-
tive mass of electrons in the semiconductor, α(z) is the
layer-dependent Rashba spin-orbit coupling strength, t⊥
is the inter-layer hopping amplitude, B∥ is the magnetic
field applied along the junction, and µB is the Bohr mag-
neton. The g-factor g(y) is different for the normal and
superconducting regions, such that

g(y) =

{
gN |y| < wn

2
gS

wn

2 < |y| < w + wn

2 .
(F2)

Similarly, the chemical potential µ takes the values µN in
the normal region and µS in the superconducting region.
In the last two terms, ∆(y) is the superconducting pairing
potential which is non-zero only in the superconducting
region:

∆(y) =


0 |y| < wn

2

∆eiϕ/2 wn

2 < y < w + wn

2

∆e−iϕ/2 −w − wn

2 < y < −wn

2 .
(F3)

To model the finite thickness of the system, thereby ac-
counting for the orbital effects of the in-plane magnetic
field, we utilize the two-layer structure. Hopping between
the two layers is described by the amplitude t⊥. The or-

bital effect enters as a vector potential A⃗ = B∥yẑ, where z
is the out-of-plane direction; the vector potential is incor-
porated into the tight-binding Hamiltonian as a complex
amplitude with the Peierls substitution [31]. Further-
more, the parallel magnetic field induces linear phase
growth along the junction’s cross section [28], which is
modeled as an additional modulation ∝ B∥yz to the su-
perconducting phase. We note that another possibility
of modeling the phase evolution is assuming the proxim-
ity effect is only present at the top layer and calibrat-
ing ∆ accordingly. The basis of this approach is inte-
grating out the proximitizing superconductor’s degrees
of freedom, and it yields very similar results to the ones
we report here. In reality a detailed simulation of the
system is more involved. It should include the effect of
disorder in the Al and InAs layers, and consider a well
with finite thickness in the z direction. We should there-
fore treat the Hamiltonian introduced in Eq. (F1) as a
phenomenological model that, with a proper choice of
effective parameters, reproduces qualitatively the exper-
imental observations.

For our numerical calculations, we discretize the
Hamiltonian to a tight-binding model on a square lattice
of spacing a = 10 nm. Simulations are performed with
the following parameters: m∗ = 0.026me, ∆ = 140 µeV,
t⊥ = 10 meV, l = 4 µm, wn = 100 nm, w = 200 nm,

wz = 10 nm, µSC = 3.6 meV, µN = 3.3 meV. The g-
factors are taken to be gN = 8 and gS = 4. We use the
leads spectroscopy measurements [Fig. S2 [23]] to match
Aeff (the effective cross section for the field-induced su-
perconducting phase gradient), µSC, and the difference
in spin-orbit coupling between the two layers. We ob-
tained Aeff = 0.4(2w + wn)wz, µSC = 3.6 meV, and
the spin-orbit coupling constants α(0) = 15 meV nm,
α(1) = −α(0)/4. Pfaffians were computed using the pf-
pack software package [50]. Some of the preliminary sim-
ulations were performed using the Kwant software pack-
age [51].

We further introduce the effect of finite loop induc-
tance to simulate the flux jumps observed in the exper-
imental phase spectra by establishing the relation be-
tween the external flux (Φ) penetrating the device and
the phase difference (ϕ) dropped across the Josephson
junction. The spectra of the system obtained as a func-
tion of ϕ can then be mapped to spectra as a function of
the applied flux Φ. Given a phase difference ϕ, we calcu-
late the ground-state energy EGS(ϕ) by summing up the
energies of all occupied levels E < 0. We then calculate
the supercurrent at zero temperature, I(ϕ) = −dEGS

dϕ .

In the presence of a finite loop inductance L, the exter-
nal flux Φ and the phase difference across the Joseph-
son junction ϕ are related as Φ = (Φ0/2π)ϕ − LI(ϕ),
where the second term accounts for the magnetic flux
dropped across the flux loop when a supercurrent I(ϕ)
flows through it. For each Φ, several values of ϕ may
be possible. We use a quasi-static approximation and
choose the value of ϕ that minimises the total energy
Etot(ϕ) = EGS(ϕ) +

1
2LI

2(ϕ), where the second term is
the magnetic energy stored in the loop. Once the map-
ping Φ → ϕ is established, we obtain the energy spec-
trum as a function of Φ. Here we provide simulations
with L = 2 nH.

As a consequence of this effect, the observed phase
modulation of Andreev bound states is reduced as shown
in Fig. 4(d)-(f). Since a portion of the applied mag-
netic flux drops across the loop inductance, the flux
dropped across the SNS junction is reduced, especially
close to ϕ ≃ π, where the current through the junction,
and therefore the flux dropped on the loop inductance
LI(ϕ) is maximum. Additionally, we note that in con-
ventional radio-frequency SQUIDs, loop inductance may
lead to hysteretic operation of the device where the flux
across the junction changes hysteretically depending on
the sweep direction of the external magnetic field that
controls the applied flux [52, 53]. In our experiments, we
did not observe any hysteretic behavior, suggesting that
the system chooses to minimize its ground state energy
for every value of applied B⊥. This is possible since B⊥
is swept very slowly in our experiments (10 µT for ev-
ery sweep of the source-drain bias voltage, which takes
about 20s, giving an effective sweep rate of 0.5 µT/s).
The system is therefore allowed enough time to find the
ground-state energy minimum which typically scales as
the inverse of the Josephson energy. Similar reduction in
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phase modulation of Andreev bound states was recently
observed in [54] and also attributed to the loop induc-
tance.

Appendix G: Numeric analysis of disorder and
non-topological zero-energy states

In addition, we examined the effect of disorder by intro-
ducing a random potential term V (x, y) into the Hamilto-
nian. We took V (x, y) to be a random uncorrelated Gaus-
sian variable, ⟨V (x, y)V (x′, y′)⟩ = V 2

0 δ(x − x′)δ(y − y′).
The corresponding tight-binding version of this random
potential is a site-dependent random addition to the
chemical potential, whose variance VTB is related to the

continuum value V0 by V 2
TBa

2 = V 2
0 = 1

m∗τ =
2a2t∥

τ ,

where τ is the transport lifetime. Therefore, V 2
TB =

2t∥/τ . We took ℏ/τ = 1meV in the region not cov-
ered by the superconductor and ℏ/τ = 0.5meV for the
covered region (due to the lower Fermi velocity there).
For this intermediate range of τ , roughly consistent with
the mean free path from Fig. S12 [23], disorder may or
may not destroy the zero-energy state, depending on the
particular disorder realization. When τ is increased by a
factor of 10 (weak disorder) the zero-energy state is al-
most always observed, while decreasing τ by a factor of
10 (strong disorder) essentially eliminates the zero-energy
state.

We also explored additional explanations for our data
which rely on topologically trivial mechanisms for the
emergence of zero-energy states. Such Andreev bound
states, sometimes termed quasi-Majorana states, may
emerge when the confining potential is smooth near the
edges of the system [38, 42, 44, 45]. To investigate this
possibility, we added a modulation to the chemical po-
tential in both normal and superconducting parts of the
junction, according to

µN(x) = µN,0F (x), µSC(x) = µSC,0F (x),

F (x) = f +
1− f

2

[
1 + tanh

(
x− Le

Lp

)]
.

(G1)

The modulation function F (x) is the so-called lounge-
chair potential: it curves smoothly near the edge of the
junction and takes on a constant value in the bulk. It
is parametrized by f (the offset at the edge), Le (the
penetration of the potential into the junction), and Lp

(the smoothness of the potential). The parameter pro-
files with this modulation are shown in Fig. S15 [23].
By varying f, Le, Lp and changing the chemical potential
µN,0, we were able to find several examples of spectra
where near-zero-energy states appear due to this smooth
potential, in a region of parameter space that does not
support a topological phase. Such examples are shown
in Figs. 7, S16[23]. These states are stable to the in-
plane field, but they are very unstable to variations in
the superconducting phase difference ϕ. This should be
contrasted with true Majorana zero modes which, in at
least in some regions of parameter space, can be robust to
phase difference. We therefore suggest that the phase sta-
bility is a powerful tool for differentiating between triv-
ial Andreev bound states and Majorana zero modes in
planar Josephson junctions, unlike nanowires where this
degree of freedom is not available.
We suggest that the difference between the ubiquity

of quasi-Majoranas in nanowires and their relative rarity
in our setup originates from the fundamental difference
between the two systems. In nanowires, or in Joseph-
son junctions with narrow superconductors, topological
transitions are induced by tuning the Fermi energy and
the parallel field. When the Fermi energy varies slowly
close to the wire’s ends, this variation induces a series
of points where the wire transitions between topologi-
cal and trivial states, and each such point comes with
a localized zero mode. In contrast, in a junction made
of semi-infinite superconductors, topological transitions
are tuned by varying the phase difference and the par-
allel field, with a weak dependence on the Fermi energy.
Thus, the variation of the Fermi energy close to the junc-
tion’s end does not lead to such a series of transitions.
The junction we study here is at the intermediate limit,
with a relatively weak dependence of the phase diagram
on the Fermi energy, and hence the relative rarity of the
quasi-Majoranas in our numerical studies.
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