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The simulation of strongly correlated quantum impurity models is a significant challenge in mod-
ern condensed matter physics that has multiple important applications. Thus far, the most suc-
cessful methods for approaching this challenge involve Monte Carlo techniques that accurately and
reliably sample perturbative expansions to any order. However, the cost of obtaining high preci-
sion through these methods is high. Recently, tensor train decomposition techniques have been
developed as an alternative to Monte Carlo integration. In this study, we apply these techniques
to the single-impurity Anderson model at equilibrium by calculating the systematic expansion in
power of the hybridization of the impurity with the bath. We demonstrate the performance of the
method in a paradigmatic application, examining the first-order phase transition on the infinite di-
mensional Bethe lattice, which can be mapped to an impurity model through dynamical mean field
theory. Our results indicate that using tensor train decomposition schemes allows the calculation
of finite-temperature Green’s functions and thermodynamic observables with unprecedented accu-
racy. The methodology holds promise for future applications to frustrated multi-orbital systems,
using a combination of partially summed series with other techniques pioneered in diagrammatic
and continuous-time quantum Monte Carlo.

I. INTRODUCTION

The solution of strongly correlated quantum impurity
models is one of the central tasks of condensed matter
physics. Quantum impurity models describe the physics
of an interacting ‘impurity’ or ‘quantum dot’ coupled to a
large, typically infinite, number of noninteracting ‘bath’
or ‘lead’ degrees of freedom. Quantum impurity models
were initially developed to describe the physics of mag-
netic impurities embedded in a non-magnetic host [1], but
have since been adapted to describe quantum dots and
molecular junctions [2], as well as atoms and molecules
adsorbed on surfaces [3, 4]. Importantly, they also appear
as auxiliary models in quantum embedding techniques
such as dynamical mean field theory (DMFT) and self-
energy embedding theory [5–8], which typically require
the calculation of a finite-temperature Green’s function
in the strongly correlated regime.

A reliable description of correlated systems requires
methods that are numerically exact, in the sense that er-
rors can be made arbitrarily small as a function of a con-
trol parameter. Among such methods, the continuous-
time quantum Monte Carlo (CT-QMC) impurity solvers
[9–12], which are based on the stochastic sampling of a
perturbative expansion to all orders, have become ubiq-
uitous in cluster [13] and real-materials DMFT applica-
tions [7]. Numerous variants [14–21], improvements, and
open source implementations [22–30] exist.

CT-QMC methods provide exact results within Monte

Carlo confidence intervals. In particular, they do not re-
quire a discretization of bath degrees of freedom, like
exact diagonalization methods [31–33], or of the time
degrees of freedom, like Hirsch and Fye [34] or lattice
Monte Carlo methods [35]. However, they suffer from
the following two limitations: (1) Away from high sym-
metry points, ‘sign problems’ may cause the computa-
tional cost to grow exponentially as a function of system
size, inverse temperature, or interaction strength, limit-
ing calculations (with a few exceptions [20, 21]) in prac-
tice to systems with almost diagonal interactions and/or
hybridizations, and (2) thermodynamic quantities such
as the partition function and free energy are, in stan-
dard implementations, only available up to an unknown
normalization constant [36].
The standard framework of CT-QMC and, more gen-

erally, of ‘diagrammatic’ [37–39] Monte Carlo methods is
based on a perturbative series expansion that expresses
observables of a quantum system in terms of an infinite
series of high-dimensional integrals. This series is then
summed to all orders in a stochastic sampling process,
employing a Monte Carlo sampling procedure [12] that
performs a random walk in diagram space. For a given
number of samples ns, this procedure produces unbi-
ased stochastic estimates with errors that decrease rather
slowly as ∼ 1/

√
ns. Notably, quasi-Monte Carlo meth-

ods can substantially accelerate this to ∼ 1/ns in at least
some cases [40, 41]. In the context of correlated quantum
transport, some of us [42] have recently shown that in
the calculation of many high-dimensional integrals of the
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perturbative series expansion, it may be advantageous
to replace Monte Carlo integration by a decomposition
of the integrand into a product of low-dimensional ten-
sors, which can then be integrated separately [43]. The
method is controlled in the sense that the exact result is
recovered as the tensor rank increases.

The decomposition of tensors into approximate low-
rank forms without needing to evaluate all their ele-
ments is based on tensor cross-interpolation (TCI) meth-
ods [44, 45]. The corresponding approximation of a high-
dimensional tensor by the product of a sequence of low-
rank tensors is known as a ‘tensor train’ in the applied
mathematics and computer science literature [46]. Ten-
sor trains are also known as matrix product states (MPS)
pioneered in the density matrix renormalization group
(DMRG) and related methods [47, 48].

In this paper, we adapt the tensor train approach of
Núñez-Fernández et al. [42], to equilibrium imaginary-
time quantum impurity problems. We benchmark the
impurity solver for the analytically solvable noninteract-
ing limit and demonstrate its accuracy for the single-site
DMFT problem of a Bethe lattice in the infinite coor-
dination number limit, where the DMFT is exact and
the self-consistency condition becomes particularly sim-
ple [6]. We compute the Green’s function (GF) to high
accuracy, investigate convergence with respect to the pa-
rameters that control the accuracy, and showcase that
the tensor train methodology is often substantially more
precise than quantum Monte Carlo for a given amount
of computer time. In addition, we use the tensor train
approach to compute the partition function and the im-
purity free energy. Unlike in CT-QMC, where normal-
ization with respect to low order with quantum Wang–
Landau [12, 36] or normalization with respect to a hy-
pervolume [18, 49] are needed, thermodynamic quanti-
ties are directly accessible in the tensor train decomposi-
tion scheme. We then demonstrate the usefulness of our
results at the example of the first-order Mott metal-to-
insulator transition.

The paper proceeds as follows. Sec. II introduces the
hybridization expansion and gives an overview of the ten-
sor train methodology, describing the decomposition for
different observables, as well as computational details.
Sec. III illustrates results of the GF for the noninteract-
ing and the DMFT case, and shows results for the free
energy. Sec. IV presents conclusions.

II. METHOD

This section introduces the methodology used in this
work. The system and the hybridization expansion are
presented in Sec. II A. The details of tensor train rep-
resentation and its calculation are reviewed in Sec. II B.
Details on how these two approaches are combined are
presented in Sec. II C.

A. Hybridization expansion formalism

We study a quantum impurity model described by the
Hamiltonian H = HI+HB+HIB ≡ H0+HIB, consisting
of an interacting impurity HI, a noninteracting bath HB,
and the impurity–bath coupling or hybridization HIB.
For the single-site Anderson impurity model,

HI = ϵ0(n↑ + n↓) + Un↑n↓, (1a)

HB =
∑

σk

ϵkc
†
kσckσ, (1b)

HIB =
∑

kσ

(
Vkσd

†
σckσ + h.c.

)
, (1c)

where ϵ0 denotes the on-site energy of the impurity and U
is the Coulomb interaction between two electrons of op-
posite spin. k enumerates the (potentially infinite num-
ber of) bath states, ϵk is the dispersion of the nonin-
teracting bath, and Vkσ represents the coupling strength
between the impurity and bath state k. The creation-
and annihilation operators associated with spin-orbital

σ of the impurity are given by d
(†)
σ , the operators c

(†)
kσ

denote the corresponding bath operators associated with
state k, while nσ = d†σdσ.
The main observables of interest for this work are

the partition function, which grants access to thermody-
namic properties of the system, and the Green’s function
(GF), which is of particular interest for quantum embed-
ding schemes. The partition function is given by

Z = Tr{e−βH}, (2)

where β denotes the inverse temperature and Tr{. . .} is
the trace over the impurity and bath degrees of freedom.
We define the imaginary-time GF for electrons of spin σ
as

Gσ(τ) = −⟨Tτdσ(τ)d
†
σ(0)⟩ , (3)

where ⟨. . .⟩ denotes the expectation value with respect
to the Hamiltonian H, Tτ is the time-ordering operator,
and dσ(τ) = eτHdσe

−τH .
In the hybridization expansion formalism, Eqs. (2) and

(3) are expanded in orders of the impurity-bath cou-
pling HIB [10]. This hybridization expansion is one of
the standard techniques underlying Monte Carlo quan-
tum impurity solvers [12] and provides the framework
for many approximate and numerically exact methods
[10, 14, 15, 18, 20, 50–55].

Expanding Eq. (2) in the impurity–bath coupling
yields

Z =

+∞∑

k=0

∫ β

0

dτ1

∫ β

τ1

dτ2 · · ·
∫ β

τk−1

dτk ⟨HIB(τk) · · ·HIB(τ1)⟩H0
,

(4)

with H0 = HI + HB, HIB(τ) = eH0τHIBe
−H0τ . ⟨. . .⟩H0

denotes the expectation value with respect to H0. Insert-
ing the explicit expression for the impurity-bath coupling
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from Eq. (1c) and defining the time-ordered simplex Sβ
0

as the region of integration with 0 ≤ τ1 ≤ τ2 ≤ · · · ≤
τk ≤ β, the partition function can be reexpressed as

Z =

∞∑

k=0

∫

Sβ
0

dτ1 · · · dτk
∑

σ1...σk

z(k)σ1...σk
(τ1, . . . , τk) .

(5)

with

z(k)σ1...σk
(τ1, . . . , τk) =

∑

ϕ1...ϕk

det∆ ⟨dϕk
σk
(τk) · · · dϕ1

σ1
(τ1)⟩HI

.

(6)

Here, σi ∈ {↑, ↓} are spin-indices and ϕi ∈ {−,+} are
used to sum over all combinations of creation and anni-
hilation operators with d−σi

≡ dσi
and d+σi

≡ d†σi
. The

influence of the bath on the impurity is encoded in the
hybridization function ∆(τ). The hybridization func-
tion can either be calculated explicitly for a given bath
model—which is done for studies on quantum dots or
molecular systems where ∆(τ) = −⟨Tτaσ(τ)a

†
σ(0)⟩ with

aσ =
∑

k Vkσckσ —or determined by a self-consistency
condition. The latter scenario appears in quantum em-
bedding schemes like DMFT. Given a hybridization func-
tion ∆(τ) and invoking particle-hole symmetry, the hy-
bridization matrix ∆ entering Eq. (6) is

∆ij =

{
∆(τi − τj) if σi = σj and ϕi ̸= ϕj ,

0 otherwise.
(7)

The hybridization expansion expressions for the GF
can be obtained in a similar fashion [10, 12], and assume
the form

Gσ(τ) =

∞∑

k=0

∫

Sβ
0

dτ1 . . . dτk
∑

σ1...σk

g(k)σσ1...σk
(τ, τ1, τ2, . . . , τk) .

(8)
Here,

g(k)σσ1...σk
(τ, τ1, . . . , τk) = − 1

Z

∑

ϕ1...ϕk

det∆× (9)

⟨dϕk
σk
(τk) · · · dϕm

σm
(τm)dσ(τ)d

ϕn
σn

(τn) · · · dϕ1
σ1
(τ1)d

†
σ⟩HI

and τm ≥ τ ≥ τn. While the main difference between the

integrands z
(k)
σ1...σk and g

(k)
σσ1...σk are the creation and an-

nihilation operators at 0 and τ , the additional operators
further restrict the combinations of spin and creation and
annihilation operators that give a nonzero contribution.

Eq. (6) and (9) contain sums over all possible creation
and annihilation operator combinations ϕi, which leads
to an exponential number of possible combinations of
operators. In the special case of density-density inter-
actions, there is only a single non-zero contribution with
alternating creation and annihilation operators for time-
ordered arguments. This simplification in the density-
density case is analogous to the simplification to the ‘seg-
ment’ picture in CT-HYB [10, 12].

The hybridization expansion presented here represents
a bare expansion scheme. A variety of related partial
summation schemes have also been successful [18, 20, 53,
54, 56, 57].
Eqs. (5) and (8) describe an infinite series of terms

in a series expansion, where a contribution at order k
consists of a k-dimensional integral. For finite systems
at finite temperature, this series is convergent [9, 10].
However, since the largest contributions to the series
typically comes from orders near β⟨HIB⟩ [15], contribu-
tions at increasingly high orders are expected when the
temperature is lowered. Traditionally, the expressions
in Eqs. (5) and (8) are evaluated by Monte Carlo tech-

niques, whereby the integrands z
(k)
σ1...σk and g

(k)
σσ1...σk can

be interpreted in terms of Feynman diagrams, which are
then combined in a determinant and summed over in a
statistical manner [10].

B. Tensor Train Decomposition and TCI

In order to calculate observables such as the partition
function or the GF within the hybridization expansion,
the high-dimensional integrals in Eqs. (5) and (8) need to
be evaluated. Traditionally, these integrals are calculated
using Monte Carlo techniques [9, 10], which converge as
∼ 1/

√
ns for a given number of stochastic samples ns.

The tensor train methodology offers an alternative ap-
proach that has potential to converge faster than Monte
Carlo. In the following, we summarize the principles
underlying the tensor train representation and refer the
reader to the applied mathematics literature for mathe-
matical proofs [43, 45, 46]. The implementation of the
tensor-fitting component of this work follows the paper
of Núñez-Fernández et al. [42].
To motivate the construction of a tensor train rep-

resentation for a given integrand, we first consider the
general task of integrating a high-dimensional function
f(τ1, τ2, . . . , τk) over all its coordinates,

I =

∫

τ∈[0,β]k
dτ1dτ2 · · · dτk f (τ1, τ2, . . . , τk) , (10)

which is similar (though not yet equivalent) to evaluating
Eqs. (5) and (8). If the integration variables are separable
and independent, i.e. f(τ1, τ2, . . . , τk) = f1(τ1) · · · fk(τk),
the integral can be reexpressed as k one-dimensional in-
tegrals,

I =

[∫ β

0

dτ1f1 (τ1)

]
· · ·

[∫ β

0

dτkfk (τk)

]
, (11)

which can be evaluated independently with standard
quadrature rules. Assuming that the arguments τi, with
1 ≤ i ≤ k, are each represented on a quadrature grid
with nτ points, the complexity of evaluating Eq. (10) is
reduced from nk

τ to knτ for Eq. (11) – a substantial im-
provement, especially for large values of k.
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FIG. 1. a: Visualization of the tensor train representa-
tion of a function f (k) (τ1, τ2, . . . , τk) according to Eq. (12)
for k = 7. Each block labeled Ai with 1 ≤ i ≤ k is either a
matrix valued function of τi, or a tensor in case that the τi are
discretized on a grid. Horizontal lines between blocks imply
matrix multiplication, vertical lines denote the dependence on
τi. b: Depiction of Eq. (13), where the pivot matrix is used
to decompose a two-dimensional function into a tensor train.
c: Visualization of the iterative scheme used to approximate
a multi-dimensional integrand by a tensor train.

The tensor train representation can be viewed as a
generalization of this special case. While an arbitrary
function f (k) (τ1, τ2, . . . , τk) might not be separable in its
arguments, we aim to construct an approximation

f (k) (τ1, τ2, . . . , τk) ≃ A1(τ1)A2(τ2) · · ·Ak(τk), (12)

where the Ai(τi) are matrices of dimension ri−1 × ri for
1 < i < k with r1 = rk = 1 and matrix multiplica-
tion between the Ai(τi) is implicit in this notation. This
representation is schematically visualized in Fig. 1a. We
note that selecting r1 = rk = 1 is just one among sev-
eral options available, and alternative approaches such as
the tensor ring structure have demonstrated their advan-
tages in other applications [48]. As the decomposition
in Eq. (12) has the same temporal structure as Eq. (11),
it allows for the same simplification when evaluating the

integral, the only difference being that the components
are matrix valued functions of τi. In the discretized case
where the τi are on a grid, Ai(τi) can be interpreted as a
tensor rather than a matrix valued function, for which the
above statements also hold. We refer to a representation
of the form in Eq. (12) as a tensor train representation.
A tensor train representation (or approximation) is

said to be of rank r if the matrices (or tensors in the
discretized case) in Eq. (12) are of dimension r × r (or
r×nτ×r). The construction of low-rank tensor represen-
tations has been studied extensively [44–46, 58, 59]. Here,
we use an extension by Dolgov and Savostyanov [43] of
the algorithmic ideas of Oseledets and Tyrtyshnikov [46],
which are based on the so-called cross interpolation [60],
and which is applicable to matrices and tensors. The
basic idea is that a set of points (τ1, τ2, . . . , τk), which
are called pivots, defines an approximation for the func-
tion f (k) at all possible values of the times. The ap-
proximation requires evaluating the function at the piv-
ots themselves; and at all possible values of a certain
coordinate, with other coordinates held constant. Es-
sentially, evaluation is performed on sets of 1D lines in
the high-dimensional hypercube of all coordinates, which
cross through pivots.
To gain some intuition, it is useful to first consider the

special case of matrices, i.e. k = 2. Let us assume that
one knows the values in a matrix only at a certain sub-
set of its rows and columns, defined by a set of pivot
coordinates where they cross. It is possible to obtain an
interpolation scheme based on this partial information.
For a function f (2) (τ1, τ2), evaluating f (2) at the set of
pivots τ1j and τ2j with 1 ≤ j ≤ r with the total number of
pivots r, one can construct the pivot matrix P whose en-
tries are given by Pjj′ = f (2) (τ1j , τ2j′). Using the inverse
of the pivot matrix, one obtains the cross interpolation
of the original function,

f (2) (τ1, τ2)≃
r∑

j,j′=1

f (2) (τ1, τ2j) [P
−1]jj′f

(2) (τ1j′ , τ2) ,

(13)

which can be visualized in tensor network form as
in Fig. 1b. Eq. (13) represents an interpolation of
f (2) (τ1, τ2) in the sense that it is exact if τ1 (or τ2) belong
to the set τ1j (or τ2j). Moreover, if f (2) is of rank r, i.e. it

can be expressed as f (2) (τ1, τ2) =
∑r

j,j′=1 f1j(τ1)f2j′(τ2)

then Eq. (13) becomes exact when one uses r pivots pro-
vided that P remains invertible.
Generally, a given approximation of this type can

be systematically improved by sequentially introducing
more pivots into it. However, this rapidly becomes costly,
and not all new pivots provide the same amount of infor-
mation. While an optimal procedure remains unknown,
there are well-established heuristic algorithms for system-
atically finding and incorporating pivots into the approx-
imation in such a way that convergence occurs rapidly
[61, 62]. In this work we have used the ’maximum vol-
ume’ principle, in particular the rook pivoting procedure
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described by Dolgov and Savostyanov [43]. In this pro-
cedure, we already have r pivot points τ1j and τ2j with
1 ≤ j ≤ r, and wish to find a pair of new points τ1,r+1 and
τ2,r+1 to add to these sets, as shown in Fig. 1c. We se-
lect this new pair by searching for a point that maximizes
the approximation error. Because the TCI is an interpo-
lation, the error at this pivot decreases to zero once it is
included in the tensor train. The search is done by the so-
called row-column alternating algorithm [43, 60], which
starts with a random point τ1, and evaluates the interpo-
lation error for each possible value of τ2. We then fix the
value of τ2 to be the value that maximizes the error, and
evaluate the interpolation error for all possible values of
τ1 and select the point that maximizes the error. This
iterative procedure continues until a fixed point is found,
corresponding to a dominant pivot in its own row and
columns. Compared to checking errors for each element
of the matrix, this heuristic search has complexity O(nτ ),
instead of O(n2

τ ), which substantially improves the effi-
ciency for large number of τ -points. We have found that
this procedure manages to construct non-singular pivot
matrices that represent the integrand with a reasonable
number of function calls.

After establishing the TCI for a function of two vari-
ables, we outline the extension to functions with multiple
discrete variables f (k) (τ1, τ2, . . . , τk). The approximation
is initialized by considering a single pivot, so that we have
pivot matrices of size one (see top row of Fig. 1c). We
then perform a search along the first two dimensions,
τ1 and τ2, for the next pivot to be added; all other co-
ordinates are held constant at the value of the original
pivot. The chosen pivot is used to enlarge the leftmost
pivot matrix to 2× 2 (2nd row of Fig. 1c). In a manner
reminiscent of the density matrix renormalization group
algorithm, we subsequently sweep to the right, repeating
this procedure by starting from existing pivots and mod-
ifying coordinates locally, until all pivot matrices are of
rank 2 (3rd row of Fig. 1c). This is followed by another
sweep to the left, resulting in rank 3 pivot matrices. This
procedure repeats until the pivot matrices have reached
an initially specified maximum rank (Fig. 1c, bottom col-
umn) [45, 46].

For multi-dimensional continuous variables
{τ1, . . . , τk}, we choose a set of collocation points
for each τi, such that the multivariate function is dis-
cretized into a multi-dimensional tensor and the discrete
algorithm above can be applied.

C. Applying the tensor train approximation to
expressions from the hybridization expansion

The efficiency of a tensor train approximation for a
given integration task depends on whether an accurate
approximation for an integrand can be found for low rank
r. In the following, we describe some of the technical as-
pects of our implementation of the tensor decomposition
scheme to the hybridization expansion. We outline the

τ1

τ2

τ1

τ2

v1

v2

(a) (b) (c)

FIG. 2. Illustration of the mapping between the hypercube
(panel a) and the simplex in two dimensions, using χ(x) = x
(panel b) and χ(x) = x2 (panel c). Each intersection of lines
in panel a is mapped into an intersection in panel b and c.

main aspects for the partition function, and then discuss
the specific aspects that are needed to apply the method
to the GF.

1. Mapping the hypercube to the simplex

The expressions from the hybridization expansion

framework require the integration over the simplex Sβ
0

see Eqs. (5). This is a consequence of the time-ordering.
However, the TCI algorithm is defined on the hypercube.
Simply extending the integral beyond the time-ordered
region would introduce discontinuities that prevent an
accurate low-rank tensor train approximation.
The change of variable proposed in Ref. [42], when ap-

plied to imaginary-time problems, extends the hybridiza-
tion function ∆(τ) over the discontinuities at τ = 0 and
τ = β and is therefore also not suitable.
Instead, we use a change of variable in this work that

maps the original simplex Sβ
0 to the hypercube [0, 1]k.

Let τi denote the variables within the simplex and vi
the corresponding variables in the hypercube with 1 ≤
i ≤ k. The mapping h between the hypercube and the
simplex used in this work is

τ1 = h(v1)= χ(v1) · β, (14a)

τj = h(vj)= τj−1 + χ(vj) · (β − τj−1), (14b)

with 2 ≤ j ≤ k and χ any differentiable monotonous
function that maps the interval [0, 1] onto itself. A simple
choice of χ is the identity χ(x) = x but a different choice
of χ, such as χ(x) = x2, may facilitate the TCI.
The two different mappings are visualized in Fig. 2.

Panel a shows a uniform partitioning of the hypercube,
which is mapped to the simplex by χ(x) = x in panel b,
and by χ(x) = x2 in panel c.

2. Change of variables

To proceed, we calculate the Jacobian of the change
of variable defined by Eqs. (14a) and (14b). The Jaco-
bian matrix Jij = ∂τi/∂vj is upper triangular so that
its determinant is given by the product of its diagonal
elements,



6

det J(v1, . . . , vk) = βχ′(v1) ·
k∏

j=2

χ′(vj)(β − h(vj−1)).

(15)

While it is in principle possible to apply TCI separately

to the Jacobian and the integrand z̃
(k)
σ1...σk(v1, . . . , vk), we

choose to apply TCI directly on their product, ie. we
apply the tensor train approximation to

z̄(k)σ1...σk
(v1, . . . , vk) = z̃(k)σ1...σk

(v1, . . . , vk)|det J(v1, . . . , vk)|.
(16)

This approach proved to be the most efficient within the
scope of this work, since the factorization of Eq. (16) by a
tensor train allows for a direct calculation of the integral
using one-dimensional quadrature rules.

The function χ that enters Eqs. (16) through
Eqs. (14a), (14b), and (15) controls two important as-
pects that influence the quality of low-rank tensor train
approximations. First, it influences the spacing of the
pivot points that are used within the tensor train decom-
position. For example, the identity for χ in Eqs. (14a)
and (14b) shifts potential pivot points away from 0 and
closer to β, which implies a bunching of pivot points close
to β. This can be compensated for by a suitable choice
of χ. Second, as χ enters the integrands, it can be used
to ‘warp’ the integrand i.e. reshape it into a function
that is easier to integrate. The approach of ‘warping’
the integrand was also used for facilitating integration
using Quasi-Monte Carlo methods [40], and was used in
Ref. [42], where changing to a representation in terms of
relative time arguments rather than absolute ones was
necessary to construct a tensor train approximation. For
the results presented in this work, we use χ(vi) = v2i .

To illustrate the above method, we consider a simple
example here. Let ∆(t) = t(t− 1) and consider the inte-
gral,

Iex =

∫ 1

0

dτ3

∫ τ3

0

dτ2

∫ τ2

0

dτ1e
−(τ3−τ2)e−2(τ2−τ1)e−τ1

×∆(τ3 − τ1)∆(τ2). (17)

This integral has a structure similar to the functions in
the hybridization expansion. It can be evaluated ana-
lytically on the simplex, Iex = 13

4 − 63
4 e−2 − 91

30e
−1 ≈

2.56832 × 10−3. Using the transformation in Eqs. (14)–
(15) with β = 1, the integral can be calculated with
the tensor-train algorithm described in the previous sec-
tion [63], which would produce the result given above
with an error of less than 10−5 within 10 iterations.

3. Summation over spin indices:

Eq. (5) features a sum over spin indices σi. The num-
ber of spin combinations that need to be considered grows

exponentially with the hybridization order k, which can
render the calculation of higher orders in the hybridiza-
tion expansion unfeasible. We have considered two dif-
ferent approaches for incorporating this aspect into the
tensor train methodology.

The first approach is to use the sum over all
spin combinations for the tensor train decomposition
explicitly, that is applying the TCI algorithm on∑

σ1...σk
z̄
(k)
σ1...σk(v1, . . . , vk). As this approach effectively

averages over all spin combinations, which smooths to
some extent the function that is approximated, we found
that this method produces good approximations for rela-
tively low tensor ranks. However, as the evaluation of the
function that is approximated by the tensor train requires
to explicitly perform the sum over all spin combinations
which grows exponentially with the hybridization order,
this approach becomes prohibitively expensive for high
hybridization orders. As such, we deem this approach
only feasible for high temperature and for systems that
converge within hybridization orders of k ≲ 15.

The second approach is to use the tensor train approx-
imation not only for the arguments vi, but also for the
spin arguments σi. The sum over the spin indices is then
performed along with the integration over the simplex.
On a technical level, we achieve this by introducing a
surrogate variable wi ∈ [−1, 1] with vi = |wi| and σi =↑
if wi ≥ 0 and vi = |wi| and σi =↓ if wi < 0. Approx-
imating z̄(k)(w1, . . . , wk) by a tensor train and integrat-
ing over the variables wi corresponds to summing over
all spin indices and integrating over the original simplex.
This approach overcomes the necessity to explicitly ac-
count for an exponential number of spin combinations
and is therefore suitable for high hybridization orders.
However, as the function that is being approximated in
this case contains more information, the tensor rank that
is required to obtain a certain accuracy increases as com-
pared to the previous approach.

4. Decomposition schemes for the GF

The τ -dependence of the GF is the result of the op-
erator dσ placed at time τ , which is the main difference
between the partition function and the GF. When per-
forming the τi-integrals in Eq. (8), this implies that the

integrand g
(k)
σσ1...σk(τ, τ1, . . . , τk) needs to consider config-

urations that have a variable number of up to k creation
and annihilation operators to the left or to the right of τ .
When creation or annihilation operators move across τ ,
where the operator dσ(τ) is located, the integrand drops
to zero and a discontinuity occurs. Tensor train approx-
imations converge slowly in the presence of such discon-
tinuities. We therefore rewrite the integration over the
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simplex in Eq. (8) as

Gσ(τ) =

∞∑

k=0

k∑

l=0

∫

Sτ
0

dτ1 . . . dτl

∫

Sβ
τ

dτl+1 . . . dτk

∑

σ1...σk

g(k)σσ1...σk
(τ, τ1, τ2, . . . , τk) , (18)

which fixes the number of creation and annihilation op-
erators to the right and to the left of τ to l and k − l,
respectively, thus circumventing the emergence of discon-
tinuities. Here, Sτ

0 and Sβ
τ are the time-ordered simplices

between 0 and τ and between τ and β, respectively, with
0 ≤ τ1 ≤ · · · ≤ τl ≤ τ and τ ≤ τl+1 ≤ · · · ≤ τk ≤ β.

To represent the τ -dependence of the GF, we have ex-
plored two possible approaches. In the first one, we cal-
culate the GF at every value of τ . This approach scales
linearly with the number τ -points.

In the second one, we employ the tensor train approach
to also interpolate the τ dependence. On a technical
level, this is done by adding τ as a parameter to the
function that is approximated by a tensor train. Gen-
erally, this requires a higher rank tensor approximation
for comparable accuracy, whereby the actual increase in
numerical effort depends on the details of the problem
and the representation used for τ . We chose the second
method for the calculations reported below, where we
find that we need about twice the rank to obtain results
of comparable accuracy.

5. Numerical stability and current limitations

While the tensor train methodology is generally a pow-
erful tool to obtain highly accurate results, we encoun-
tered cases where our implementation of the approach
became unstable.

Unsurprisingly, we observed that the tensor train
method fails to provide accurate results whenever it is
applied to functions that are discontinuous. The issue
can be avoided by ensuring that this case is not encoun-
tered for the observable of interest.

Second, we observed that the tensor train approach
described in this work may become unstable for high hy-
bridization orders, k ≳ 30, while at the same time as-
sessing convergence for these high orders becomes chal-
lenging. These issues are likely caused by the selection of
pivots. As only a fraction of the vast parameter space can
be probed for high dimensional functions, pivots might
be chosen in such a way that they do not provide a good
representation of the function that is being interpolated.
Moreover, the CI scheme relies on the inversion of the
pivot matrix. At high orders, where the function ap-
proximated is essentially zero for extended regimes of the
parameter space, picking near-singular pivots for the CI
scheme may result in an imprecise tensor train approxi-
mations. Further investigation of these numerical aspects
will likely resolve the issue.

III. RESULTS

In this section, we present results for the single-
impurity Anderson impurity model as described by
Eqs. (1a)–(1c). The influence of the bath on the impurity
is encoded in the hybridization function ∆(τ).
We benchmark our method for the exactly solvable

case of a noninteracting impurity in Sec. III A, which we
use to assess the accuracy that can be obtained by the
present method. In Sec. III B, we showcase the perfor-
mance of the methodology for the paradigmatic metal-to-
insulator transition observed in the infinite dimensional
Bethe lattice. In particular, we show that the method not
only provides accurate and noise-free results for the GF,
but grants direct access to thermodynamic properties.
We illustrate this with the metal-to-insulator transition.

A. Noninteracting limit

We showcase the performance our method for the case
of a noninteracting Anderson impurity model, U = ϵ0 =
0, which is also known as the resonant level model. The
system is analytically solvable, see e.g. [64, 65], which
allows us to benchmark the precision of the results ob-
tained from a tensor train approximations of different
ranks. Nevertheless, it is a challenging benchmark for
hybridization expansions approaches as it performs an
expansion around the ‘atomic’ limit of an isolated impu-
rity [10].
We consider an impurity coupled to a bath whose dis-

persion ϵk has a semi-elliptical form with bandwidth 4t;
the associated density of states is D(ω) = 1

πt2

√
4t2 − ω2

for −2t ≤ ω ≤ 2t and the hybridization function is given

by ∆(τ) = −
∫
dωD(ω) e−τω

1+e−βω . This system presents
a paradigmatic case studied in single-site DMFT, as
it corresponds to an impurity embedded in an infinite-
dimensional Bethe lattice [6].
Fig. 3a shows the convergence of the GF of the tensor

train formalism described in this work to the exact result
as a function of expansion order at inverse temperature
β = 10/t. ’Exact’ denotes the analytically known result.
As is evident, the exact result is recovered (within the ac-
curacy of this plot) as the expansion is increased beyond
an hybridization expansion order k ∼ 10.
In order to further assess the accuracy, we consider the

deviation of the GF at β/2, i.e. in the middle of the in-
terval. The left panel of Fig. 3b shows this deviation, as
a function of expansion order, for different tensor decom-
position ranks. We see that a maximum precision of 10−4

can be reached for a decomposition rank of 30. Adding
contributions at higher order does not make the result
more precise, indicating that it is the tensor rank, rather
than the truncation of the expansion at a given order,
that limits this precision. This is corroborated by the
curves for rank 60, rank 120 and rank 240, which system-
atically increase the precision of the GF to an accuracy of
10−7. Higher accuracy is reached by a combination of in-
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FIG. 3. Noninteracting impurity coupled to a semi-elliptic
bath with bandwidth of 4t at temperature β = 10/t. a: Con-
tribution to GF from terms up to hybridization orders indi-
cated by the color. b: Deviation of G(β/2) from the analytic
result as a function of perturbative orders for a set of repre-
sentative tensor ranks (left panel), and as a function of tensor
rank for a set for representative perturbative orders (right
panel).

creasing diagram order and increasing tensor rank; higher
order hybridization contributions require higher ranks to
be accurately approximated by a decomposition.

The right panel of Fig. 3b illustrates the same behav-
ior as a function of tensor rank, evaluating contributions
at up to hybridization order 10, 20, and 30. The grey
dashed line indicates a convergence ∼ 1/rank with re-
spect to the tensor rank. In particular, it shows that the
method converges faster than 1/rank for higher orders. It
is evident that while contributions up to order 10 are well
described by an approximation tensor trains of rank less
than 50, higher order contributions require substantially
higher tensor ranks.

In practice, these results suggest a scheme where tensor
train approximations for a fixed hybridization are per-
formed for gradually increasing tensor ranks, until the
integral values no longer change as a function of tensor
rank. Note that it is difficult with existing CT-QMC
techniques to reach a relative accuracy beyond 10−5; the

tensor train methodology is therefore promising for ob-
taining high-precision data that could be used, for exam-
ple, in analytic continuation [66].

B. Dynamical Mean-Field Theory and Free Energy

In the following, we present results for interacting im-
purity models. The purpose of this section is two fold:
First, we demonstrate the performance of our method for
interacting system and its capability to generate results
that are compatible with findings that are obtained using
CT-QMC. Second, we show that our method grants di-
rect access to thermodynamic observables, which are not
straightforwardly available in standard CT-QMC meth-
ods.
For scope of this section, we study the paradigmatic

example of the metal-to-insulator transition in an infi-
nite dimensional Bethe lattice as described within DMFT
[5, 67–72]. In its single-site formulation, DMFT ap-
proximates the momentum-dependent self-energy of an
extended lattice problem by a local self-energy, and
then provides a solution for the auxiliary impurity prob-
lem with a dynamically adjusted, self-consistently deter-
mined bath [5, 6]. For the infinite coordination-number
Bethe-lattice, the self-energy is local and the methodol-
ogy becomes exact [5, 6, 73, 74]. Below a critical temper-
ature of β ∼ 15/t, the paramagnetic version of the model
is known to have a first-order Mott metal-to-insulator
transition between a metallic state at weak interaction
and an insulating state at large interaction, with an ex-
tended coexistence regime [5, 67–72].
We first study results for the GF obtained at differ-

ent electron-electron interaction strength U at temper-
ature β = 20/t. The GF for representative values of
U is depicted in Fig. 4, as calculated by both standard
CT-QMC and the tensor train approach. Both methods
agree within their respective errors. For U ≥ 5t, the
spectral weight A(ω = 0) ∼ βG(β/2) becomes strongly
suppressed, indicating the opening of the Mott gap and
the qualitative difference between metallic and insulat-
ing solutions. We emphasize that both methods sample
the same diagrammatic perturbation expansion [10], ei-
ther by performing a stochastic random walk in diagram
space or by calculating a tensor train approximation to
the integrand at different orders.
Fig. 4 demonstrates that the tensor train approach

can provide results that are compatible with findings
obtained within CT-QMC schemes, and therefore es-
tablishes tensor train based schemes as an alternative
to Monte Carlo based impurity solvers. As is evident
from the data, the tensor train method does not suffer
from stochastic noise. While it can generally be much
more precise as compared to CT-QMC methods at simi-
lar computational cost, there are numerical aspects that
influence the precision of the tensor train result. In par-
ticular, when decomposing the integrands for high hy-
bridization orders where the parameter space is vast, we
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FIG. 4. DMFT GF for representative interaction strengths
U at inverse temperature β = 20/t. The dashed lines rep-
resent results obtained by hybridization expansion CT-QMC
[10, 26, 75] (measured in imaginary time as described in [10]).
The full lines show results calculated within the tensor train
approach. The tensor rank necessary for obtaining accurate
results depends on interaction strength and ranges from 90 in
the insulating regime to 200 in the metallic regime. Both re-
sults agree within their respective errors; differences between
the two methods are visible at large U due to the logarithmic
scale.

found that the quality of the tensor train approximation
can become sensitive to the details of the pivots that are
chosen. This is especially the cases when the integrand
is essentially zero, or when only a small part of the pa-
rameter space contributes to the integral (see Sec. II C
for more details). These cases require a careful analysis
of the results obtained by the tensor train method, which
in practice limits the feasibility of our current implemen-
tation of higher precision results for high hybridization
orders. The situation is not unlike the one with ergodic-
ity issues in Monte Carlo, where the choice of an initial
state or of a few early moves may prevent the simula-
tion from exploring the entirety of phase space. Further
investigations – in particular with respect to how piv-
ots are picked, how the inversion of the pivot matrix is
performed, and what variables are used to represent the
integrand at a specific hybridization order – are left for
future work.

We now focus on the thermodynamic properties of the
system at the metal-to-insulator transition. The first-
order phase transition and the coexistence regime be-
tween metallic and insulating solutions in the single-site
DMFT has been investigated in great detail [70–72, 76–
79].

Thermodynamic quantities are directly accessible from
the tensor train formalism, since the partition function
can be obtained using Eq. (5). This is in contrast to
CT-QMC, where diagrams are sampled with the proba-
bility that they contribute to the partition function, but
an overall partition function normalization factor is typ-
ically not accessible (see Ref. [36] and Ref. [12] Sec. X.E
on quantum Wang–Landau algorithms for sampling this

normalization in ‘bare’ expansions and Ref. [18] for nor-
malizing to the hypervolume of the time integral in renor-
malized/inchworm perturbation theory), and in contrast
to the Hirsch–Fye algorithm [34], where thermodynamic
integration was used to delineate the phase boundary
[72].
Fig. 5 shows the impurity free energy Fimp =

− log(Z)/β, as a function of interaction strength U for
three representative temperatures, calculated directly
from the partition function Eq. (5) using the tensor
train methodology. The impurity free energy is closely
related to the lattice free energy Flattice = Fimp +∑

σ

∫ β

0
∆2(τ)/t2dτ [80, 81]. We perform the underlying

DMFT calculation starting from two different reference
systems: (i) the metallic system at small U where we suc-
cessively increase the interaction strength and (ii) the in-
sulating system at large U where we successively decrease
the interaction strength. Below the critical temperature
of β ∼ 15/t, we find two coexisting solutions with differ-
ing free energy. This implies a coexistence regime where
both metallic and insulating solutions can be stabilized,
the extent of which increases with decreasing tempera-
ture.

IV. CONCLUSION

In conclusion, we presented a method for solving
strongly correlated equilibrium quantum impurity prob-
lems by expressing the terms in a diagrammatic series
expansion by an approximate tensor train form, so that
integration over internal degrees of freedom becomes
tractable. We tested the method on a typical problem
in the field: the single-site Anderson impurity model, as
it appears in the context of dynamical mean-field theory.
Since the method is based on the hybridization expansion
underlying commonly used CT-QMC algorithms, much
of the knowledge and experience is directly transferable.
We showed that CT-QMC and tensor train methods lead
to consistent results. However, the tensor train results
were more precise than CT-QMC results for the prob-
lems studied here, and do not suffer from any meaning-
ful level of stochastic noise. We were able to converge
the tensor train approximation in all cases shown here to
a level of accuracy that is very costly to achieve in CT-
QMC. Moreover, we showed that in contrast to CT-QMC
approaches, the tensor train methodology allows for di-
rect access to the partition function and thermodynamic
properties. While we find that the current methodol-
ogy does have limitations (such as, in certain cases, the
selection of near-singular pivots for the tensor cross in-
terpolation that may lead to imprecise tensor train ap-
proximations), we believe that further research into the
numerics of tensor train approximations will overcome
these issues.
Our work has demonstrated the significant potential

of tensor train methods as solvers for equilibrium quan-
tum impurity problems. We are confident that further
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advancements and applications will expand the param-
eter space of impurity problems that can be reliably
solved. One notable advantage of tensor train methods
is their ability to address regimes that are traditionally
difficult for QMC-based methods. These regimes include
problems affected by the ‘sign problem’ that often re-
stricts the applicability of QMC methods. Examples of
such problems encompass systems away from equilibrium
[18, 52, 82–84], lattice models away from half filling,
multi-orbital impurity systems with frustrations, com-
plex interactions, and general off-diagonal hybridizations
[14, 15, 20, 21]. We anticipate that tensor train meth-
ods will prove to be valuable tools for investigating such
multi-orbital systems. Nevertheless, since we employed a
hybridization expansion [14], the overall computational
cost scales exponentially with the number of impurity
orbitals.

Tensor train methods also hold promise when ap-
plied to partial summation techniques, including both
low-order schemes like the non-crossing approximation
and its extensions [85–91], as well as numerically exact
‘bold’ methodologies [53–56, 92, 93] including the ‘inch-
worm’ scheme [18, 20, 94, 95], interaction expansion se-
ries [9, 11] such as equilibrium and bold-line nonequi-
librium methods, as well as other types of ‘diagram-
matic’ and ‘continuous-time’ formalisms that are tradi-
tionally treated evaluated using Monte Carlo methods
[12, 57, 96, 97]. These formulations often rely on a low-
order expressions or significantly reduce the hybridiza-
tion orders that need to be considered. If our finding
that the low-order contributions in the hybridization ex-
pansion can be effectively represented by tensors of order
ten translates to partial summation schemes, it would im-
ply that tensor train methods could yield results within
minutes to hours on a standard desktop computer. The

potential to significantly accelerate these calculations ul-
timately enhances their accessibility and applicability in
various research contexts.
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M. Maček, X. Waintal, and O. Parcollet, Phys. Rev. B
103, 155104 (2021).
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[48] U. Schollwöck, Ann. Phys. 326, 96 (2011).
[49] G. Cohen and E. Rabani, Phys. Rev. B 84, 075150

(2011).
[50] H. Keiter and J. C. Kimball, Phys. Rev. Lett. 25, 672

(1970).
[51] T. Pruschke and N. Grewe, Z. Phys. B 74, 439 (1989).
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