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Initial characterizations of the fermion sign problem focused on its evolution with spatial lattice
size L and inverse temperature β, emphasizing the implications of the exponential nature of the de-
cay of the average sign ⟨S⟩ for the complexity of its solution and associated limitations of quantum
Monte Carlo studies of strongly correlated materials. Early interest was also on the evolution of ⟨S⟩
with density ρ, either because commensurate filling is often associated with special symmetries for
which the sign problem is absent, or because particular fillings are often primary targets, e.g. those
densities which maximize superconducting transition temperature (the top of the ‘dome’ of cuprate
systems). Here we describe a new analysis of the sign problem which demonstrates that the spin-
resolved sign ⟨Sσ⟩ already possesses signatures of universal behavior traditionally associated with
order parameters, even in the absence of symmetry protection that makes ⟨S⟩ = 1. When appropri-
ately scaled, ⟨Sσ⟩ exhibits universal crossings and data collapse. Moreover, we show these behaviors
occur in the vicinity of quantum critical points of three well-understood models, exhibiting either
second-order or Kosterlitz-Thouless phase transitions. Our results pave the way for using the av-
erage sign as a minimal correlator that can potentially describe quantum criticality in a variety of
fermionic many-body problems.

I. INTRODUCTION

The sign problem is the fundamental obstacle that pre-
vents accurate computations in a variety of problems of
quantum correlated matter. In evading the ‘exponential
wall’ that precludes the application of unbiased methods,
such as exact diagonalization [1, 2] and matrix-product-
states-based algorithms [3], for large systems or arbitrary
dimensions, quantum Monte Carlo techniques [4, 5] have
in principle the potential to solve fundamental questions,
including understanding d-wave pairing mechanisms of
repulsive fermions, for example [6, 7]. Yet, the fact that
the importance sampling of quantum configurations is
not constrained to render positive weights severely lim-
its its applicability in the most salient class of quantum
problems of interest.

Since generic solutions are not always available, a
common approach relies on restricting computations to
regimes where the sign problem is still well-behaved, al-
lowing the extraction of statistically convergent quan-
tities. Recent developments based on finding a local
basis that mitigates it [8–10], or fine-tuned Hubbard-
Stratonovich transformations to delay its onset [11], have
been very useful but do not provide an overarching cir-
cumvention scheme. Although solutions to this conjec-
tured NP-hard problem [12] are unlikely to be discovered
anytime soon, a precise investigation of the onset of the
sign problem, and its relation to the physics of the un-
derlying studied Hamiltonian, is much less explored and
potentially of great impact. Further investigations have
advanced the idea that this connection does exist, and
in different models, the appearance of the sign problem
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seems coupled to the manifestation of quantum critical
behavior [13, 14].

When several non-hybridizing fermionic (spin) species
are present, the sign problem involves the product of con-
tributions from each component. Previous studies have
focused on this product, both because it is required to
weigh physical observables and also because, in several
important cases, the product is better behaved than its
constituents. Furthermore, existing work has generally
concentrated on the ‘scaling behavior’ in the sense of
large space-time systems, i.e., how the sign evolves as
the inverse temperature β → ∞ and spatial size L → ∞.

In this manuscript, we introduce two novel aspects of
the study of the sign problem and show that they con-
stitute a powerful new approach to using quantum sim-
ulations to explore many-body physics. First, we an-
alyze the ‘spin-resolved sign’ and argue that the usual
approach of examining the average product of the sign
of the individual weights can actually obscure physical
content inherent when spin-resolution is used. Second,
we examine the behavior of the sign near phase transi-
tions, both those which occur as quantum critical points,
through the variation of a parameter in the Hamiltonian
and thermal phase transitions, which occur as tempera-
ture T is lowered.

Taken together, we demonstrate that the spin-resolved
sign can be used to locate phase transitions and deter-
mine critical exponents. Furthermore, it has the poten-
tial to do so even more accurately than traditional ob-
servables A such as spin, charge, and pairing correla-
tions. The reason is that these latter quantities require
a precise measurement of ratios ⟨AS⟩/⟨S⟩ of quantities
with increasing fluctuations originating both inherently
in the physics (response functions are themselves mea-
surements of fluctuations) and in the vanishing of the
sign. The (spin-resolved) sign, by itself, is thus a less
noisy ‘observable’ if it can be shown, as we do here, that
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it holds information about criticality.

In what follows, we first investigate three fermionic
models showing numerically that a scaling analysis of
the average weights aids in the characterization of ei-
ther known quantum or thermal phase transitions. We
then provide a demonstration of why this happens, i.e.,
we provide a theoretical justification for our observation
that the average weights display indicators of critical-
ity. We also further include information in support of
the dynamic critical exponent used in finite-temperature
calculations to promote scaling.

II. THE SU(2) HONEYCOMB HUBBARD
MODEL

We initially investigate the spinful Hubbard model on
a honeycomb lattice with N = 2L2 sites,

Ĥ = −t
∑
⟨ij⟩σ

ĉ†iσ ĉjσ + U
∑
i

n̂i↑n̂i↓ − µ
∑
i,σ

n̂iσ, (1)

where ĉ†iσ (ĉiσ) creates (annihilates) a fermion at site i
with spin σ, and n̂iσ is the number density operator.
With an increasing magnitude of the ratio of the am-
plitude of the interaction to the hopping scale, U/t, the
ground-state at half-filling (chemical potential µ = U/2)
exhibits a continuous phase transition from a Dirac semi-
metal to a Mott insulator featuring antiferromagnetic or-
der. This transition, described by an effective quantum
field-theory model (Gross-Neveu) [15], belongs to the chi-
ral Heisenberg universality class, and has been charac-
terized in numerics in a variety of fermionic lattice mod-
els [16–21].

High precision computation of the critical interaction
in (1) yields Uc/t = 3.78 − 3.87, with critical exponent
in the range ν = 0.84 − 1.02 [16–19] associated to the
divergence of the correlation length in the vicinity of the
critical point ξ ∝ |U − Uc|−ν . These values are obtained
via the scaling of physical observables: the staggered
magnetization order parameter [16, 17, 19], single par-
ticle gap [17], and quasiparticle weight [19, 21]. Here,
instead, we propose an analysis based on the average
sign. Although a non-physical observable, tied to the
computational method used, the average sign is, how-
ever, required to compute any physical observable in a
quantum Monte Carlo (QMC) simulation. Our results
thus suggest that the sign problem is inextricably linked
to the determination of the physics of the model. In
the following two sections, we explore generic aspects of
the sign problem and how they apply to this particular
Hamiltonian. Subsequently, we build on this knowledge
to understand quantum and thermal phase transitions in
other fermionic models.
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Figure 1. Dependence of the average spin resolved sign on
the space-imaginary time dimensions. ⟨Sσ⟩ vs. Lτ (left) and
L (right) for the SU(2) honeycomb Hubbard model, before
(U/t = 3.6, top) and after (U/t = 5.0, bottom) the puta-
tive transition Uc. For U < Uc (U > Uc), the average spin
resolved sign grows (reduces) with increasing lattice size at
low temperatures. Here and elsewhere, error bars denote the
standard error of the mean of independent realizations. The
imaginary-time discretization is ∆τ ≡ β/Lτ = 1/10.

III. THE SIGN PROBLEM

We start by recalling a known scaling form of the aver-
age sign in QMC calculations. It originates from consid-
ering the definition in terms of the weights W of the con-
figurations {x} sampled in D spatial and one imaginary-
time dimension as [12, 22],

⟨S⟩ =
∑

{x} W ({x})∑
{x} |W ({x})| =

ZW

Z|W |
. (2)

Here, W ({x}) = detM↑({x}) · detM↓({x}) is a prod-
uct of weights of individual fermionic flavors in the case
of Eq. (1) for determinant QMC calculations (see Ap-
pendix A for specific definitions in the various models
we study and Appendix B for an analysis of the matrices
Mσ); ZW is the partition function of the original problem
in its formulation in D + 1 dimensions [23, 24], whereas
Z|W | instead uses the positive-definite absolute value of
the weight to proceed with the importance sampling in
the simulations. Written in terms of the corresponding
free energy densities, f = [−1/(βN)] logZ, the average
sign thus reduces to ⟨S⟩ = exp[−βN(fW − f|W |)]. Given
that

∑
{x} W ({x}) ≤ ∑

{x} |W ({x})| and that the free

energy is extensive, it follows that fW ≥ f|W |, and thus
the average sign exponentially decreases in terms of both
real-space and imaginary-time dimensions [22, 25], if not
protected by some symmetry of the problem [26, 27].

An example of this protection is the case of Eq. (1)
at half-filling. Via a ↓-spin particle-hole transforma-

tion, ci↓ = (−1)ic†i↓, where (−1)i = +1(−1) on the

A(B) sublattice of the bipartite honeycomb geometry
(or any other bipartite lattice), the weight simplifies to
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Figure 2. Scaling analysis of the spin-resolved sign in the honeycomb SU(2) Hubbard model. Scaling in the vicinity of the
best-known estimations of the critical point Uc/t [(a) U/t = 3.6 and (b) U/t = 3.85] using a re-scaled x-axis Lτ/L

z. The insets
display a cost function that determines the collapse quality of ⟨Sσ⟩(Lτ , L) at different values of the dynamic critical exponents
z (see text). A compilation is given in the inset of (c) at a range of U/t values; estimations for the critical interactions from
Refs. [18, 19] are marked by the shaded region. (c) ⟨Sσ⟩ vs. U/t and different lattice sizes at half-filling; the number of
imaginary time-slices used roughly preserves the ratio Lτ/L

z fixed, Lτ = 240, 220, 196, 170 for L = 18, 15, 12, 9, respectively;

that is we use z ≃ 0.5. (d) Scaling using a functional form g[uL1/ν ] whose critical exponent ν, as obtained by minimizing the
error χ2/d.o.f of a high-order polynomial fitting in the space of parameters (Uc, ν). (e) The contour plot of χ2/d.o.f, where the
minimum is at Uc/t = 3.765 and ν = 0.84 as shown by the star symbol. Recent estimations using physical quantities for the
same model [18, 19] are annotated by the cross markers. Here, t∆τ = 0.1 is used.

const.× [detM↑({x})]2 for whichever configuration {x},
when using a spin-decomposed Hubbard-Stratonovich
transformation [24, 28]. In general, however, symmetries
that preclude the onset of the sign problem are not avail-
able for most models of interest.

IV. THE SPIN-RESOLVED SIGN

Although the ‘total’ sign problem has been investi-
gated in detail [22, 25], the properties of the sign of indi-
vidual determinants that compose the weight in mod-
els with a larger number of local degrees of freedom
were much less explored. Moreover, past work focused
on the behavior as β → ∞ and not near the crit-
ical point. By systematically computing the average
sign of the determinant of a single spin-species, ⟨Sσ⟩ ≡∑

{x} sgn(detMσ{x})|W ({x})|/∑{x} |W ({x})|, for the

problem in Eq. (1), we have earlier demonstrated [13]
(see corresponding Supplementary Materials) a behavior
reminiscent of an order parameter undergoing a typical
phase transition: it displays its maximum value ⟨Sσ⟩ = 1
in the quantum disordered phase while ⟨Sσ⟩ → 0 in the
ordered region (U > Uc) at sufficiently low temperatures
[see Fig. 2(c), for example]. The latter occurs in spite of
the fact that ⟨S⟩ is pinned at one since we take µ = U/2,
dictating thus that in the ordered regime the most likely
configurations {x} display random signs of detMσ({x}).
This behavior, including a crossing of the curves for

different system sizes at U ≃ Uc, is suggestive that a
scaling function g, for the spin-resolved sign exists, sim-
ilar in motivation to those used for traditional, physical
observables to characterize quantum criticality:

⟨Sσ⟩(u, L, Lτ ) = g(uL1/ν , Lτ/L
z), (3)

where L is the linear system size, Lτ = β/∆τ is the num-
ber of imaginary-time slices of the inverse temperature
in writing down the path integral Z, u = (U −Uc)/Uc is
the reduced coupling, and z is the dynamic critical expo-
nent. The second argument comes from the fact that the
D + 1 lattice is anisotropic in its dimensions (and even-
tual effective couplings) [29–31]. The previous empirical
observation determined that for u > 0, g(x, y) → 0 when
both x, y diverge.
To better understand the limits of ⟨Sσ⟩, we display in

Fig. 1 its dependence on both Lτ and L. We notice that
the previous expectation that the average total sign ex-
ponentially decreases with the system size is also valid
for ⟨Sσ⟩, but provided that U ≳ Uc and temperatures
are sufficiently low (Lτ ≫ L). If in the quantum dis-
ordered phase, however, the spin-resolved sign increases
with growing N . As we will see, this contrasting behavior
is fundamental for the identification of the critical inter-
actions using the average sign of individual determinants.

At first sight, owing to the known Lorentz invari-
ance that emerges at the critical point [32, 33], the dy-
namic critical exponent is surmised as z = 1. Yet, we
do not take this as a starting point, relaxing this as-
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Figure 3. Scaling analysis of the spin-resolved sign in the square lattice SU(2) Ionic Hubbard. (a,b) Similar to Fig. 2 (a,b) but
for the SU(2) Ionic Hubbard model on the square lattice, for values of U/t = 2 (a) and 2.1 (b). (c) ⟨Sσ⟩ vs. U/t and different
lattice sizes at half-filling; the number of imaginary time slices is chosen such that Lτ/L

0.5 ≃ 50. (d) Scaling of the data in (c)

using a functional form g[uL1/ν ], whose critical exponent ν = 0.97 and critical interaction Uc/t = 2.058 are extracted from an
analysis (e) as done in Fig. 2(e). All results are obtained at ∆/t = 0.5; other values lead to similar results but with different
Uc/t critical values. Here, we use t∆τ = 0.1.

sumption to show that a smaller value in ⟨Sσ⟩ actu-
ally gives an optimal scaling. Motivation for z ̸= 1
is provided in Sec. VIIC. We thus try to scale ⟨Sσ⟩ in
the vicinity of the critical point with a functional form
Lτ/L

z, as displayed in Figs. 2(a) and 2(b), a procedure
which has been argued to improve the scaling of related
quantum models [30, 31]. By defining a cost function
C(z) = ∑

j(|yj+1−yj |)/(max{yj}−min{yj})−1 [34, 35],

where yj are the values of ⟨Sσ⟩(Lτ , L), ordered accord-
ing to their Lτ/L

z ratio, the dynamic critical exponent z∗

that minimizes C can be extracted, see insets in Figs. 2(a)
and (b). A compilation of the z∗(U) values is given in
the inset of Fig. 2(c), accompanied by a range of recently
known predictions of Uc [18, 19]. It is clear that close
to the critical point, the scaling with the second argu-
ment of the function g should be taken with z ≃ 1/2, for
the current range of imaginary-time slices Lτ (or inverse
temperatures β with t∆τ = 0.1) used.

Hence, we use this current estimation to proceed with
scaling in order to simultaneously obtain the critical
exponent ν and the critical interaction Uc. With the
Lτ/L

z ratio fixed, a clear crossing of the average sign of
individual weights when increasing the lattice size can
be seen [Fig. 2(c)], accurately determining the critical
interaction. By using the functional form of Eq. (3),
we obtain the collapse of the average spin-resolved sign
[Fig. 2(d)], yielding a critical exponent ν ≃ 0.84 and
Uc/t ≃ 3.77. This estimation, obtained by minimizing
the error of a high-order polynomial fit to the data in
the space of parameters (U, ν), is shown in Fig. 2(e)
[See the Supplemental Materials (SM) [36] for a differ-
ent method of scaling analysis]. One can contrast these
results with recent estimations using the same model, as

in Ref. 18 with Uc/t = 3.80(1) and ν = 0.84(4), while in
Ref. 19, Uc/t = 3.85(1) and ν = 1.02(1), both using a
zero-temperature version of the QMC method employed
here [4, 37]. While larger system sizes and other finite
corrections may improve our results, they are already in
quite remarkable agreement with the best estimations to
date.

V. THE SU(2) IONIC HUBBARD MODEL

The preceding discussion provided quantitative evi-
dence that the average sign of a single determinant con-
tains precise information about the quantum criticality
in a well-studied model; it remains an open question
whether this is general. Here we provide compelling fur-
ther validation by looking at one of the simplest mod-
els that bypass the symmetry that prevents the onset
of the sign problem, the ionic Hubbard model on the
square lattice [38–44]. That is, in a model that in the
standard fermionic basis suffers from the sign problem
even at half-filling. Here ĤIonic = Ĥ + ∆

∑
iσ(−1)in̂i,σ,

adds a staggered onsite potential proportional to ∆ to
the Hamiltonian (1), which we investigate again at the
average density of one electron per site.
The qualitative physics of this model at finite ∆ is gen-

erally agreed to display a competition of band insulating
(∆ ≫ U), Mott insulating (U ≫ ∆), and metallic be-
havior when both interactions and staggered potential
magnitudes are comparable [41, 42]. A recent investiga-
tion [13] has indicated that this correlated metal phase
can be qualitatively tracked by the regime where the av-
erage sign of the QMC weights vanishes. We now employ
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Figure 4. KT-scaling analysis of the SU(2) square lattice attractive Hubbard model. The color plot of the s-wave pair structure
factor Ps (a) and the spin-resolved sign ⟨Sσ⟩ (b) in the T vs. µ plane on a L = 16 lattice; (c) and (d) display the same if
using the extracted average density ⟨n̂⟩ instead, with black markers depicting the outputs on the regular grid in µ. (e) and
(f) show a cut along the µ/t = −0.75 line for Ps and ⟨Sσ⟩ and different lattice sizes. (g) and (h) use a KT-scaling form to
collapse the curves with (i) and (j) displaying the corresponding cost function C of the scaling in the (Tc, b) parameter space.
The KT-scaling is performed such that L/ξBKT for T > Tc and −L/ξBKT if T < Tc. All data are extracted at U/t = −4 and
t∆τ = 1/16.

our new sign scaling method to understand the critical
behavior at the transition from the band-insulator to the
metallic phase, the quantitative details of which are still
under debate in the community.

We fix the staggered potential at ∆/t = 0.5, while
increasing the interactions U to overcome the externally
imposed (i.e. by the one-body potential in Ĥ) charge den-
sity wave induced by ∆. As before, we estimate the value
of the dynamic critical exponent in the vicinity of the
transition, Uc(∆ = 0.5)/t ≃ 2.0 [41, 42] in Fig. 3 (a,b)
by scaling the ⟨Sσ⟩ with Lτ/L

z, resulting in z ≃ 0.5.
Using thus a roughly fixed ratio Lτ/L

0.5, we provide
the scaling of the spin-resolved sign in Fig. 3(c,d). Here
fluctuations are small, and the scaling renders an accu-
rate determination of the critical interactions driving the
band-insulator-to-metal transition Uc/t ≃ 2.05 with re-
lated critical exponent ν = 0.97.

The one-dimensional version of this model has been ex-
tensively studied via numerics [45–47], and a field-theory
close to the quantum critical points exists [48]. The tran-
sition where the band-insulating phase ends, with its ex-
ternally imposed charge density wave giving way to a
dimerized bond-ordered wave insulator, belongs to the
2D Ising universality class in that case. Here in the two-
dimensional model, QMC results point out to a band-
insulator to correlated metallic transition [41, 42], whose
universality class is unknown and where field-theories de-
scribing it are currently not available, precluding a direct
comparison of the calculated exponent ν, obtained from
the scaling of ⟨Sσ⟩, with existing knowledge.

VI. THE ATTRACTIVE HUBBARD MODEL

We now generalize these two results for quantum crit-
ical behavior in the ground-state to finite-temperature
transitions. A well-studied example is the onset of su-
perconductivity in the two-dimensional negative-U SU(2)
Hubbard model: for chemical potentials µ ̸= |U |/2, there
is a Kosterlitz-Thouless (KT) transition at temperature
Tc ̸= 0 [49–52] to a superconducting phase. As a di-
rect consequence of the often used (charge-decomposed)
Hubbard-Stratonovich transformation [28], the weight
matrices Mσ are identical, resulting in the complete ab-
sence of sign problem since the remaining single-particle
part of the Hamiltonian is equal for both spin species.
That the total sign is always positive does not preclude
that the average sign of individual weights converge to
zero; this can be seen in Fig. 4(c), which shows this
quantity in the T vs. µ parameter space on an L = 16
square lattice. The regime ⟨Sσ⟩ → 0 is directly related to
the one where the s-wave equal-time pair structure fac-

tor Ps = (1/L2)
∑

i,j⟨∆̂i∆̂
†
j⟩ (∆̂i ≡ ĉi↑ĉj↓) is also large

[Fig. 4(a)].

To make this comparison quantitative, Figs. 4(e) and
4(f) display a finite-size analysis at a fixed µ/t = −0.75,
which gives densities close to ⟨n̂⟩ = 0.5 at low tem-
peratures [36, 49]. The onset of the regime at which
there is significant size dependence is largely coincident
for both quantities when sweeping down the temper-
ature. Given that the pairing correlations below Tc

have an algebraic decay, C(r) ∼ r−η(T ) with η(0) = 0
and η(Tc) = 0.25, one obtains that the two-dimensional
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pair structure factor in a finite system of linear size
L scales as Ps(L) = L2−η(T )f(L/ξBKT), with ξBKT ∝
exp[b/

√
|T − Tc|] [50, 51], where b is a non-universal con-

stant.
Figure 4(g) gives this scaling using a temperature-

adjusted η(T ) [36, 49]. The best parameters b and Tc are
extracted via the cost function CPs

, as before, and are
shown in Fig. 4(i). Based on this, we similarly show a
scaling analysis of the average sign of individual weights
⟨Sσ⟩ to a KT form, see Fig. 4(h), with corresponding
cost function C⟨Sσ⟩ displayed in Fig. 4(j). Both quantities
scale remarkably precisely; the minor discrepancy in Tc

[TPs
c = 0.15(2) and T

⟨Sσ⟩
c = 0.18(3)] can be accounted

by the relatively wide temperature-region in which C
is small. For both quantities, we take the smallest b
given the constraint of best collapse in a smooth curve.
Lastly, we note that allowing for the possibility that the
non-universal parameter b takes different values below
and above the transition when lowering the temperature
(requiring thus a multi-dimensional minimization proce-
dure), may improve the convergence of the estimations
of Tc [35]

VII. DISCUSSION AND OUTLOOK

We have shown that the spin-resolved sign of auxiliary-
field QMC simulations can be used as a quantitative
marker of quantum critical behavior. The total sign also
exhibits a similar role, as suggested by the Ionic Hub-
bard model results (see SM [36]), but the former has
the benefit of being useful when symmetries prevent the
occurrence of an overall sign problem. Our work lays
the foundation for similar investigations of other models,
especially ones that give rise to a (spin-resolved) phase
problem. This can arise either from the presence of imagi-
nary terms in the Hamiltonian, as in the Kane-Mele Hub-
bard model [53, 54], or from the particular decoupling
scheme used. That is precisely the case of SU(2) sym-
metric Hubbard-Stratonovich transformations [55], but
investigations in Appendix D show that the averaged
spin-resolved phase similarly tracks the onset of the or-
dered regime when approaching the thermodynamic limit
for the SU(2) honeycomb Hubbard model.

Furthermore, other Hamiltonians, such as the spinless
fermion Hubbard model in either the honeycomb [56] or
square-lattice with a π-flux, which in the Majorana ba-
sis evade the sign problem [57, 58], can be studied by
examining the average sign of the Pfaffian of a single
weight in that basis [59], similar to what we have done
here [60]. In our results, the investigation of these three
important models emphasizes that the sign of the deter-
minants, interpreted as a minimal correlation function,
is sufficient to assess critical properties, circumventing
what is usually employed to determine scaling properties
of physically motivated quantities.

While our investigation leads to the conclusion that
the average (spin-resolved) sign displays scaling proper-

ties associated with critical behavior, it is less clear to
understand why this happens. The goal of the next sub-
section is to prove this. The remaining subsections tackle
the explanation of criticality of the ⟨Sσ⟩, the value we
used of the dynamic critical exponent and lastly we fol-
low with an outlook for future studies.

A. Demonstration of non-analyticity of ⟨S⟩

We provide here a formal proof of the non-analyticity
of ⟨S⟩ which provides a rigorous theoretical framework
for our numerical results. Consider the re-writing of the
partition function Z associated with a statistical me-
chanics problem with degrees of freedom {x} and weight
W ({x}), via sampling instead with a modified weight,
W ′({x}):

Z =

∫
D{x}W ({x}) =

∫
D{x} W ({x})

W ′({x}) W
′({x})

=

∫
D{x} W ({x})

W ′({x}) W
′({x})∫

D{x}W ′({x})

∫
D{x}W ′({x})

=
〈 W ({x})
W ′({x})

〉′
Z ′ . (4)

Here Z ′ is the partition function associated with the

weight W ′ and the prime on
〈

W ({x})
W ′({x})

〉′
implies a weight-

ing with W ′.
If there is a thermal or quantum phase transition oc-

curring at a critical point associated with the original
weight W , then from Eq. (4) it is clear that the associ-
ated non-analyticity in Z (and in the corresponding free

energy density) implies that either Z ′ or
〈

W ({x})
W ′({x})

〉′
is

non-analytic at the same critical value. Under the as-
sumption that Z ′ does not have the same critical point
(an unlikely coincidence) the non-analyticity must reside

in
〈

W ({x})
W ′({x})

〉′
.

Let us now apply this general reasoning to the sign

problem. There W ′ = |W | and
〈

W ({x})
W ′({x})

〉′
is the average

sign ⟨S⟩. Our conclusion is that a critical point in the
underlying model implies critical behavior in this average
sign. We note that Eq. (4) is nothing more than a re-
writing of the well-known observation that the average
sign is the exponential of the difference between the free
energies F and F ′ associated with the weights W and
W ′. However, this re-writing more clearly exposes the
behavior of the average sign at a critical point.
Despite the simplicity of the argument, there are three

important points to clarify. The first is that the par-
ticular value of the average sign is not universal. This
is, of course, well-known. In the auxiliary field Quan-
tum Monte Carlo method, ⟨S⟩ depends on the particular
Hubbard-Stratonovich transformation employed. What
is universal, however, is that ⟨S⟩ is non-analytic at the
critical point of the model defined by W (again, under
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the assumption of the absence of an ‘accidental’ situation
in which W ′ shares the precise same critical value)[61].
The second observation is that while a critical point

implies a non-analyticity of ⟨S⟩, the converse is not nec-
essarily true. That is, a sign problem does not imply
the existence of a critical point [see, e.g., Ref. [62] for
the uniform electron gas]. This also is known to be the
case: the single-site Hubbard model has a sign prob-
lem with an anomalous Hubbard-Stratonovich transfor-
mation [63], even though it manifestly has a completely
well-behaved partition function. This does not reduce
the potential utility of ⟨S⟩ in locating a critical point.
An analogy is useful. A single (Ising) spin in an external
magnetic field B has a non-zero magnetization m. But
that a non-zero m can occur in a trivial situation cer-
tainly does not imply that a (spontaneous) non-zero m
is uninformative concerning the occurrence of a magnetic
phase transition. So too, here, the fact that 1− ⟨S⟩ can
become non-zero in trivial situations does not make it
unable to discern phase transitions.

The third remark concerns the non-analyticity of Z,
which is only observed in the thermodynamic limit: As
for physical observables, the partition function is always
analytic in finite systems [64]. For example, in the ‘text-
book’ problem of the magnetic phase transition of the
two-dimensional Ising model, while large lattice sizes ex-
hibit a peaked behavior of either the specific heat or the
magnetic susceptibility close to the critical temperature
below which order ensues, proper non-analytic behav-
ior is only seen in approaching the thermodynamic limit,
where such peaks approach divergent behavior. How-
ever, this does not prevent one from obtaining critical
exponents by carefully scaling the results for the existing
system sizes. The same rationale is valid mutatis mu-
tandis to the partition function Z: Only in the N → ∞
limit does it show non-analyticity at the critical point.
In models where one remaps the weights, as in the cases
affected by the sign problem, it is then immediate to re-
alize that while the non-analyticity is imprinted in ⟨S⟩
in the thermodynamic limit, scaling of this quantity in
finite-system sizes allows the extraction of the critical ex-
ponent, as we perform here.

In summary, the fact that the partition function (or
the free energy) exhibits singular behavior thus implies
that almost any observable will inherit the singularity as
well. In the case of the sign, in particular, we have a
formal proof of inheritance, as exposed in Eq. 4.

B. Spin-resolved sign criticality

A similar rationale can be derived in the case of the
spin-resolved sign. For example, in a bipartite lattice
at half-filling [the first model we investigate, the SU(2)
honeycomb Hubbard model], it is then easy to show
that weights associated with each fermionic flavor are
related: Wσ({x}) = C{x}Wσ({x}), where C is a {x}-
dependent positive constant (= eλ

∑
iτ xiτ , with coshλ =

e|U |∆τ/2) [24][65]. Therefore, the average sign of either
of the weights reads

⟨Sσ⟩ =
∑

{x} sgn(Wσ({x}))C{x}[Wσ({x})]2∑
{x} C{x}[Wσ({x})]2

≡
∑

{x} sgn(
√
ρ(x))ρ(x)∑

{x} ρ(x)
≡

∑
{x} ρ

′(x)∑
{x} ρ(x)

≡ Z ′

Z . (5)

Thus provided that a potential non-analyticity in the
modified partition function Z ′ does not coincide with the
one for the original problem Z, similarly to Eq. 4, this
dictates that ⟨Sσ⟩ should exhibit non-analytic behavior
when Z does. An interesting observation concerns the
cases where a symmetry relates the spin-resolved signs
in such a way that the total sign remains at unity. In
that case, the non-analyticity must originate in the spin-
resolution. This emphasizes that even in ‘protected’
cases, an analysis of the (spin-resolved) sign could still
provide insight into critical behavior.
From Eq. 5 the logic follows the same as the one with

a standard sign problem: One can define this ratio as the
ratio of exponentials of corresponding free energy densi-
ties of probability distributions ρ and ρ′:

⟨Sσ⟩ = e−βV (fρ′−fρ) . (6)

For the case of the quantum phase transitions we have in-
vestigated, we demonstrated numerically that this quan-
tity satisfies the scaling ansatz in the vicinity of the quan-
tum critical point, i.e., ⟨Sσ⟩ = g(uL1/ν , Lτ/L

z). Conse-
quently, the difference in free energy densities reads:

∆f ≡ fρ′ − fρ = − 1

Lτ∆τ · LD
log[g(uL1/ν , Lτ/L

z)] .

(7)
From Fig. 2(d), we notice that g(uL1/ν , Lτ/L

z) goes from
1 to 0 when u ≃ 0, consequently ∆f shows a departure
from zero at this same point. That is, the difference in
free energy densities, initially zero in the non-interacting
regime and in the weakly correlated one, turns finite
when approaching the Mott phase as if the free energy
densities of the models with probability distributions ρ′

and ρ undergo a ‘transition’ to distinct values. Finally,
as we fix the ratio Lτ/L

z = a,

∆f = − 1

a∆τ · LD+z
log[g(uL1/ν , a)]. (8)

Figures 5(a) and 5(b) summarize this reasoning for the
SU(2) honeycomb Hubbard model, showing the scaling
of the difference of free energy densities, where we em-
phasize that ∆F ≡ ∆f · LD+z is a function of the in-
teraction strength [66]. Similar logic applies to the Ionic
Hubbard model [Figs. 5(c) and 5(d)], in spite of the par-
tial weights no longer being trivially related. That is,
within the band-insulating regime, the difference in free
energy ∆F of the two distributions is zero, deviating from
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each other once the correlated metal phase at U = Uc is
approached. This confirms the critical behavior we nu-
merically observe for these models derives from the non-
analyticity of the partition function in the critical point
[Eq. (4)] that becomes imprinted in the average (spin-
resolved) sign.
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a = 200/160.5
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Figure 5. Scaling analysis of the spin-resolved sign and the
corresponding difference of free energies for the SU(2) hon-
eycomb Hubbard model [(a) and (b)] and the square lattice
SU(2) Ionic Hubbard model [(c) and (d)]. Parameters used
are indicated, with imaginary-time discretization t∆τ = 0.1.

C. Dynamic critical exponent

One of the aspects of the scaling analysis of ⟨Sσ⟩ that
defies current expectations relates to the value of the dy-
namical critical exponent z we have used. In particular,
for the SU(2) honeycomb Hubbard model, field-theory
predictions assert z = 1 [32, 33], and numerical simu-
lations using projective quantum Monte Carlo methods
that directly tackle the T = 0 limit often use this as a
starting point [16, 17, 19]. Our simulations, on the other
hand, employ the corresponding finite-temperature ver-
sion of this algorithm [23, 24], such that the ground-state
physics is only obtained asymptotically when β → ∞
or when the typical correlation lengths ξ are sufficiently
large such that they are comparable to the linear system
size L [24]. Verification of the latter is possible by exam-
ining the β-dependence of the antiferromagnetic struc-
ture factor

SAF =
1

2L2

∑
i,j

(−1)
δ⟨(n̂i,↑ − n̂i,↓)(n̂j,↑ − n̂j,↓)⟩ (9)

with δ = 0 (δ = 1) if sites i and j are in the same
(different) sublattice.

A saturation of SAF with increasing β indicates that
ξ ≃ L [67], and is readily obtained deep in the ordered

0 200
Lτ

1

2

3

4

5

S
A

F

(a) U/t = 3.60

L = 6

L = 9

L = 12

L = 15

L = 18

0 200
Lτ

(b) U/t = 3.77

0 200
Lτ

(c) U/t = 3.85

0.0 20.0
βt

0.0 20.0
βt

0.0 20.0
βt

Figure 6. Dependence of the antiferromagnetic structure fac-
tor on the inverse temperature β (number of imaginary-time
slices Lτ , fixing t∆τ = 0.1) for the SU(2) honeycomb Hub-
bard model in the vicinity of the quantum critical point: (a)
U/t = 3.60, (b) U/t = 3.77 and (c) U/t = 3.85. The verti-
cal arrows mark the value of Lτ used in the scaling analysis
of ⟨Sσ⟩, color-matching with the corresponding linear system
size L.

phase. Close to Uc, however, the observation of such a
saturation demands (numerically) prohibitive values of
Lτ , as indicated in Fig. 6. As a result, the currently
employed values of the imaginary-time slices in the scal-
ing analysis of ⟨Sσ⟩ [marked by the arrows in Fig. 6]
inevitably lead to the conclusion that finite-temperature
effects are at play here, and the observed scaling relates
to a low-but-finite temperature crossover that emanates
from the quantum phase transition. Consequently, the
dynamical critical exponent need not be pinned at z = 1,
and the value we use, obtained after scaling of Lτ/L

z

for the current range of imaginary-time slices employed,
endows the ability to study the quantum criticality. In
other words, the fact that we adjust the dynamical crit-
ical exponent for the current range of temperatures is
what allows one to obtain numerically accurate values of
the pair (Uc, ν).

While this may come as a surprise, it becomes more
clear after performing a scaling of a physical quantity, in
particular the one which dictates the onset of magnetic
ordering at the quantum critical point, the antiferromag-
netic structure factor, as shown in Appendix C. There
one finds that a z < 1 (in practice z ≃ 0.5) gives the best
data collapse, and that the same combination of (Uc, ν)
which scales the spin-resolved sign is seen to similarly
scale SAF.
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D. Outlook

In summary, our determination of the quantum criti-
cality via the scaling of the sign in many models is within
the range of existing investigations. Because the litera-
ture shows considerable variation in the quantitative lo-
cation of the different QCP’s [18, 19, 41, 42, 50, 51], the
results here offer an alternative, and potentially more
accurate, route of resolving a challenging problem in cor-
related electron models. A similar investigation can be
carried out with methods that directly tackle the ground-
state limit, and we defer this analysis to a future study.
Turning to the thermal transitions, a final, more specu-
lative, line of inquiry is to investigate the potential exis-
tence of a Kosterlitz-Thouless transition in the repulsive
Hubbard model (and its variants) away from half-filling
via the analysis of the average sign when entering the
⟨S⟩ → 0 phase in this Hamiltonian [13]. A preliminary
study is given in the SM [36], affirmatively indicating this
connection.
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Appendix A: Methods

In all calculations, we make use of the finite-
temperature determinant quantum Monte Carlo
method [23, 24]. Via a sequence of Trotterization,
Hubbard-Stratonovich decoupling of quartic terms by
means of the introduction of an auxiliary field [28],
and final fermionic integration, the partition function is
written in terms of the determinants of N ×N matrices
Mσ [where N is the number of sites in Eq. (1)] for
each spin-component σ. These are the weights W ({x})
referred to in the main text. Instead of summing over
all configurations of the field {x} → {xiτ}, importance
sampling is performed while observing the statistical
convergence of both physical observables (when pos-
sible) and the average sign of the weights. The only
approximation used is the imaginary-time discretization
∆τ which we take as 1/10 for the quantum transitions
or 1/16 for the thermal ones. Statistical sampling
varies among the different models, but in all cases an
average of the results are taken for each individual set
of parameters over dozens of independent samplings

(typically from 20 to 48), with thousands of Monte Carlo
sweeps for each run.
In order to decouple the interactions in all SU(2) mod-

els we investigate, we apply either the spin-decomposed
Hubbard-Stratonovich transformation [4, 28],

e−∆τU(n̂i↑− 1
2 )(n̂i↓− 1

2 ) =
1

2
e−U∆τ/4

∑
xi=±1

eλxi(n̂i↑−n̂i↓) ,

(A1)

for repulsive interactions (U > 0), or its counterpart
(charge decomposition)

e−∆τU(n̂i↑− 1
2 )(n̂i↓− 1

2 ) =
1

2
e−|U |∆τ/4

∑
xi=±1

eλxi(n̂i↑+n̂i↓−1) ,

(A2)

in the case that U < 0. In both transformations,
coshλ = e|U |∆τ/2. Finally, the matrices Mσ entering
in the weights read

Mσ = 1+Bσ,Lτ
Bσ,Lτ−1 . . . Bσ,1, (A3)

with Bσ,τ = eKeVσ,τ . Here, K is an imaginary-time in-
dependent N ×N matrix containing all one-body terms
in the Hamiltonian (including hopping and chemical po-
tential), whose entries are multiplied by −∆τ . In turn,
Vσ,τ is diagonal with entries that depend on the Hubbard-
Stratonovich transformation used. For the repulsive case,
V ii
σ,τ = λσxiτ (σ = ±1 for ↑ and ↓), while V ii

↑,τ = V ii
↓,τ =

λxiτ for attractive interactions.

Appendix B: Eigenvalues of the Mσ matrices

A possibility to infer numerically that the signs of the
determinants can track phase transitions is via the anal-
ysis of the spectrum of the Mσ matrices, as defined in
Eq. A3, whose determinant gives the partial weight of a
certain configuration {x}. Similarly, one can define this
matrix in its space-time formulation [23],

Mσ({x}) =


1 Bσ,Lτ

−Bσ,1 1

−Bσ,2 1

. . .
. . .

−Bσ,Lτ−1 1

 ,

by structuring the N × N matrices Bσ,τ , the single-
particle propagators, as defined in the Appendix A. A
drawback is that Mσ({x}) has now dimensions (NLτ )×
(NLτ ), but one of the benefits of this representation is
that the range of eigenvalues is now shrunken while pre-
serving the value of the determinant. Besides that, it is
numerically stable since no matrix multiplications among
Bσ’s are necessary to build it.
Focusing on the SU(2) honeycomb Hubbard model, we

start by analyzing in Fig. 7 the spectrum {εi} ofMσ({x})
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Figure 7. The eigenspectrum of the Mσ({x}) matrix represented in the complex plane for a single Hubbard-Stratonovich
configuration {xi,τ} extracted in the Monte Carlo sampling, for U/t = 2 (a) and U/t = 6 (b). (c) and (d) exhibit a two-
dimensional histogram of the eigenspectrum when combining results of 96 configurations – brighter colors display a larger
counting. In (a–d), the linear lattice size is L = 9 and Lτ = 200, such that each configuration leads to 32 400 eigenvalues.
(e) shows both the (normalized) number of eigenvalues which are in the negative real axis (these dictate whether there is a
spin-resolved sign problem or not) and the fraction of the configurations that possess an odd number of eigenvalues in R−.
Empty (full) symbols refer to L = 6 (L = 9); the vertical shaded region gives the confidence interval of the quantum critical
point location. As in the main text, here we use t∆τ = 0.1.

for values of the interactions far below (U/t = 2) and far
above (U/t = 6) the transition point Uc. Figures 7 (a)
and 7 (b) show that a structural transition occurs in the
eigenvalue spectrum, here computed for a single typical
configuration of the auxiliary field {xi,τ}. This observed
structural transition is generic, as shown by the corre-
sponding two-dimensional histograms in Figs. 7 (c) and
(d), obtained by combining eigenvalues of four field con-
figurations ‘visited’ over the course of the Monte Carlo
sampling for 24 independently seeded Markov chains, re-
sulting in 96 configurations in total.

While the quantum phase transition is hinted in the
eigenvalues of Mσ({x}), so far we have not drawn a con-
nection to the spin-resolved sign problem. Being a real
matrix (for this model with the Hubbard Stratonovich
transformation highlighted in the Appendix A), its eigen-
values come as either complex conjugate pairs or real
numbers. Since the determinant (product of eigenval-
ues) does not change sign when multiplying the conjugate
pairs, a sign problem is only a function of the number of
eigenvalues in the negative real axis, nR− . That is, if
nR− is odd (even), detMσ({x}) < 0 (> 0). Typically,
nR− is very small in comparison to the total number of
eigenvalues 2L2Lτ in this Hamiltonian. Yet, it is a clear
function of the interaction strength, growing at large U/t,
as shown in Fig. 7(e) by nR− , after averaging over differ-
ent configurations {x}. Finally, the percentage of those
configurations that possess an odd number of eigenvalues
in the negative real axis, Podd(nR−), also grows reaching
around 50% within the ordered phase. As a result, the

average spin-resolved sign ⟨Sσ⟩ converges to zero.
It is currently unclear to us if a physical meaning can

be attributed to the number of negative eigenvalues of
Mσ({x}), in terms of the fields {xi,τ}, and the winding
of world lines they are associated with.

Appendix C: The scaling of SAF

In the main text, we argue that owing to finite-
temperature effects one needs to adjust the dynamical
critical exponent z from its expected z = 1 value in or-
der to perform a scaling analysis of the spin-resolved
sign ⟨Sσ⟩. While the scaling analysis we perform for
⟨Sσ⟩ is quantitatively precise despite its novelty, simi-
lar constraints should apply to the case of the scaling
of physical quantities. Following this logic, we perform
the scaling of the antiferromagnetic order parameter,
mAF = limL→∞

√
SAF/N , with N = 2L2 the num-

ber of sites of the SU(2) honeycomb Hubbard model,
Eq. (1). This quantity follows a scaling ansatz of the
form mAF = L−β/νg(uL1/ν , Lτ/L

z) [17, 19], which in
turn implies the antiferromagnetic structure factor scales
as

SAF

N
= L−2β/νg(uL1/ν , Lτ/L

z) (C1)

Unlike previous studies that tackle this same transition
using T = 0 quantum Monte Carlo methods [16–19], we
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Figure 8. The scaling analysis of the antiferromagnetic structure factor. In (a) and (b) the scaled SAF dependence on Lτ/L
z,

with z = 0.5 and 1, respectively. Insets give the corresponding cost function dependence on the ratio of exponents β/ν. (c)
Color-mesh plot of the cost function C(z, β/ν), where the white marker at (z∗, β/ν∗) = (0.54, 0.885) depicts its minimum value.

(d) The scaling collapse of SAF with uL1/ν , with parameters extracted from the analysis of the spin-resolved sign in the main
text [Fig. 2]. The imaginary-time discretization used is t∆τ = 0.1.

make the Lτ/L
z dependence explicit in order to account

for a finite-T influence on the scaling.

We start by fixing U/t = 3.77, such that the depen-
dence on the first argument of the scaling function in
Eq. (C1) is negligible, i.e., u ≃ 0 [68]. Figure 8(a) and
8(b) display the scaled structure factor vs. Lτ/L

z by fix-
ing z = 0.5 and 1.0, respectively, while adjusting the
ratio of exponents β/ν that gives the best data collapse.
The latter is obtained by the minimization of the cost
function C(β/ν), whose definition is the same as given in
the main text, and is displayed as insets in Figs. 8(a) and
8(b). Notably, the data collapse is significantly better at
z ≃ 0.5 compared to the one for z = 1, a first indica-
tion that a dynamic critical exponent smaller than one
results in an improved scaling. Compiling the cost func-
tion in a range of (z, β/ν)-values, shown in Fig. 8(c) as a
color-mesh plot, we obtain the minimum cost function at
z∗ = 0.54 and (β/ν)∗ = 0.885. The latter is compatible
with the value β/ν ≃ 0.9 obtained after the first-order ϵ-
expansion of the Gross-Neveu model [17, 33]. Lastly, by
fixing this ratio of exponents (β/ν) while choosing the
set of parameters used to perform the scaling of ⟨Sσ⟩ in
the main text, (Uc/t, ν, z) = (3.765, 0.84, 0.5), we report
in Fig. 8(e) the dependence of the scaled structure factor
with respect to the first argument of the scaling function:
The exhibited collapse is remarkably good, thus confirm-
ing that the average (spin-resolved) sign can indeed be
used to infer criticality. As far as we are aware, this is
the first time that a finite-temperature quantum Monte
Carlo method was used to obtain critical exponents of
a transition pertaining to the Gross-Neveu universality
class, and the key step for its success is the tuning of the

dynamic critical exponent z.

Appendix D: Other Hubbard-Stratonovich
transformations

Our main results indicate that the (spin-resolved) av-
erage sign carries fundamental information about phase
transitions and their universality classes. However, given
that the sign problem is basis-dependent, that is, by
choosing another Hubbard-Stratonovich transformation,
the average sign of the quantum Monte Carlo weights
can change [63, 69], an immediate question that arises
is: can one still infer quantum critical points using
sgn(Wσ({x}))? To answer it, we report further numerical
tests.
An often used Hubbard-Stratonovich transformation

is one that explicitly conserves the SU(2) symmetry for
each configuration {xiτ} of the field [53–55]:

e−∆τU(n̂i↑+n̂i↓−1)2/2 =∑
xiτ=±1,±2

γ(xiτ )
∏
σ

ei
√

∆τU/2η(xiτ )(n̂iσ−1/2) +O(∆τ4) .

(D1)

It comes at the expense of having a four-valued discrete
field xiτ = ±1,±2, accompanied by a few (real) con-
stants,

γ(±1) = 1 +
√
6/3 ; η(±1) = ±

√
2(3−

√
6)

γ(±2) = 1−
√
6/3 ; η(±2) = ±

√
2(3 +

√
6) . (D2)
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Figure 9. (a) Dependence of the inverse average spin resolved
phase on the interaction magnitude U/t for the SU(2) hon-
eycomb Hubbard model. We fix the ratio Lτ/L

z approxi-
mately constant, with z = 0.5. The inset is a zoom-in of the
critical region while using ⟨eiθσ ⟩ instead; the vertical shaded
region is the recent estimation in the literature of the QCP
location [18, 19]. (b) gives the cost-function results for the
scaling analysis of 1/⟨eiθσ ⟩, whereas (c) the best scaling col-
lapse, leading to (Uc/t, ν) = (2.70, 0.80). The imaginary-time
discretization used is t∆τ = 0.05.

In such case, the transformation is not strictly exact
but brings an error proportional to O(∆τ4), negligible
in practice in comparison to the one introduced by the
Trotter decomposition of the one and two-body terms in
the Hamiltonian, O(∆τ2).

Given its form, the Monte Carlo weights can become
complex, in principle, but in the SU(2) honeycomb Hub-
bard model, owing to its bipartite nature, one can show
that the weights associated with the two-spin compo-
nents are complex conjugate pairs at half-filling [53–55].
As a result, no phase problem emerges. Nonetheless,
this does not guarantee that the average phase of each
fermionic flavor ⟨eiθσ ⟩ needs to be real and raises the im-
mediate question of whether the sign still captures infor-
mation about the onset of an ordered phase. Numerical
simulations we performed, however, point out affirma-
tively to both: Im⟨eiθσ ⟩ → 0 throughout the sampling,
and that ⟨eiθσ ⟩(U = Uc) → 0 when approaching the ther-
modynamic limit. The latter is reported in Fig. 9(a) (see
inset), using Lτ/L

1/2 = 240
181/2

approximately fixed for
different system sizes.

Unlike in the case of a spin-decomposed Hubbard-

Stratonovich transformation [Eq. (A1)], where a cross-
ing of ⟨Sσ⟩ for different system sizes leads to immedi-
ate identification of Uc, here the nature of the depen-
dence of the average spin-resolved phase with U makes
a scaling process more challenging. While, the trend of
⟨eiθσ ⟩ with different system sizes suggests that the av-
erage phase converges towards zero when approaching
the quantum critical point (or that 1/⟨eiθσ ⟩ diverges at
U → Uc), a scaling analysis similar to that performed in
the main text results in a significant underestimation of
the critical interaction Uc [Fig. 9(b) and 9(c)]; the criti-
cal exponent ν, on the other hand, is close to most recent
predictions [18, 19]. We note that our original arguments
regarding the non-analytic behavior of the spin-resolved
sign should carry over to the spin-resolved phase. That
is, considering that the total weight is decomposed in
W (x) = Wσ(x)Wσ(x)

⟨eiθσ ⟩|W | =

∑
x e

iθσ(x)|Wσ(x)Wσ(x)|∑
x |Wσ(x)Wσ(x)|

× ZW

ZW

= ⟨eiθ⟩|W |

∑
x e

iθσ(x)|Wσ(x)Wσ(x)|
ZW

; (D3)

and that Wσ(x) = W ∗
σ (x) (i.e., ⟨eiθ⟩|W | = 1), the parti-

tion function of the original model reads

ZW =
1

⟨eiθσ ⟩|W |
· Z ′ where Z ′ ≡

∑
x

eiθσ(x)|Wσ(x)|2 .

(D4)
As a result, non-analytic behavior in the thermodynamic
limit that appears in ZW at the critical point is guaran-
teed to be reflected in the averaged spin-resolved phase
provided the modified partition function Z ′ is sufficiently
analytic in the vicinity of Uc.
Future investigations with both larger sizes and im-

proved statistics may settle the possible determination of
critical exponents in this case. Yet, as will become clear
in the following Appendix (Appendix E), an explanation
for this mismatch of the values of Uc possibly stems from
the fact that the average spin-resolved phases ⟨eiθσ ⟩ suf-
fer from substantially larger dependence on the value of
the imaginary-time discretization, in comparison to the
spin-resolved sign ⟨Sσ⟩ studied in the main text.

Appendix E: Dependence on the imaginary-time
discretization ∆τ

Other than statistical accuracy, which can always be
systematically improved, our quantum Monte Carlo sim-
ulations suffer from only one bias: the discrete imaginary-
time ∆τ . It derives from the single approximation em-
ployed in the method when using a Trotter decomposi-
tion to isolate the quartic terms of the Hamiltonian in
writing the partition function [24, 70]. As previously
established, in doing so, one ends up with errors pro-
portional to O(∆τ2). While it is common to verify the
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Figure 10. Dependence of the average spin-resolved phase
⟨eiθσ ⟩ [(a), (c)] and average spin-resolved sign ⟨Sσ⟩ [(b), (d)]
on the square of the imaginary-time discretization for the
SU(2) honeycomb Hubbard model. We compare two values of
the interaction strength, U/t = 2.7 [(a), (b)] and 3.8 [(c), (d)],
and contrast two types of Hubbard-Stratonovich transforma-
tions [Eqs. (A1) and (D1)]. Close to saturation is observed
for ⟨Sσ⟩ in approaching ∆τ → 0, where statistical errors en-
compass the small variation observed. Instead, a substantial
dependence is seen in this limit for ⟨eiθσ ⟩. All data are ex-
tracted at fixed inverse temperatures βt = 20.

discretization errors on physical quantities, noting how
they converge in the limit ∆τ → 0 to establish the criti-
cal properties [16, 17, 19, 55], much less scrutiny is put on
the dependence of the average sign/phases of the weights.

To fill this gap, we report in Fig. 10 the dependence
of ⟨eiθσ ⟩ and ⟨Sσ⟩ for the SU(2) honeycomb Hubbard
model, using two values of the interactions U/t = 2.7
and 3.8. While the spin-resolved sign closely follows the
linear dependence with (t∆τ)2, the same cannot be said
about the spin-resolved phase. Here, ⟨eiθσ ⟩ has a sub-
stantial variation on the discretization used in the limit
∆τ → 0, which significantly compromises an estimation
of the critical properties via the scaling analysis we pro-
pose. This prevents us from obtaining accurate values of
Uc and ν for the Dirac semi-metal to antiferromagnetic
Mott insulator transition in Appendix D for this model.
While the corresponding Hubbard-Stratonovich transfor-
mation [Eq. (D)] introduces an extra error proportional
to O(∆τ4), this clearly cannot explain the large depen-
dence observed. It is currently unclear why such behav-
ior emerges [physical quantities display the usual linear
dependence in (t∆τ2) at small ∆τ ], and further investi-
gations with a broader class of transformations are likely
required to understand it. We leave this for future stud-
ies.
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