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Intrinsically gapless symmetry protected topological phases (igSPT) are gapless systems with
SPT edge states with properties that could not arise in a gapped system with the same symmetry
and dimensionality. igSPT states arise from gapless systems in which an anomaly in the low-
energy (IR) symmetry group emerges from an extended anomaly-free microscopic (UV) symmetry
We construct a general framework for constructing lattice models for igSPT phases with emergent
anomalies classified by group cohomology, and establish a direct connection between the emergent
anomaly, group-extension, and topological edge states by gauging the extending symmetry. In
many examples, the edge-state protection has a physically transparent mechanism: the extending
UV symmetry operations pump lower dimensional SPTs onto the igSPT edge, tuning the edge to
a (multi)critical point between different SPTs protected by the IR symmetry. In two- and three-
dimensional systems, an additional possibility is that the emergent anomaly can be satisfied by
an anomalous symmetry-enriched topological order, which we call a quotient-symmetry enriched
topological order (QSET) that is sharply distinguished from the non-anomalous UV SETs by an
edge phase transition. We construct exactly solvable lattice models with QSET order.
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I. Introduction

Conventional topological phases of matter rely cru-
cially on a bulk energy gap to ensure rigidly-quantized
topological invariants and to protect topological edge
states. However, sharply-quantized topological proper-
ties can also arise in the far less well-understood realm of
gapless quantum systems (including stable gapless phases
or critical points). For example, Lieb-Shultz-Matthis
(LSM) type theorems show that microscopic (UV) struc-
ture could impose strong constraints on the low-energy
long-wavelength (IR) physics [1–4], such as the type of
orders and excitations that can emerge. Moreover, non-
local symmetry implementations, such as particle-hole
symmetry of a Landau level, can lead to symmetry-
protected topological features in gapless systems such
as a quantized Berry phase of a particle-hole symmet-
ric composite Fermi liquid [5–9]. Gapless systems can
also host new types of topological edge states such as
the Fermi-arc surface states of Weyl semimetals [10],
which have properties that would be fundamentally for-
bidden in a gapped system, and hence can be considered
“intrinsically-gapless” forms of topology.

While band topology of nodal semimetals inherently
relies on both translation symmetry and absence of in-
teractions, recently there is a growing litany of interact-
ing systems with symmetry-protected topological (SPT)
features [11–17]. These include examples where topo-
logical edge modes of a gapped SPT survive when the
bulk gap closes, for example at a critical point between
an SPT and a symmetry-broken phase [11–16], as well
as interacting intrinsically gapless SPTs (igSPT’s) with
topological edge features that could not arise in a gapped
system [17]. Recent work [18, 19] highlights an in-
triguing connection between gapless SPTs and uncon-
ventional de-confined quantum critical points (DQCP),
such as a direct transition between a quantum spin-
hall state and a superconductor [18] that has potential
relations to graphene multilayers [20], and shows that
certain DQCPs exhibit symmetry-protected edge modes
that modify their boundary criticality.

Many forms of gapless symmetry protected topology
share a common origin story: they stem from symme-
try anomalies that emerge, in the renormalization group
(RG) sense, at energies well below a characteristic en-
ergy scale, ∆. Following standard quantum field theory
terminology, we will refer to this low-energy regime as
the infra-red (IR), and microscopic scales above ∆ as the
ultra-violet (UV). For example, the original LSM theo-
rem applies to a spin-1/2 chain, which emerges as the
low-energy description from an anomaly-free system of
electrons and ions below the energy scale for crystalliza-
tion of the material and below a Mott insulating gap
for the electronic excitation. LSM anomalies can be in-
terpreted as a mixed anomaly between the crystalline
translation symmetry and spin-rotation or time-reversal
symmetry of the spin-interactions [4]. Such anomalies are
discrete, and cannot be continuously deformed without

closing the gap protecting their emergence. In this sense
their topology is still protected by a gap in the system.
Yet, they impact the physics of a system that can ulti-
mately be gapless and fluctuating in the IR, and hence
have a mixed rigid yet gapless nature.

In a similar way, the 1 + 1d igSPT phase in the model
of [17], exhibits an IR symmetry anomaly that emerges at
low-energies from an anomaly free lattice model with an
extend UV symmetry. The same anomaly could also arise
at the surface of a higher-dimensional gapped SPT phase,
in which case there is no possibility of asking about edge
states of the anomalous system (since there is no edge
of a boundary). The igSPT construction realizes this
anomaly without the higher-dimensional bulk, enabling
one to expose an edge to an anomalous system. Strik-
ingly, in the model of [17], this edge hosts SPT edge de-
grees of freedom (DOF) that could not arise in a gapped
system with the same symmetry. It is known [21, 22]
that various anomalous symmetries can emerge from an
extended UV symmetry in this fashion, suggesting nu-
merous possible igSPTs with various symmetries and di-
mensionality [17].

In this paper, we introduce a systematic method for
constructing examples of igSPT systems from symmetry-
anomalies that are classified by group cohomology [23].
This framework generalizes the structure identified in 1d
igSPT models introduced in Ref. [17, 24], to enable the
construction of a large variety of igSPT lattice models in
various dimensions. Furthermore, this formalism clarifies
the relationship between the topological edge degrees of
freedom (DOF), and the emergent IR symmetry anomaly
that protects the bulk gaplessness. Using this approach,
we construct igSPT models for bosonic systems in one-
, two-, and three- spatial dimensions (1d, 2d, 3d) with
various symmetries.

Denoting the number of spatial dimensions as D, our
construction takes as input a group-cohomology anomaly
specified by an element of HD+2(GIR, U(1)) for the low-
energy symmetry group GIR, and outputs a lattice model
of an igSPT in Dd with an enlarged UV symmetry group
GUV that realizes this anomalous GIR-symmetry action
in the IR. Specifically, we define a lattice model with
GIR-rotors on vertices of the lattice and N rotors on pla-
quettes, with a microscopic onsite GUV symmetry ac-
tion. Then, we design a Hamiltonian, H∆, that locks the
N rotors on each plaquette to topological defects of the
GIR rotors such that, for energy scales ≪ ∆ (“the IR”),
the N -rotors are gapped, and an emergent anomaly is
exactly imprinted on the low-energy sector. We show
that, if the symmetry GIR remains unbroken and the
system does not develop fractionalized topological order,
then the emergent anomaly protects nontrivial bulk and
edge modes. The connection between emergent anoma-
lies and igSPTs was pointed out in the original work on
this topic [17], and the structure of group extensions was
explored in [24]. This work extends these concepts to
lattice models in dimensions higher than one, constructs
a number of new examples, and elucidates the connec-
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FIG. 1. Schematic of an igSPT – with symmetry group
GUV. (Left) N -rotors (spins with open circles) are locked
to topological defects in GIR-rotor (spins with filled circle)
symmetry-breaking patterns (e.g. dashed blue line depicts 1d
Ising domain wall) at high-energy (UV) scale ∆. This im-
prints an anomalous GIR = GUV/N symmetry action at low
energies (IR). (Right) Schematic of a 2d igSPT. The igSPT
bulk GIR anomaly forbids a trivially gapped symmetric bulk.
In the IR N symmetry operations act trivially in the bulk,
and pump a lower-d gappedGIR SPT onto the boundary. This
pumping action forces the edge to a self-dual critical point,
leading to symmetry-protected gapless edge states.

tion between the emergent anomaly and the igSPT edge
physics. Specifically, we give a general argument for a
bulk-boundary correspondence connecting the emergent
GIR anomaly and the structure of the group extension,
based on gauging the extending N symmetry to form
an anomalous GIR symmetry enriched topological order
(SET). In many cases, the edge states can also be un-
derstood via a physically-intuitive mechanism of SPT
pumping. Namely, for these cases, the extended sym-
metry operations N act trivially in the igSPT bulk, but
pump a (D − 1)d GIR-SPT onto the edge. This lower-
dimensional SPT pumping action forces the igSPT edge
to reside at a self-plural 1 critical point among different
(D− 1)d GIR-SPT phases, which prevents the edge from
being in a trivial symmetric state.

In 1d, the emergent anomaly forces the igSPT bulk
to either be gapless or spontaneously break symme-
try. By contrast, higher dimensions D ≥ 2, an addi-
tional possibility arises that the emergent bulk anomaly
bulk can be satisfied by certain gapped and symmet-
ric states with anomalous symmetry-enriched topologi-
cal order (SET). Using techniques introduce in [21, 22],
we construct exactly solvable igSPT-type models with
an emergent anomalous SET ground state. In this con-
text, the moniker “intrinsically gapless” is no longer
appropriate, and we instead refer to these phases as
quotient-symmetry enriched topological phases (QSETs)
following the language of quotient-symmetry protected
topological phases (QSPTs) introduced in [25]. QSETs

1 The generalization of self-dual to potentially more than two
phases.

have an anomalous implementation of the IR symmetry,
which is lifted to an anomaly-free symmetry action in
the UV, a notion that requires a separation of scales,
δ ≪ ∆, between the gap, δ, to creating anyonic ex-
citations in the QSET, and the scale ∆ at which the
anomaly emerges. As for QSPTs, we argue that the
QSET orders are sharply distinguished from ordinary
GUV-SETs by an edge phase transition where the gap
to the extending N -DOF closes at the edge. Namely, if
the gap to N charges remains open, then the anomalous
lower-dimensional SPT pumping symmetry ensures that
the QSET edge is either gapless or symmetry breaking
(D = 2). In 3d, the edge is itself 2d, and it is also pos-
sible that both the bulk and edge form a QSET order.
We construct an explicit example of this in Section VI,
which takes the form of a 3d toric-code topological order
in which gauge magnetic flux lines are decorated with 1d
igSPT states.
The paper is organized as follows. In Section II, we

review the taxonomy of known types of gapless SPTs.
In Section III, we review the 1d igSPT models with
GUV = Z4 symmetry introduced in [17, 24] in the lan-
guage of the group-cohomology framework, and show
how this perspective connects their edge states to the
emergent anomaly. Here, we also lay the ground-work for
constructing lattice models with fractionalized anoma-
lous QSET orders in higher dimension. In Section IV,
we formally generalize this structure to igSPTs in various
dimensions and symmetry classes with emergent anoma-
lies classified by group-cohomology. We then illustrate
this general formalism by constructing lattice models for
a 2d time-reversal symmetric igSPT (Section V) and a 3d
Ising igSPT (Section VI). We close with a brief discus-
sion of prospects for realizing igSPTs with beyond group
cohomology models and as Mott insulators of realistic
electron systems. Since there are few reliable theoreti-
cal tools for studying strongly coupled field theories in
2d and 3d, throughout, we will not attempt to analyze
the ultimate low-energy (deep-IR) field theory descrip-
tion of the lattice models we construct. Rather, we will
use the presence of a gapped sector to make sharp topo-
logical statements about the emergent anomalous sym-
metry, and use these to deduce information about the
possible structure of higher-dimensional igSPT bulk and
edge modes. Finally, the Appendices contain additional
formal details, and construct several additional igSPT
model examples in 1d, 2d, and 3d with various combina-
tions of ZN , U(1), and time-reversal symmetries.

II. Gapless SPTs: Definitions and Taxonomy

Colloquially speaking, a gapless symmetry protected
topological (SPT) state is a scale-invariant gapless sys-
tem that possesses symmetry protected topological edge
states that cannot be removed without undergoing a
phase transition where the bulk changes its universal scal-
ing properties. Previous studies [14–17, 24] have identi-
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fied four distinct categories of gapless SPTs defined by
two binary characteristics:

1. whether or not the gapless SPT edge states can be
trivialized by stacking it with a gapped SPT with
the same symmetry,

2. whether or not the edge states are exponentially
well-confined to the edge by a gapped sector.

Gapless SPTs that fail to have the first property are
called intrinsically gapless SPTs (igSPTs) [17, 24], and
will be the focus of this work. Those that fail to have the
second property have been called “purely gapless” SPTs,
and have edge states that are not exponentially localized
to the edge. Rather, their influence decays as a power
of the distance into the bulk [16]. It remains an open
question whether there are gapless SPTs that are both
purely and intrinsically gapless [26].

Despite their nom de plume, “gapless SPTs” are per-
haps better thought of as a form of symmetry-enriched
criticality (SEC) [27] 2. Adding a symmetry to gapped
systems with a fixed type of intrinsic topological order
leads to distinct symmetry enriched topological (SET)
phases. Unlike gapped SPT phases, SET phases cannot
be smoothly connected to a trivial atomic insulator via a
gapped path of Hamiltonians, even when the protecting
symmetry is broken due to the underlying long-range en-
tanglement of the intrinsic topological order. Similarly,
for a given universality class of a gapless system, there
may be multiple inequivalent implementations of sym-
metry, which cannot be smoothly interpolated between
along a path of Hamiltonians whose ground-states have
the same universality class [27].

Gapless SPTs are examples of SECs, in which one can-
not locally distinguish between a “trivial” critical point
and a symmetry-enriched one from local bulk measure-
ments. Rather, the differences between different gapless
SPTs are only evident in non-local bulk probes, or lo-
cal edge probes. One can make this notion more specific
by analogy to gapped SPTs. Different gapped G-SPT
ground-states can be connected by a finite-depth local
unitary (FDLU), U , that is overall symmetric ([U, g] =
0 ∀g ∈ G) but which is not symmetrically generated
(U ̸= e−iH for any local G-symmetric H). This defi-
nition cannot be directly ported to the gapless setting as
even different instances of a gapless state with the same
universal scaling properties, e.g. two instances of a con-
formal field theory (CFT) perturbed by different irrele-
vant operators, cannot be connected by an FDLU. How-
ever, we can generalize the notion of symmetric FDLU-
(in)equivalence by defining i) that two ground-states are

2 Unlike gapped phases, which are stable to generic perturbations,
gapless states may have one or more relevant perturbations that
change their universality class. We will remain agnostic about
the number of relevant perturbations, i.e. whether we are dis-
cussing a stable gapless phase or (more commonly) a fine-tuned
critical or multi-critical point, and use the terms “critical” and
“gapless” as synonyms.

in the same universality class if they flow to the same RG
fixed point after applying an overall symmetric FDLU,
ii) ground-states with the same universality class are dis-
tinct gapless SPT classes if they cannot be connected in
this way by any symmetrically-generated FDLU. An im-
mediate corollary of this definition is that local scaling
operators in distinct gapless SPTs of the same type of
criticality have the same symmetry properties as conju-
gating a local operator with definite symmetry quantum
number with an overall-symmetric U preserves its sym-
metry quantum number. However, the symmetry proper-
ties of non-local scaling operators, such as a disorder op-
erator that inserts a domain wall, may change under such
an overall symmetric FDLU, leading to distinct classes of
gapless SPTs. These notions can be made more precise
for 1+1d conformal field theories (CFTs) [27], for which
the data specifying a universality class is well understood
and characterized by the spectrum and fusion rules for
primary scaling operators.

III. Low dimensional igSPTs

Given the formal nature of our constructions, we begin
by warming up with an (almost trivial) example of how
emergent anomalies can arise in a 0d system. We then,
review the GUV = Z4 symmetric 1d igSPT with emer-
gent GIR = Z2 anomaly previously constructed in [17],
in a language that is amenable to generalization to other
symmetry groups and dimensions.

A. Warmup: Emergent anomalies in 0d

To see a simple example of how an IR anomaly can
emerge from an anomaly-free UV system, consider the 0d
spin-1/2 edge state of a Haldane/AKLT spin-chain [28,
29] with spin-rotation symmetry (GIR = SO(3)). While
this 1d G-SPT phase is typically discussed as a spin-
1 chain, in any physical realization, it arises only as
an emergent description of spin-1/2 electrons in a Mott
phase, so that only spin-1 DOF are active below the
Mott gap, ∆. The spin-1/2 DOF transform under a
larger group GUV = SU(2): rotations that add up to
2πn around any spin-axis, which are identity operations
in GIR, give a Berry phase of (−1)n with n ∈ N = Z2.
Formally GUV = SU(2) is a (central) extension of GIR =
SO(3) by the normal subgroup N = Z2 ◁ GUV. The
spin-1/2 representation of SO(3) is a projective represen-
tation characterized by a nontrivial element of the second
group-cohomology ω2(g, h) ∈ H2(SO(3), U(1)) = Z2,
where the Z2 group structure indicates that two spins-1/2
form an ordinary linear representation of SO(3). Namely,
for GIR, h ∈ SO(3), the spin-1/2 representation, Rg, Rh

satisfy multiplication rule RgRh = ω2(g, h)Rg·h where
an explicit representation of ω2 is the Berry phase for
sweeping the spin around a loop starting from up in the
z-direction, rotating by g then h, then (gh)−1.
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One can realize the system with a spin-1/2 ground-
space trivially in a single spinful fermion site, simply by
considering a single-site Hubbard model: H = −µc†σcσ +
U
2 n(n − 1) with onsite repulsion U and chemical po-
tential 0 < µ < U/2 so that there is a single occu-
pied electron in the ground-space. This system has a
(Mott) gapped sector with even fermion parity consist-
ing of the empty and doubly-occupied states with energy
∆ = min(µ,U − 2µ), and a doubly-degenerate ground-
space consisting of the singly-occupied spin-up or down
states. In this low-energy ground-space there is an emer-
gent SO(3) anomaly: the states transform projectively
under SO(3) as an ordinary spin-1/2 representation of
SU(2). This anomaly is stable: it is protected by the
Mott gap to fermion excitations, and can only be re-
moved by closing the gap separating the fermion parity
even and odd ground-spaces.

While this example may seem merely an overly com-
plex re-interpretation of a completely trivial single-site
problem, it lays the ground-work for more complicated
higher dimensional examples. Specifically, it suggests
that ingredients for realizing an emergent anomaly are: i)
a (central) group extension that lifts the anomaly, ii) an
interaction term that locks the extending degrees of free-
dom away at high energies in such a way that imprints
the anomaly on the low-energy subspace.

B. Review of 1d igSPT with Z4 symmetry

With this nearly-trivial 0d example in hand, we next
review the constructions of [17, 24] for 1d igSPTs. Our
goal will be to adapt the notation such that generaliza-
tions to higher dimension and other symmetry groups be-
come obvious. We also reveal additional structure about
the connection of igSPT edge states, and the group exten-
sion, via a symmetry under pumping lower dimensional
GIR SPTs onto the boundary. Additionally, we intro-
duce various notions of gauging the symmetry that serve
as useful tools for characterizing the igSPT topology, and
constructing QSET phases in higher dimensions.

In this section, we focus on the example where the
low-energy IR symmetry group is GIR = Z2 and the UV
symmetry group is GUV = Z4. Additional examples for
other GIR are detailed in Appendix A and summarized in
Table I. The emergent GIR = Z2 anomaly is the same one
that protects the edge of the 2d G-SPT constructed by
Levin and Gu [30]. However, realized as a pure 1d igSPT
with extended GUV = Z4 symmetry, we can interrogate
the 0d ends of an open chain with this bulk anomaly.

Ref. [17] proposed an elegant physical model realizing
this igSPT phase in terms of an extended Ising-Hubbard
model with discrete Ising symmetry corresponding to π-
rotations around a specific (x) spin-axis. The electronic
degrees of freedom form a spin-1/2 projective represen-
tation of this group for which a 2π rotation results in
a (−1) phase, and hence only a 4π rotation is trivial
corresponding to symmetry group GUV = Z4. Denot-

ing Z4 = {0, 1, 2, 3}, the fermion parity, (−1)Nf where
Nf is the number of fermions, forms a normal sub-group
N = {0, 2} = ZF

2 . The igSPT phase corresponds to
a Mott insulator, in which the fermion excitations have
an energy gap, so that the only IR degrees of freedom
are bosonic spins that transform under a quotient group
GIR = GUV/N = {0, [1]} = Z2 where [. . . ] denotes the
equivalence class under the quotient. The IR igSPT
phase has an emergent anomaly of GIR, corresponding
to the anomaly of the edge of a 2d gapped Z2-SPT [30].
While the extension of the spin-model by fermionic spinor
DOF is natural for physical realizations, Ref. [24] showed
that the same IR theory can arise from a purely bosonic
Z4 spin chain. We will follow the latter all-boson ap-
proach, since it meshes nicely with the group cohomol-
ogy formalism, but will comment on cases where the
igSPT might alternatively arise from a Mott insulator of
fermions 3. While all the main points of this 1d Z4 igSPT
were previously explained in [17, 24], we give additional
arguments that clarify the structure of edge states, and
use a notation and framework that readily generalizes to
other dimensions and symmetries.

C. Anomalous Ising spin-chain

Consider a spin-1/2 chain with on-site Z2 spin DOF
gi ∈ GIR = Z2 = {0, 1}. Specifically, we can define the
standard Pauli operator σz

i = (−1)gi . Further, define the
conjugate operator as ĝi ∈ {0, 1}, via σx

i = (−1)ĝi . To
start consider an infinite chain or with periodic boundary
conditions (PBCs). We will then consider the effect of
open-boundary conditions and the edge. An anomalous
non-onsite symmetry action is:

UA
1 =

∏
i

ω3(gi − gi−1,−gi − 1, 1)Uos
1

≡
∏
i

(−1)gi(gi−gi−1)
∏
i

(−1)ĝi

(1)

where ω3(g, h, k) = (−1)ghk, and the second factor in
UA
1 is just the ordinary on-site action of GIR = Z2 on

each site which maps |gi⟩ → |gi + g mod 2⟩. Physically,
the non-onsite phases, (−1)gi(gi−gi−1) means that each
domain wall (DW) between σz

i =↑, σz
i−1 =↓ carries a

3 Anomalies of Fermionic systems are not classified by the coho-
mology of the symmetry group. The fermion parity ZF

2 is always
a symmetry of a fermionic system, however the action of ZF

2 on
the anomalous edge of a fermionic SPT must stay onsite, i.e. non-
anomalous [31]. The group-supercohomology approach [32] takes
this into account properly and provides a (partial)classification
for fermionic systems. Although it is possible that our igSPT
construction can be generalized to fermionic anomalies described
by group-supercohomology, we focus on bosonic systems in this
work for simplicity and leave this as a question for future work.
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Bulk: Luttinger Liquid

FIG. 2. Anatomy of a 1d igSPT – Schematic depiction
of the structure of 1d GUV = Z4 intrinsically gapless SPT
as originally explained in [17]. The bulk has an emergent
anomalous Z2 symmetry, which protects a gapless Luttinger
liquid state (gray arcs schematically denote power-law range
correlations) with finite size gap ∼ 1/L for chain length L or
requires spontaneous symmetry breaking (SSB). With open
boundaries, there is a twofold ground-space degeneracy with
much smaller finite-size splitting ∼ e−L/ξ. Crucially, the edge
state space does not have a local tensor product structure,
or equivalently, there is long-range entanglement between the
edge modes in the exact ground-states (long dashed blue line).

Z2 charge (gives a phase of (−1) in UA
1 ) 4. Roughly-

speaking, this symmetry action is anomalous because it
causes non-trivial (semionic) statistics for Ising domain
walls (DWs) [30], which intuitively presents an obsta-
cle for reaching a trivial gapped, symmetric state from a
spontaneous symmetry broken one by “condensing” DW
defects, as the non-onsite factors lead to destructive in-
terference in the DW dynamics preventing them from
condensing [33].

D. Onsiteing the symmetry

Following [17, 24], this GIR = Z2-anomaly can emerge
as the low-energy sector of an igSPT with an enlarged
symmetry GUV = Z4 which is a central extension of GIR

by N = Z2. Introduce auxiliary qubit DOF with Pauli
operators τxi = (−1)n̂i , τzi = (−1)ni with ordinary on-
site (extended) symmetry generated by:

Uos
1 =

∏
i

(−1)gin̂i(−1)ĝi . (2)

Then, energetically lock n̂i to (gi − gi−1) via a Hamilto-
nian:

H∆ = −∆
∑
i

δn̂i,gi−gi−1
= −∆

∑
i

1

2

(
1 + τxi σ

z
i σ

z
i−1

)
,

(3)

4 This phase can be more symmetrically apportioned such that
↑→↓ and ↓→↑ DWs each contribute a factor of i, which is re-
lated by a finite-depth unitary or equivalently redefining ω3 by a
coboundary. However, we prefer that the non-onsite phases take
values in the IR symmetry group (GIR = Z2).

such that the symmetry action restricted to the ground-
space of H∆ is equivalent to the anomalous symmetry
action:

Uos
1 ≈

IR

∏
i

(−1)gi(gi−gi−1)
∏
i

(−1)ĝi = UA
1 (4)

We will denote this as Uos
1 ≈

IR
UA
1 . To determine the

structure of the UV symmetry group GUV implemented
by Eq. 2, note that (Uos

1 )2 =
∏

i(−1)n̂i , and (Uos
1 )4 = 1,

from which we see that the extended group structure is
GUV = Z4.

III.D.1) Transforming into the IR space — An alter-
nate perspective on the emergent anomaly is obtained by
starting with the on-site Z4 symmetry action Eq. 2, and
performing a local unitary transformation:

V =
∏
i

(−1)ni(gi−gi−1) (5)

that maps H∆ to a trivial N -paramagnet:

V †H∆V = −∆
∑
i

δn̂i,0 (6)

and converts the onsite symmetry to the anomalous one:

V †Uos
1 V =

∏
i

(−1)gi(gi−gi−1)
∏
i

(−1)gin̂i

∏
i

(−1)ĝi (7)

which coincides with the anomalous symmetry transfor-
mation, Eq. 1 if we restrict to the ground-space of H∆

where n̂i = 0.

III.D.2) Zero-correlation length (ZCL) IR Hamiltoni-
ans — We can write down an idealized model for the
emergent anomaly by adding generic local interactions:
H = H∆ +HIR, where HIR is symmetric, and commutes
with H∆, i.e. exactly preserves the IR subspace with
emergent anomaly. For such Hamiltonians, the emergent
IR symmetry operation is precisely Eq. 1, for which the
non-onsite phases are strictly local, acting only on neigh-
boring sets of three sites. We will refer to such models
as having zero-correlation length (ZCL), with the under-
standing that this refers to the spatial range of the sym-
metry action (and, as we will see shortly, the localization
length of igSPT edge states) but not to the correlation
length of local correlation functions which is infinite in
a gapless system. For generic perturbations away from
the ZCL limit, the edge states of an igSPT will exponen-
tially decay into the bulk, with characteristic length scale
referred to as the correlation length.
A general prescription to construct a ZCL HIR is to

take any local interaction involving only GIR-rotors, con-
jugate it by V to generate an interaction term that com-
mutes with H∆, but may not respect symmetry. Then
explicitly symmetrize the term by superposing it with its
symmetry conjugate (assuming this sum does not van-
ish). For example, starting with a simple transverse field
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term H1 = −J
∑

i(−1)ĝi = −h
∑

i σ
x
i , conjugation by V

gives: V †H1V = −J
∑

i τ
x
i=1τ

x
i σ

x
i which commutes with

H∆ but is not symmetric. Then, we can add its symme-

try conjugate, to obtain HIR = V †H1V + U†
1V

†H1V U1:

HIR = −J
∑
i

(
τxi−1τ

x
i + τyi−1τ

y
i

)
σx
i (8)

which satisfies the fixed-point properties. This Hamilto-
nian can further be exactly solved by fermionization, and
results in a gapless Luttinger liquid with topological edge
states [24]. We mention in passing that an alternative
prescription for constructing fixed-point HIR’s would be
to consider including a generic local symmetry-preserving
term H1 with coefficient ≪ ∆, but which may not com-
mute with H∆. Then, perform (degenerate) higher-order
perturbation theory with H1 to approximately compute
its interaction projected into the low-energy subspace.

Clearly there are many different possible options for
HIR, resulting in a potentially rich phase diagram in
the deep IR. This phase diagram is constrained by the
emergent anomaly, which prevents trivial (symmetric
and non-fractionalized) gapped states. Rather than con-
fronting the (generally hard) task of working out this
phase diagram for specific choices of HIR, we focus in-
stead on deducing sharp topological features arising from
the emergent anomaly.

E. Edge states via lower-d SPT pumping

To explore the edge of this Ising igSPT, restrict the sys-
tem to an open chain of Z4 rotors, with sites i = 1 . . . L,
and microscopic (UV) symmetry action Eq. 2. Further,
restrict H∆ to this open chain by simply omitting term
that spill past the boundaries, and add the edge term
−∆δn1,0 to remove the dangling N rotor that does not
interact with any GIR domain walls on the links. The
numerical analysis and analytic arguments of [17, 24]
show that the Z4 igSPT has gapless DOF correspond-
ing to operators localized to the edge of the igSPT chain
with open boundaries. Specifically, in a length-L chain,
the bulk topological Luttinger liquid has a finite size gap
δB ∼ 1/L. Within this gap, there is a near-exact two-fold
degeneracy when the system has open boundary condi-
tions, with the two near-ground-states being split by an
amount δE ∼ e−L/ξ, where ξ is proportional to the in-
verse of the energy gap ∆ to the UV N DOFs.
Here we give a general argument that clarifies this

structure, and which readily generalizes to other exam-
ples with various symmetries and dimensions. Specifi-
cally, consider the anomalous symmetry action UA

g . In
the ground-space (IR) of H∆, the extending ni spins are
locked to DWs of the gi spins, and we can write a de-
scription of the action just in this IR sector:

Uos
1 ≈

IR

L∏
i=2

(−1)gi(gi−gi−1)
L∏

i=1

(−1)ĝi (9)

In the IR symmetry group GIR = Z2 = {0, 1} the group
operation is 1 + 1 = 0. One might therefore expect that
Ug=2 would yield the identity in the IR. Instead, one
finds:

Uos
2 = (Uos

1 )
2 ≈

IR

L∏
i=2

(−1)gi−gi−1 = (−1)gL−g1 = σz
1σ

z
L.

(10)

We can interpret U2 as a unitary that pumps a 0d GIR-
SPT onto the edges of the chain. 0d G-SPTs are classi-
fied by representations of GIR on U(1) – i.e. different 0d
SPTs correspond to different possibly symmetry quan-
tum numbers or “charges” of the ground-state (which
cannot be changed without closing the gap to an excited
state with a different charge). For Z2 symmetry there are
two possible symmetry charges, ±1, and U2 flips the local
symmetry charge of each edge, toggling this 0d SPT in-
variant. Specifically, the local action of U2 on one end of
the chain, say x = 1, is (−1)g1 which anticommutes with
the GIR-symmetry generator

∏
i(−1)ĝi . As a result, the

edge is tuned to a degenerate critical point where there
are two degenerate edge configurations.
We now connect this lower-d SPT pumping symmetry

to the ground-space degeneracy of the open igSPT chain,
and also to the non-local string order identified in [17].
By assumption, UGUV=0,1,2,3 are symmetries of the full
bulk and edge Hamiltonian.
Moreover, since in the IR U2 acts nontrivially only on

the edge of the chain, (U2)[1,L] = (−1)g1−gL = σz
1σ

z
L,

one can define the restriction to one end of the chain
by U2|1,L := σz

1,L. This local action of the pumping ac-
tions must commute with any local Hamiltonian that’s
invariant under the GUV symmetry. Furthermore, each
of them anti-commutes with the symmetry generator
U1. This non-commuting algebra of symmetry acitons
{(U2)|i=1, U1} = 0 immediately leads to an exact ground
state degeneracy that is at least 2-fold. Moreover, this de-
generacy is directly associated with edge-local operators
and does not arise with periodic boundary conditions.

We refer to the edge-local version of the pumping op-
erators as topological edge modes. However, a key point
that distinguishes them from ordinary topological edge
states of gapped systems is that the degenerate ground-
space does not have a tensor-product structure. Specif-
ically, unlike for the Haldance/AKLT chain [28, 29], the
degeneracy cannot be decomposed into a local “spin-
1/2” living at each end of the chain (which would re-
sult in 4-fold GS degeneracy). Formally, the distinc-
tion is that the edge pumping modes, (U2)i=1,L share
a common global conjugate operator U1, whose action
cannot be localized to one or the other edge because of
the gapless bulk degrees of freedom (in contrast to the
Haldane/AKLT chain where there are independent edge
mode Sx and Sz operators for each end of the chain).
We note that a similar non-tensor product structure edge
degeneracy was observed at the critical point between a
Haldane chain (gapped Z2

2-SPT) and a reduced symme-
try magnet gapped with only a single Z2 symmetry [14].
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The fractional quantum dimension of the edges harkens
that of Majorana zero modes at the end of a topological
superconductor. However, a more apt analogy is that
of (boundary) spontaneous symmetry breaking (SSB)
since: the true ground-state of a finite-size chain is a
Schrodinger-cat/GHZ like state of opposite edge mag-
netizations which has long-range entanglement that can
be collapsed by a local measurement of the edge spin or
which can be removed by an infinitesimal boundary field.
Ordinarily, a 0d system could not spontaneously break
symmetry on its own, however, here the 0d edge is stabi-
lized by the 1d bulk, despite that the bulk itself does not
break symmetry. An equivalent interpretation of these
edge modes is as different symmetry-breaking conformal
boundary conditions on the bulk CFT [14, 34].

III.E.1) Effect of finite correlation length — Next
consider moving away from the ZCL limit, where HIR

is symmetric, but does not commute with H∆. The al-
lowed emergent anomalies are discrete and cannot be con-
tinuously altered by GIR-symmetric perturbations that
do not close the gap to the N charge degrees of free-
dom. Namely, consider perturbing the Hamiltonian to:
H = H∆ + λV , where λ is a dimensionless coupling con-
stant and V is GUV-symmetric. Then, the stability of the
gapped N degrees of freedom to local perturbations [35]
implies there is a critical λc > 0, such that for λ < λc the
N -charged DOF remain gap, and the emergent anomaly
remains stable.

In this regime, one can define an IR Hilbert space by
adiabatically continuing the ground-space of H∆(s) =
H∆+λ(s)V with s ∈ [0, 1], λ(0) = 0, and λ(1) = λ < λc.
The resulting quasi-adiabatic evolution is accomplished
by a GUV-symmetric finite-depth local unitary circuit

(FDLU): F = limtf≫V/∆2 T {e−i
∫ tf
0 H∆(t/tf )dt}. Note

the adiabaticity is defined with respect to the gap to the
N -DOF ∆, not the gap of the system itself (which van-
ishes in the thermodynamic limit). Therefore the FDLU
F transforms the degenerate ground space of H∆ into
the IR subspace of H∆ + V , adiabatically mapping the
emergent anomalous symmetry action, but will generally
strongly admix different energy levels within this IR sub-
space. Properties in the FDLU-transformed frame, F ,
then differ from those in the lab-frame by exponentially-
well-localized symmetric dressing [36]. In particular, the
IR action of symmetry is equivalent to the ideal nearest-
neighbor anomalous action, UA

g , above, up to this FDLU
transformation, For example, in the perturbed model,
the pumping operation F †U2

1F is no longer precisely lo-
calized to the edge, but has exponentially decaying tails
into the bulk that decay with distance x as e−x/ξ where
the correlation length ξ is bounded by the Lieb-Robinson
distance for F .

From this we deduce that, away from the ZCL limit,
we can define quasi-locally dressed operators W1,L =
F †σz

1,LF that approximately commute with H to accu-

racy e−L/ξ, and this edge-state degeneracy is split by
this exponentially small amount, but however, remains

sharply distinct from the bulk finite-size gap ∼ 1/L for
L ≫ ξ.

III.E.2) The N -charge gap does not close at the
edge — Since the SPT pumping operation is imple-
mented by an N -symmetry operation, and ends up act-
ing nontrivially at the edge of the igSPT, one might be
tempted to conclude that the gap to the N charged DOF
closes at the edge. We emphasize that this is not the case.
Specifically, the unitary V in Eq. 5 explicitly transforms
H∆ to a paramagnet that fully gaps all the N charges.
In the ZCL limit, one can readily check that there are no
local N -charged operator that acts within this 2-fold de-
generate ground-space associated with these edge model
(a feature that is preserved up to local dressing by F
away from the ZCL limit). Physically, the effect of the
N symmetry transformation on the IR theory with emer-
gent anomalous GIR symmetry, arises due to a non-trivial
entanglement between N charges and GIR charges that is
locked in by H∆ at UV scale ∆. However, it costs finite
energy, ∆, to unlock an N rotor.

III.E.3) Connection to string order — We note that
the lower-d SPT pumping operation is closely connected
to the nonlocal string order identified by TVV in [17].
In TVV’s Ising/Hubbard model exhibited a string or-
der Sz

i

∏
i<x<j(−1)NxSz

j where Ni was the fermion num-
ber on site i and Sz

i was the electron spin operator at
site i. In that example, the group extension that lifted
the anomaly was to extend a GIR = Z2 x-axis spin ro-
tation symmetry by fermion parity N = ZF

2 . Hence
we can understand the structure of the string operator
as follows: the bulk of the string

∏
i<x<j(−1)nx where

nx is the number of fermions at position x, is simply
the N = ZF

2 symmetry generator restricted to an in-
terval (i, j). The Sz operators terminating the ends of
the string add a symmetry charge, i.e. add a 0d SPT
onto the end of the string. This cancels the 0d SPT
pumping action of the symmetry operation, such that
the string operator has a finite expectation value for an
arbitrarily long string. In principle, this picture coupled
with the SPT-pumping perspective enables one to iden-
tify non-local membrane “order-parameters” that detect
higher dimensional igSPTs which have an analogous form
of acting with an N symmetry operation restricted to
Dd region, multiplied by (D − 1)d boundary operators
that add an appropriate GIR SPT to their boundaries.
A subtlety (common to all higher-d analogs of non-local
string order), is that, away from the ZCL, long-range
membrane order is characterized by exponential decay of
membrane correlations with the perimeter/surface-area
of the membrane-boundary (an O(1) constant suppres-
sion for 1d string order parameters) rather than with the
bulk membrane area (similar to the perimeter vs. area
law for diagnosing confinement in 2d gauge theories). For
this reason, we do not pursue this non-local order per-
spective in higher-dimensions.
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F. Gauging the symmetry

Gauging the symmetry often provides non-
perturbative insights into its topology. Gauging a
G-symmetry can either be done by exploring the re-
sponse of the system to an external, background G-gauge
field, or by promoting a global G symmetry to a local
gauge redundancy coupled to dynamical gauge fields.
For our purposes, it will be most useful to consider
gauging the central extension, N , that lifts the anomaly,
which results in an anomalous GIR-SET. While this
gauging perspective will be most useful in 2d and 3d, we
use the 1d version as a warmup.

III.F.1) Coupling to a background gauge N -gauge
field — For a gapped system, the response theory to an
external gauge field is a local topological quantum field
theory (TQFT). For an igSPT, the presence of gapless
bulk modes can lead to non-local responses to a general
GUV-gauge field. To avoid this non-locality, one must be
selective in what gauge-fields or gauge configurations we
couple into the system. Since the N DOF are gapped in
the IR, gauging only the normal sub-group N of the ex-
tended symmetry GUV results in a local response theory.
As explained in [22], gauging the extending symmetry N
results in a theory with an anomalous GIR = GUV/N
symmetry. Here, we explore the relation between this
and the igSPT edge states.

To explicitly gauge the lattice model, introduce a non-
dynamical (backgrond) Z2 gauge link variable Ai,i+1 ∈
N = {0, 1} associated with link (i, i + 1), and conju-

gate gauge electric field Ei,i+1 ∈ N̂ = {0, 1} satisfy-
ing {(−1)Ai,j , (−1)Ei,j} = 0, and enforce the Gauss’
law gauge constraints: n̂i = Ei,i+1 − Ei−1,i, which gen-
erate the gauge transformations: ni → ni + χi and
Ai,j → Ai,j + χj − χi where χi ∈ {0, 1}. We note that
the following discussion is equivalent to the discussion of
the effect of symmetry-twisted boundary conditions on
1d igSPTs in [24].
The unitary V in Eq. 5, which converts the anoma-

lous symmetry to an on-site one, is not gauge invari-
ant as written. However, we can remedy this by min-
imally coupling ni to Ai,i+1. With periodic bound-

ary conditions (PBCs) note that:
∏

i(−1)ni(gi−gi−1) =∏
(−1)gi(ni+1−ni). Hence, we can minimally couple

(ni+1 − ni) → (ni+1 − ni − Ai,i+1) to make this oper-
ator gauge invariant resulting in:

V =

L−1∏
i=1

(−1)gi(ni+1−ni−Ai,i+1) (11)

where the script font indicates that the N symmetry
subgroup has been gauged. This transformation effects
V†H∆V = −∆

∑
i δn̂i,0 and (with PBCs):

V†U1V ≈
IR

(−1)
∑

i Ai,i+1

∏
i

(−1)gi(gi−gi−1)
∏
i

(−1)ĝi

(12)

We see that the U1 symmetry eigenvalues ±1 are tog-
gled by an N -gauge flux (−1)

∑
A = (−1). Hence, the N

gauge flux carries a GIR-symmetry charge. This is consis-
tent with our above discussion of the edge states – since
inserting an N symmetry flux with PBCs is equivalent
to cutting open the chain, acting locally on one end with
U2
1 = W (which we have seen changes the U1 charge), and

then gluing the chain back together. Hence, the structure
of the igSPT edge states can also be deduced by gauging
the extending symmetry, N .

III.F.2) Fractionalizing the anomalous
GIR-symmetry — In higher dimensions, it is possi-
ble that the bulk igSPT anomaly is satisfied by a
gapped symmetric, but topologically ordered state.
Following [21], we can view this topological order as
arising from fractionalizing GIR-rotors into GUV DOF,
and projecting out the unphysical fractional states
by coupling the N -subgroup of the GUV rotors to a
dynamical N gauge field. Here, it will be crucial to
assume a hierarchy of scales between the UV gap, ∆ that
imprints the anomaly, and the (assumed much smaller)
energy gap, δ, to the fractionalized excitations: δ ≪ ∆.

Specifically, consider a microscopic lattice model with
GUV symmetry, imposing H∆ so that in the IR at scales
≪ ∆ the symmetry action is effectively the anomalous
one given by Eq. 1 acting on GIR-rotors. Then, fraction-
alize each GIR-rotor into GUV rotor, with onsite basis
|νi, gi⟩ with νi ∈ Ng = Z2, but where the νi DOF is cou-
pled to a dynamical Ng-gauge field, ai,i+1 (we use lower-
and upper-case letters to distinguish emergent and ex-
ternal/background gauge fields). We caution that one
should distinguish the gapped ni DOF from the frac-
tionalized ν DOF: the latter are not gauge invariant, i.e.
are not microscopic excitations, but may only emerge as
fractionalized IR excitations if a is in a deconfined phase
(similar to spinons in a more typical parton or slave-
particle description of electronic models). For this pur-
pose, we include a GIR subscript on Ng, to distinguish
the gauge group from the global N symmetry acting on
the gapped UV sector.

In higher dimensions, this dynamical gauge theory
could emerge from a parton description where a micro-
scopic boson operator B with GIR charge (−1), is frac-
tionalized into a pair of 1

2 -GIR charged operators: B = b2

(i.e. Ug : b → igb acts as a Z4 symmetry on the partons).
In 1d, any such gauge theory will generically become con-
fined if there are any quantum fluctuations in the gauge
field. Nevertheless, we find it useful to study a fine-tuned
fluctuation-less gauge model as preparation for higher-
dimensional examples.

The gauge invariant sector satisfies a Gauss law ν̂i =
ei,i+1 − ei−1,i where ν̂ and e are conjugate to ν and a
respectively. This Gauss’ law generates gauge transfor-
mations νi → νi + χi and ai,i+1 → ai,i+1 + χi+1 − χi

for any local gauge transformation χi. Further, the IR
symmetry action on the fractionalized degrees of freedom
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is:

U frac
1 =

L∏
i=1

(−1)gi(gi−gi−1)
L∏

i=1

(−1)giν̂i(−1)ĝi (13)

As for the external gauge response, the finite-depth
unitary V (with n → ν and A → a) simplifies the sym-
metry action to be almost on-site:

V†U frac
1 V ≈

IR
(−1)νL−∑L−1

i=1 ai,i+1−ν1

∏
i

(−1)giν̂i(−1)ĝi .

(14)

This differs from an ordinary onsite Z4 symmetry only by
a gauge-string with charged ends that terminate on the
edge. As a result, one can write add a trivial Z4 bulk-
paramagnet Hamiltonian in the V-transformed frame:

V†HZ4-PMV = −δ

L−1∑
i=2

δν̂i,0δĝi,0

= −δ

L−1∑
i=2

∑
(νi,gi),(ν′

i,g
′
i)∈Z4

1

4
|(νi, gi)⟩⟨(ν′i, g′i)|

(15)

that gaps out all the bulk DOF (except the total gauge
flux). In additional to the topological edge degeneracy,
this leaves an additional accidental edge degeneracy that
can be partially removed by further adding:

Hedge = −V

δ
∑
i=1,L

(−1)gi+ν̂i

V†, (16)

which commutes with U frac
1 and locks gi1, L = ν̂1,L. Then

the remaining DOF are simply ν̂1,L which naively leaves
a fourfold GSD. However, total gauge charge vanishes,∑

i ν̂i = 0, for any physical states, which (considering
the bulk ground-state of HZ4-PM has no charge) reduces
the physical edge-GSD of gauge invariant states to two
(for fixed gauge-flux sector). Again, the pumping opera-

tion pumps 0d GIR-SPTs onto the edge:
(
V†U frac

1 V
)2

=(
U frac
1

)2
= (−1)gL−g1 , so that, just as for the gapless

Luttinger-Liquid bulk, there is no local symmetric per-
turbation one can further reduce this two fold degen-
eracy since it is protected by a non-trivial local anti-
commutation between U1 and (the edge restriction of)
U2.

In addition there is a pair global topological supers-
election sectors labeled by total gauge flux

∑
i ai,i+1 =

0, 1. As mentioned above adding quantum fluctuations
in the gauge field would immediately lead to a confined
theory in 1d. However, this construction will prove use-
ful in producing lattice models of bona-fide anomalous
topological orders in higher-dimensional examples.

IV. Constructing igSPTs from group cohomology
data

We next formally show how this 1d example generalizes
for emergent anomalies classified by group cohomology.
To begin let us fix some notation.

A. Notation

General groups – For equations involving a general,
unspecified group, G we will use multiplicative notation
for group operations: (·) : G×G 7→ G, denoted by g·h (we
will occasionally omit the · for brevity). We denote the
representation of symmetry element g ∈ G on quantum
states by Ug.
Abelian groups – For specific examples, we focus on

groups that are either Abelian or semidirect products of
Abelian groups and time-reversal. For Abelian groups
we will typically use additive notation for the group op-
eration + : G × G 7→ G, for example we write ZN =
{0, 1, . . . N − 1} with group operation addition modulo
N , and denote U(1) elements by a phase α ∈ [0, 2π). For
direct product of cyclic groups, such as ZN1

×ZN2
, denote

N12 = GCD(N1, N2) where GCD denotes the greatest-
common divisor.
For Abelian groups, define the “vorticity indicators” v

as follows: for g, h ∈ ZN , 0 ≤ g, h ≤ N−1 define vN (g, h)
to be 1 if g + h ≥ N and 0 otherwise, where, here, we
regard g, h as integers and and + as integer-addition (i.e.
not modulo N). Similarly for U(1) define v2π(α, β) to
be 1 if α + β ≥ 2π, and 0 otherwise. When clear from
context, we will drop the subscripts on v. This function
will frequently appear in cocycles, where it can physi-
cally be interpreted as detecting vortices on triangular
plaquettes.

We denote the Pontryagin dual of a group G by

Ĝ ≡ H1(G,U(1)) = Hom(G,U(1)), which consists of

linear representations of G on U(1), i.e. ĝ ∈ Ĝ is
a homomorphism ĝ : G 7→ U(1), satisfying property
ĝ(g1)·ĝ(g2) = ĝ(g1 ·g2) ∀g1,2 ∈ G. For Abelian groups the
Pontryagin dual is given by the group Fourier transform.
All the examples we will consider involve the relations:

ẐN = ZN , Ẑ = U(1). As an example, when G = ZN ,

we have Ĝ = ZN , and an element ĝ ∈ Ĝ is the homorm-
phism: ĝ(g) = e2πiĝg/N .
Cup Product – We will make use of the cup product

of two co-cycles, defined as follow. For ωm ∈ Hm(G,M)
and ηn ∈ Hn(G,N), the cup product of them is an ele-
ment of Hm+n(G,M ⊗Z N) defined as:

ωm ∪ ηn(g1, · · · , gm+n)

≡ ωm(g1, · · · , gm)⊗Z η(gm+1, · · · , gm+n).
(17)

We will only be concerned with the case where M , N

are Pontryagin dual of each other: M = N̂ , in which
case we can identify the tensor product M ⊗Z N as U(1)
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FIG. 3. Lattice models with anomalous GIR-symmetry
from group cohomology – are defined on a simplicial
complex: a generalized triangulation with orientation s = ±
for each D-simplex (link in 1d, triangle in 2d, tetrahedron
in 3d, etc...). The on-site Hilbert space for the anomalous
model consists of |ga ∈ G⟩ for each vertex a. The anomalous
GIR-symmetry action is specified by an element [ωD+2] of the
cohomology group HD+2(G,U(1)), it differs from the triv-
ial onsite action by a product of phase factors given by the
cocycle ωD+2 and field configuration on each simplex. E.g.
in 2d the phase factor associated with the yellow triangle is
ω4(g

−1
1 g2, g

−1
2 g3, g

−1
3 g−1, g)−1, the overall inverse is due to

the clock-wise orientation of the triangle.

by identifying the element m ⊗Z n as m(n) ∈ U(1),
this identification will be made implicitly throughout

this paper. For example when M = N̂ = ZN , both
ωm and ηn are integers ∈ {0, 1, . . . N − 1}, and accrod-
ing to our definition we have: ωm ∪ ηn(g1 . . . gm+n) =
exp

[
2πi
N ωm(g1, . . . gn)ηn(gm+1, . . . gm+n)

]
. Therefore

ωm ∪ ηn is a m+ n cocycle with U(1) coefficients.

G-rotor models – We will consider quantum lattice
models with onsite Hilbert space built from quantum ro-
tors, i.e. Hi = Span{|gi⟩, gi ∈ G} for each site i in the
lattice. With a slight abuse of notation, we define the op-
erator g which is diagonal in the g-basis with eigenvalue
g, and the dual operators ĝ whose exponential raise the
eigenvalues of g, for example:

{
e

2πi
N jĝ|g⟩ = |g + j⟩, G = ZN ,

eiαĝ|g⟩ = |g + α⟩, G = U(1)
. (18)

We will refer to such DOF as G-rotors. Note the eigen-
values of the dual operators take values in the Pontryagin
dual group, thus the notation here is consistent with the
notation for the Pontryagin dual.

B. Review: Anomalous lattice models from
cohomology data

We will exploit several constructions from the group
cohomology (partial) classification of bosonic SPT phases
in (D + 1)d with symmetry G. Refs. [23, 37] provided a
general lattice model for the anomalous Dd surface of a
(D + 1)d gapped SPT with symmetry G. These models
are G-rotor models on a lattice with simplicial structure,
i.e. a suitable triangulation of space with sites indexed by
a ∈ Z, and a G-rotor |ga⟩ at each site a. The order of site
labels induces an orientation to edges, which is conven-
tionally drawn as arrows pointing from smaller to larger
site number. We will focus on cases where the simplicial
structure forms a regular lattice: a chain of sites in 1d,
a triangular lattice in 2d, or cubic lattice of face-sharing
tetrahedra in 3d. We label elementary D-simplices (links
in 1d, triangles in 2d, or tetrahedrons in 3d) by letters
i, j, k · · · , and vertices by a, b, c · · · . The D + 1 vertices
of a fixed simplex i are labeled as i1, i2, · · · , iD+1. Each
simplex is assigned an orientation si = ±. For exam-
ple, in 2d with the simplicial structure shown in Fig.3,
upwards pointing triangles have s = 1 and downwards
pointing triangles have s = −1.
An anomalous symmetry action is locally generated

but not strictly onsite. It differs from the ordinary onsite
G-symmetry action |ga⟩ → |gga⟩ by non-onsite phases
that depend on topological defect configurations on each
simplex i. Specifically, for g ∈ G, the anomalous symme-
try can be chosen (up to a symmetric finite-depth local
unitary transformation) to act as [23, 37]:

UA
g |{ga}⟩ =∏
i

[
ωD+2(g

−1
i1

gi2 , . . . , g
−1
iD

giD+1
, g−1

iD+1
g−1, g)

]si
|{gga}⟩

(19)

where ωD+2 ∈ ZD+2(G,U(1)) is a representative co-cycle
for the anomaly, the product is over all simplices, the su-
perscript A stands for “anomalous”. For group elements
that act anti-unitarily (i.e. time-reversal), the phases
above should additionally be complex conjugated.

The general form of this equation is that the ordi-
nary onsite symmetry action ga → gga is modified by
phases, ωD+2, that depend on symmetry domain wall
configurations g−1

iα
giα+1 on the links (iαiα+1) of each sim-

plex i. Physically, these phases give rise to destructive
quantum interference between different domain wall re-
arrangements [33], that prevent the system from reach-
ing a gapped symmetric state (which would be a quan-
tum superposition of all possible domain wall configu-
rations). Group cohomology implicitly assumes both a
tensor product structure (i.e. the anomaly is in the sym-
metry action not the Hilbert space) and that all topo-
logical defects in symmetry breaking order are gappable.
These assumptions are known to breakdown for selected
“beyond-group-cohomology” SPTs that are character-
ized by symmetry defects that carry ungappable chiral
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modes or unpaired Majorana zero modes. In the follow-
ing we focus on the group-cohomology anomalies, and
comment only briefly at the end about possible general-
izations to beyond cohmology igSPTs.

C. Lifting the anomaly

Starting from an anomalous GIR-rotor model, we now
show a general prescription for obtaining a lattice model
with an extended and anomaly-free onsite symmetry
GUV in the UV, and emergent GIR-anomaly in the IR.
The idea will be to introduce additional N -rotors for
some appropriate Abelian group N , ni (with dual op-
erators n̂i), on each plaquette, such that the central ex-
tension:

0 → N ι
↪−−−→ GUV

GUV/N−−−−−→ GIR → 0 (20)

lifts the GIR anomaly in GUV, meaning that a non-
trivial cocycle [ω] ∈ HD+2(GIR, U(1)) becomes trivial
when viewed as a cocycle in HD+2(GUV, U(1)). Exten-
sions of of GIR by N are classified by H2(G,N ): de-
noting elements of the extended GUV symmetry group
by (n ∈ N , g ∈ G), the extended group correspond-
ing to an element e2 ∈ H2(G,N ) has group operation:
(n1, g1) · (n2, g2) = (n1 + n2 + e2(g1, g2), g1 · g2), and the
associativity of this group operation, γ1 · (γ2 · γ3) =
(γ1 · γ2) · γ3 for γi ∈ GUV, is guaranteed by the cocy-
cle condition de2 = 1.
It was shown that in-cohomology anomalies of finite

groups can be lifted by such a central extension [21, 22]
including a constructive proof in [22]. Moreover, it was
shown in [22] that existence of such a group extension
guarantees the D + 2 cocycle ωD+2 that specifies the
Dd GIR-anomaly has a representative in the decomposed
form:

ωD+2 = bD ∪ e2, (21)

with bD ∈ ZD(G, N̂ ), e2 ∈ Z2(G,N ). 5 We will show
below that this decomposition implies a bulk-boundary
correspondence for igSPTs tying the emergent group-
cohomology anomaly to the presence of SPT edge states.
In general, bD will characterize the symmetry transfor-
mation of N gauge fluxes when one gauges the extending
N symmetry which we will argue guarantees non-trivial
igSPT edge states. In many cases, bD will manifest as a
lower-dimensional SPT pumping symmetry that general-
izes the 1d GUV = Z4 case discussed above, and gives a
physically transparent mechanism for igSPT edge states.

Second, since bD has coefficients that are dual to
those of e2, referring to the discussion in Section IVA
above, their cup product [bD ∪ e2] can be identified
with an element of HD+2(G,U(1)) by “feeding” the

e2(gD+1, gD+2) ∈ N output into bD(g1, . . . gD) ∈ N̂ =
Hom(N , U(1)). As a concrete example, the 1d GUV = Z4

igSPT discussed above cocycle ω3(g, h, k) = (−1)ghk

which we can decompose into b1 ∪ e2 with b1(a) = a ∈
N̂ = Z2 and e2(g, h) = g · h ∈ N = Z2.

D. Extending and onsiteing the symmetry

The decomposition structure permits us to define an ordinary onsite GUV symmetry action that can be reduced to
the anomalous GIR action in the IR. We introduce an N -rotor ni ∈ N for each simplex i. We define a single unit
cell of the model as follows: associate each simplex, i, with the vertex ai ∈ i that has the largest site number in that
simplex ni. This results in groups of D simplices for each vertex. Define a single unit cell of the lattice model to
consist of associated D N -rotors and one GIR rotor. Then, we may define the GUV symmetry action as:

Uos
g |{n̂i}, {gi}⟩ =

∏
i

n̂i ⊗Z e2(g
−1
iD+1

g−1, g)|{n̂i}, {gga}⟩. (22)

which is a tensor products of local unitaries acting only on a single unit-cell of the lattice model, i.e. is an on-site
symmetry action. See Fig.4 for an illustration of 1d and 2d lattices.

Then, to imprint the IR anomaly, we introduce an interaction:

H∆ = −∆
∑
i

δn̂i,b
si
D (g−1

i1
gi2

,...,g−1
iD

giD+1
), (23)

5 For infinite GIR such as GIR = U(1) there is no constructive
proof of such decomposition with finite N . Although the con-
struction in [22] can be applied to infinite groups, there is no
guarantee that the extending group N will be finite. Infinite
extensions are in many ways unphysical, as we will discuss in ap-
pendix A in the context of GIR = U(1) symmetry. In select cases,

anomalies of infinite groups can be lifted by a finite extension.
We will give one such example: 2d U(1) × ZT

2 anomaly in ap-
pendix B. We do not attempt to answer the question of whether
and when an anomaly of an infinite symmetry can be lifted by
a finite extension, instead, we address this question case-by-case
for each of the infinite symmetry groups considered in this work.
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In the ground-space of H∆, n̂i gets locked to bsiD(g−1
i1

gi2 , . . . , g
−1
iD

giD+1
), which we denote as: n̂i ≈

IR
bD, and we obtain

the low energy anomalous action

Uos
g |{ga}⟩ ≈

IR

∏
i

bsiD(g−1
i1

gi2 , g
−1
i2

gi3 , · · · , g−1
iD

giD+1
)⊗Z e2(g

−1
iD+1

g−1, g)|{gga}⟩ (24)

=
∏
i

ωsi
D+2(g

−1
i1

gi2 , g
−1
i2

gi3 , · · · , g−1
iD+1

g−1, g)|{gga}⟩ (25)

= UA
g |{ga}⟩. (26)

The result is that, at energy scales≪ ∆ (henceforth re-
ferred to as “the IR”), the extendingN -rotors are gapped
out by H∆. Importantly, it is possible to fully gap all
the N rotors in this way, even in open geometries with
boundaries. Specifically, with open boundaries one needs
to add additional terms −∆

∑
i∈S δn̂i,0 where 0 is the

identity element of N̂ and S is the set of boundary sites
that are not the terminal site of some complete simplex,
which fully gaps all N -rotor DOF not involved in H∆.
Importantly, this gapping is done in such a way that im-

poses a non-trivial entanglement between the GIR and N̂
rotors that imprints an anomalous GIR-symmetry action
on the GIR degrees of freedom in the IR.

The unitaries Uos
g do not yet form a group, because

the multiplication is not closed:

Uos
g1U

os
g2 =

(∏
i

n̂i ⊗Z e2(g1, g2)

)
Uos
g1g2 . (27)

To obtain a closed group, we enlarge our set of symme-
try actions by defining a symmetry action for each pair
(n, g), n ∈ N , g ∈ G as

Uos
(n,g) :=

(∏
i

n̂i ⊗Z n

)
Uos
g . (28)

The original symmetry actions Eq. 22 are identified with
Uos
0,g. It’s easy to check that the Hamiltonian Eq. 23 is

symmetric under Uos
(n,g) actions. The multiplication rule

is now

Uos
(n1,g1)

Uos
(n2,g2)

= Uos
(n1+n2+e2(g1,g2),g1g2)

, (29)

which is the group law of the extended group GUV. In
conclusion, we have constructed a lattice model with on-
site GUV-symmetry in the UV, and emergent GIR =
GUV/N -anomaly in the IR.

E. Edge states: perspective from gauging N

How is the emergent anomaly related to the presence
of SPT-edge states of the igSPT? To answer this ques-
tion, consider the gedanken experiment of gauging the
extending N symmetry of the igSPT model described
above.

FIG. 4. The igSPT lattice. The N rotors n̂i live on the
sites of the dual lattice(white circles), or equivalently, the
center of every simplex of the simplicial lattice. An N rotor
in a simplex is grouped with the vertex of that simplex with
largest site label to form a unit cell. The GUV symmetry
action becomes onsite with this definition of a unit cell. The
dashed lines in the figure indicate the locking of N rotors to
GIR rotors in the IR.

IV.E.1) General picture — Gauging N leaves an
anomalous GIR symmetry enriched topological (SET) or-
der. Due to this anomaly there must be no way to con-
fine this SET order without either closing the gap to the
N gauge charges (i.e. driving a phase transition out of
the igSPT phase), or breaking the GIR symmetry. In
particular, it must not be possible to condense N -flux
excitations to result in a trivial gapped, confined, and
GIR symmetric theory. In general there can be three
different types of obstacles to condensing the N flux ex-
citations. i) The N -flux may carry gapless modes, for
example with gaplessness protected by a GIR anomaly.
In this case, their condensation would result in a gapless
state. ii) The N flux may carry a fractional GIR charge
which cannot be screened by any local excitations. Here,
condensing the N flux would necessarily break the GIR

symmetry. iii) In 2d and 3d the N flux could also have
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non-trivial self-statistics, such that it could not be di-
rectly condensed.

In our construction, the N flux is always a boson, but
may have non-trivial GIR symmetry properties, so only
possibilities i) and ii) are realized in our models. We note
that N -fluxes are co-dimension two [(D−2)-dimensional]
objects: instantons in 1d, point-particles in 2d, and line
or loop excitations in 3d. In Appendix D, we show that
the GIR symmetry properties of fluxes are characterized

by [bD] ∈ HD(GIR, N̂) which arises in the decomposi-
tion of the anomaly cocycle ωD+2 = bD ∪ e2. Gap-
less fluxes [case i) above] corresponds to models where
[bD⊗Zn] ∈ HD(GIR, U(1)) is non-trivial for some n ∈ N .
In this case, we will show below that the n-flux carries
the gapless edge states of a GIR-SPT, and [bD ⊗Z n] ∈
HD(GIR, U(1)) characterizes the anomaly of those SPT
edge states. FractionalGIR-charged fluxes [case ii) above]
correspond to situations where [bD ⊗Z n] = [0] is trivial
∀n ∈ N , so that there is no obstruction to having a
gapped N -flux, but where [bD] ∈ HD(GIR,N ) is non-
trivial. For example H2(Z2, U(1)) = 0 (there are no pro-
jective representations of Z2) whereas H2(Z2,Z2) = Z2

(it is possible to define a fractional half-charge for a
Z2-gauge flux). We note that for an igSPT with non-
trival emergent anomaly, the cocycles bD, e2 that con-
stitute the anomaly cocycle ωD+2 must be both non-
trival. For instance, if bD is trivial, i.e. bD = dcD−1,
then d(cD−1 ∪ e2) = dcD−1 ∪ e2 + (−1)D−1cD−1 ∪ de2 =
bD ∪ e2 = ωD+2, making ωD+2 trivial. Therefore given
an igSPT with nontrivial emergent anomaly, it is guar-
anteed that the fluxes and charges will have nontrivial
GIR symmetry properties.

The non-trivial properties of N -gauge fluxes are di-
rectly related to the local action of symmetry on the edge
of the igSPT. Namely, consider an interface between a
trivial N gauge theory, “the vaccum” (with no emergent
anomalies) and the N -gauged igSPT (with emergent GIR

anomaly). Then the N flux transforms trivially in the
vacuum. If we drag the N flux into the system, it must
change its GIR symmetry action to [bD] ̸= [0]. In order
that the overall system obey an ordinary linear represen-
tation of GIR, there must be a compensating codimension
two excitation that transforms as −[bD]. Since the flux’s
symmetry property changes immediately upon passing
through the vacuum–igSPT interface, this compensating
excitation must reside on the igSPT edge. Hence, the
igSPT faces the same obstacle to forming a trivial, GIR-
symmetric, confined state as the bulk vortex. Pulling this
behavior back to the ungauged theory (e.g. by fixing to
a flat N -gauge configuration), this implies an obstacle to
forming a trivial GUV-symmetric edge of the igSPT – es-
tablishing a bulk-boundary-correspondence between the
emergent anomaly and the edge states.

IV.E.2) Special Cases: Edge states from SPT pump-
ing symmetry — Having elucidated a general bulk-
boundary correspondence from theN -gauging arguments
presented above, we now restrict to the special case where

[bD ⊗Z n] is a non-trivial element of HD(GIR, U(1)) for
some n ∈ N . In these cases, it is possible to under-
stand the igSPT edge states from a physically intuitive
picture of an emergent lower-dimensional SPT-pumping
symmetry. Specifically, consider the extending symmetry
operation(s):

Uos
(n,0) =

∏
i

n̂i ⊗Z n

≈
IR

∏
i

bsD(g−1
i1

gi2 , g
−1
i2

gi3 , · · · , g−1
iD

giD+1
)⊗Z n. (30)

Since bD(g1, . . . gD) ∈ N̂ , for fixed n ∈ N ,
[bD(◦, . . . , ◦)[n]] ∈ HD(GIR, U(1)) can be identified with
a (D − 1)d GIR-SPT. This suggests a close relation be-
twteen the decomposition ω = b ∪ e and the SPT pump-
ing action noted in the the 1d example. Indeed, in Ap-
pendix C, we show that Eq. 30 is precisely a unitary that
converts a trivial product state of the edge (with symme-
try action U trivial) into an edge GIR-SPT (with symmetry
action given in Eq. C4). More generally starting from an
SPT with invariant [ν] ∈ HD(GIR, U(1)), the pumping
operation Uos

n converts this into a state with SPT invari-
ant [ν + bD ⊗Z [n]].

Since these pumping operations are symmetries of any
GUV-symmetric Hamiltonian, any symmetry-respecting
edge must be invariant under toggling its GIR-SPT
invariant. This SPT-pumping symmetry forbids the
igSPT edge from being trivially gapped without break-
ing symmetry. Heuristically, the SPT pumping sym-
metry forces the edge of the igSPT to sit at a self-
plural6 (multi)critical point between the different pos-
sible (D − 1)d GIR-SPT phases. When this self-plural
critical point is a continuous phase transition, this results
in symmetry-protected gapless edges. If this represents a
discontinuous, first order, transition, then this results in
an edge that spontaneously breaks the N -symmetry. A
third possibility that arises only in D ≥ 3 is that this self-
dual point could be satisfied by a gapped-symmetry SET
order (we construct an example in Sec. VI). Formally,
the SPT-pumping symmetry forces the edge to have an
anomaly that has an LSM-type obstruction to forming a
trivial, gapped, symmetric state. Specifically, the igSPT
edge with symmetry GUV is the same as the anomalous
edge of a gapped Dd SPT with a different symmetry
GIR × N in which N symmetry-breaking domain walls
are decorated [37] by (D−1)d GIR SPTs with cocycle bD.
We remark that a related construction was used in [38]
to establish anomaly constraints on self-dual transitions
between SPT and trivial phases.

We emphasize the fact that the GUV-igSPT edge states
have the same anomaly as a GIR ×N gapped SPT does
not imply that there is a gapped GUV-SPT with the same

6 generalizing the notion of self-dual, self-trial, etc... to arbitrary
number



15

edge states since GUV ̸= GIR × N for any non-trivial
extension. As we prove in Appendix. E, and illustrate
through specific examples below, the non-trivial exten-
sion required to lift the anomaly always forms an insur-
mountable obstacle to creating a gapped SPT with the
igSPT edge properties – i.e. the igSPT models with emer-
gent group-cohomology anomalies are indeed intrinsically
gapless.

We also remark that the SPT pumping mechanism for
igSPT edge states can be directly related to the anomaly-
cancellation argument used by TVV [17] to deduce the
existence of edge states. In Appendix F, we explain
how the edge-SPT-pumping picture reproduces the edge-
anomaly-cancellation picture while revealing additional
structure about the edge-anomaly.

F. Stability and bulk phase diagram

So far, we have not fully specified the bulk igSPT
Hamiltonian, which is necessary to describe a particu-
lar igSPT state, or explore the bulk and boundary phase
diagram of the system with the emergent anomaly. To
remedy this we should introduce a local GUV symmet-
ric Hamiltonian, H = HIR + H∆ such that: i) HIR is
GUV symmetric, and ii) HIR is sufficiently weaker than
H∆ that it does not close the gap that imprints the IR
anomaly. As argued in the 1d igSPT discussion above,
the latter assumption implies that the anomalous IR
symmetry action is adiabatically connected, by a GUV-
symmetric finite-depth local unitary (FDLU) circuit, to
the ideal zero-correlation length one in Eq. 19, and sim-
ilarly for the lower-dimensional SPT pumping action of
N -symmetries. Hence, under these conditions, the edge
states will be stable, and are at most spread out by vir-
tual quantum dressing within the Lieb-Robinson length-
scale of this FDLU. Therefore, as is common in gapped
topological systems, for generic igSPTs, the edge states
will not be confined strictly to the edge of the system,
but will have an exponentially decaying envelope ∼ e−x/ξ

with distance x from the edge, where ξ is the (finite) cor-
relation length induced by the gap toN -rotors. Through-
out most of the remainder of the paper, we will not at-
tempt to solve the (generally hard) problem of deciding
what happens for a particular HIR, but rather will de-
duce sharp, topological anomaly based constraints on the
possible outcomes.

Examples – Table I compiles a summary of igSPTs
in various dimensions and with various symmetry groups
obtained from this general framework. In the remain-
der of the main text we focus on a single representa-
tive example in 2d and 3d respectively. In higher dimen-
sions, it is possible to have stable QSET phases consis-
tent with the emergent GIR anomalies. Straightforward
generalizations of the gauging-by-fractionalization pro-
cedure outlined for 1d above yield general formulas for
solvable lattice models of these QSETs. Rather than dis-
playing these results for general unspecified symmetry

groups and dimensions, which follows closely the results
of [21] and results in somewhat unwieldy notation we in-
stead apply this framework to specific examples 2d and
3d in the following sections.

V. A 2d Time-Reversal Symmetric igSPT

We now apply this general framework to construct a
2d time-reversal symmetry igSPT, which has IR symme-
try GIR = ZT

2 where the T superscript indicates that
the symmetry operation is represented as an antiunitary
operator. Following the group-cohomology cook book,
one can construct an anomalous action of ZT

2 on a lattice
model with spin-1/2 DOF σz

a = (−1)ga on site a of a 2d
triangular lattice, Σ2, with a simplicial structure. There
is a single anomalous 2d action of time-reversal symme-
try, H4(ZT

2 , UT (1)) = Z2 which can be implemented as:

T A =
∏
i

(−1)gi1i2gi2i3gi3
∏
a

(−1)ĝaK (31)

where we have defined the shorthand gi1i2 = gi1 − gi2 , K
denotes global complex conjugation in the ga eigenbasis.

We can read from this anomalous action N = N̂ = Z2,
b1(g) = g and e2(g1, g2) = g1g2. To onsite this symmetry,

we introduce additional N̂ = Z2 rotors, n̂i ∈ {0, 1} on
each triangle, with onsite symmetry action:

T os =
∏
i

(−1)n̂igi3
∏
a

(−1)ĝaK. (32)

where ĝ, n denote the conjugate operators to g, n̂ respec-
tively, and K is now global complex conjugation in the
g, n-eigenbasis. To imprint the anomaly in the IR, we
then energetically lock n̂i ≈

IR
gi1i2gi2i3 on each triangle i

via the Hamiltonian:

H∆ = −∆
∑
i

δn̂i,gi1i2
gi2i3

. (33)

In the ground-space of H∆, we then have an emergent
time-reversal anomaly: T os ≈

IR
T A.

Similar to 1d, we see that the extension which lifts the
anomaly is N = Z2, and GUV = ZT

4 = {1, T , T 2, T 3}
where T 2n+1 are antiunitary, T 2n are unitary, and T 4 =
1, the extending groupN is the normal subgroup {1, T 2}.
This clearly yields an intrinsically gapless SPT, as there
are no gapped bosonic SPT phases with ZT

4 symmetry in
2d. Noting that, microscopically, T 2 = (−1)

∑
i n̂i , we see

that physically, we have to extending the Hilbert space
to include Kramers doublet bosons 7.

7 We will later argue that extending by Kramers doublet fermions
(such that T 2 = (−1)NF where NF is the fermion number)
would not lift this anomaly, but rather would instead lift a more
complicated beyond-cohomology ZT

2 anomaly.
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Symmetry group extension
N → GUV → GIR

Anomaly
(sub)group
HD+2(G,U(1))

Representative
Cocycle

ωD+2(g, h, k, . . . )
SPT-pumping/Symmetry

fractionalization

1d igSPTs

ZN → ZN2 → ZN ZN e
2πi
N

g·vN (h,k) UN pumps a ZN rep.

Z → R → U(1) Z eig·v2π(h,k) U2π pumps a U(1) rep.

ZN12 → ZN1 × ZN2N12 → ZN1 × ZN2 ZN12 e
2πi
N12

g1·vN2
(h2,k2)

U(0,N2) pumps a ZN1 rep.

ZN123 →
ZN2 ⋉ (ZN1 × ZN3 × ZN123) →

ZN1 × ZN2 × ZN3 ZN123 e
2πi

N123
g1h2k3 [U(0,0,N2),U(0,0,N3)]g pumps a ZN1

rep.

Z → R ⋊ ZT
2 → U(1)⋊ ZT

2 Z2 eig
1h2k2

T 2 pumps a U(1) rep.

2d igSPTs

(Z2)boson → ZT
4 → ZT

2 Z2 (−1)ghkl T 2 pumps a Haldane chain.

ZN12 → ZN1 × ZN2N12 → ZN1 × ZN2 Z2
N12

e
2πi
N12

g1h2vN2
(k2,l2)

U(0,N2) pumps a 1d ZN1 ×ZN2 -SPT

ZN12 → ZN1 ⋉ ZN2N12 → ZN1 × ZN2 Z2
N12

e
2πi
N12

g1h1k1l2
edge ZN1 domain walls have

fractional ZN1 -charges

Z2 → R
4πZ × ZT

2 → R
2πZ × ZT

2 Z2
2

{
(−1)v2π(g1,h1)v2π(k1,l1)

(−1)g
2h2v2π(k1,l1)

U2π pumps a 1d U(1)× ZT
2 -SPT

3d igSPTs

ZN → ZN2 → ZN ZN e
2πi
N

g·vN (h,k)·vN (l,m) UN pumps a 2d ZN -SPT

TABLE I. Examles of igSPTs from group-cohomology – Topological data for igSPTs in 1d, 2d, and 3d with Abelian
symmetries and/or time-reversal. An anomalous IR GIR symmetry emerges from a UV symmetry GUV symmetry which is a
central extension of GIR by N , where the N DOF are gapped out. The data is listed only for “root” phases (from which other
phases can be trivially obtained by stacking). For product groups we only list mixed anomalies that do not follow from previous
table entries. E.g. for the third row (1d GIR = ZN1×ZN2) we do not repeat the pure ZN1 or ZN2 anomalies described in the first
row). For product groups G1 ×G2 ⋉G3 . . . we denote elements by (g1, g2, g3, . . . ). The explicit cocyles ωD+2 ∈ ZD+2(G,U(1))
represent the anomalies. For on-site symmetries, we can read off the the cocycle from the higher-d SPT response theory by
replacing Ai → gi and dA → v(g, h). We list the SPT pumping or the symmetry fractionalization that protect the non-trivial
edge for each igSPT. For unitaries U, V , [U, V ]g = UV U†V † denotes the group commutator.
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For completeness, we note a unitary V that maps the
on-site symmetry to the anomalous one, and equivalently
mapsH∆ to a simple paramagnet for the extending spins,
n, V †H∆V = −∆

∑
i δn̂i,0:

V =
∏
i

(−1)gi1i2
gi2i3

ni . (34)

This mapping makes it manifest that H∆ (augmented
with −∆

∑
i δn̂i,0 terms for incomplete boundary sim-

plices) fully gaps out the extending DOF, even in the
presence of a boundary. As in 1d, this means that the
N -rotors are fully gapped in both the bulk and the edge,
and there are no local N -charged operators (i.e. Kramers
doublet boson operators) that create low energy excita-
tions.

A. Edge states

As in 1d, we can expose the structure of the edge
states by considering a composition of symmetry oper-
ations that produces an N -element microscopically, and
would act trivially on a system with non-anomalous IR
ZT
2 -symmetry. Here there is a single pumping operator

given by T 2 which gives a unitary pumping operation:

T 2 ≈
IR

∏
i∈Σ2

(−1)gi1i2
gi2i3 =

∏
i∈∂Σ2

(−1)gi1gi1i2 . (35)

where ∂Σ2 is the boundary (edge) of Σ2.
Based on the 1d examples, we now expect that this

pumping operation, T 2 should toggle the 1d ZT
2 -SPT in-

variant of ∂Σ2. In 1d, there is a single nontrivial ZT
2 -SPT:

the Haldane/AKLT phase [28, 29] which is characterized
by Kramers doublet edge states. This can be explic-
itly confirmed by verifying that (−1)gijgjk = ω2(gij , gjk)
is a non-trivial 2 cocycle in H2(Z2, UT (1)). Alterna-
tively, note that restricting the boundary string opera-
tor to an open 1d chain x ∈ {1, 2, . . . L} gives: T 2

[0,L] ≈
IR∏L

i=2(−1)gi(gi−gi−1). Conjugating an ordinary on-site

TR symmetry on this chain: T (0) =
∏L

i=1(−1)ĝiK, by
T 2 gives:(

T 2
[1,L]

)†
T (0)T 2

[1,L] = (−1)gL−g1
∏
i

(−1)ĝiK (36)

and the local action of this twisted time-reversal on site
i = 1 is: (−1)g1(−1)ĝ1K, which squares to T 2

edge = (−1),
which is the signature of anomalous edge action of a Hal-
dane chain. From these considerations, we confirm that
acting on the 2d igSPT with T 2 pumps a Haldane/AKLT
chain onto it s 1d edge.
The symmetry of the system under the SPT-pumping

action of T 2 forces the edge to reside at a self-dual point
between the trivial and Haldane phases. As explained
in [38], this self-duality enforces an anomaly constraint
that forbids the edge from being trivially gapped and

symmetric. Specifically, if we write down a 1d family of
edge Hamiltonians:

Hedge(λ) = −1

2

∑
i∈∂Σ2

[
(1− λ)σz

i−1σ
x
i σ

z
i+1 + (1 + λ)σx

i

]
(37)

with −1 ≤ λ ≤ 1. which realizes a trivial paramagnet for
λ > 0, the Haldane/AKLT phase for λ < 0, and a gapless
CFT with central charge c = 1 at the self-dual point
λ = 0. The pumping symmetry maps λ → −λ, and forces
the edge to sit at the gapless point if this symmetry is
intact. We note that another possibility (which does not
arise for this particular edge Hamiltonian) is that there
could be a first order phase transition between the trivial
and SPT states. This would correspond to spontaneously
breaking the N -symmetry of the system, since it would
result in a degenerate pair of ground-states for the edge
that are interchanged by N .
While Hedge in Eq. 37 with λ = 1 operates in the IR

subspace, and is symmetric under T 2
IR, it is not invariant

under TIR due to the non-onsite phases in this anoma-
lous time-reversal symmetry operator which depend on
the bulk spin configuration as well as the edge. Hence, in
the true igSPT the Luttinger liquid described by Eq. 37
can potentially become intertwined with the bulk criti-
cal modes in a manner that is hard to calculate in gen-
eral. Below, we will discuss two instances where this
bulk-edge coupling can be studied in a controlled fash-
ion, and the gapless self-dual Luttinger liquid described
by Eq. 37 with λ = 1/2 dynamically decouples from bulk
modes.

B. On the bulk phase diagram

Our construction of the time-reversal symmetric 2d
igSPT so far simply engineers a gapped sector that pro-
tects an emergent IR anomaly. However, H∆ still has an
extensively degenerate ground-space. To create a bona
fide model, we should then add generic local time-reversal
symmetry interactions, HIR, that do not close the ∆-gap.
As in 1d, any terms in HIR that do not commute with
H∆ can be adiabatically eliminated, so we may restrict
our attention to interactions that commute term-by term
the terms of H∆. We may follow either of the two proce-
dures that were outlined for the 1d example for generat-
ing ZCL HIR models. In this case, the resulting models
involve complex several body interactions: generically, in
2d, single site terms map to seven-body interactions un-
der V involving products of operators over a site and its
nearest neighbors on the surrounding hexagon of the tri-
angular lattice). Moreover, there are few non-numerical
tools for studying 2d interacting lattice models. There-
fore, instead of confronting the difficult task of mapping
out the phase diagram for a particular family of HIR, we
instead use the emergent anomaly data to deduce general
anomaly constraints on the possible bulk and boundary
phases that might arise.
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V.B.1) Symmetry breaking bulk — A trivial option for
the bulk is that it could be gapped and spontaneous
symmetry breaking. An example Hamiltonian for this
would be a nearest neighbor Ising ferromagnetic interac-
tion: HIR = −J

∑
⟨ij⟩(−1)ĝi+ĝj where ⟨ij⟩ denote near-

est neighboring sites.

V.B.2) Gapless bulk — One possible fate of the igSPT
bulk that is consistent with the emergent anomaly is a
symmetric gapless state. This problem has been previ-
ously studied in the context of 3d bosonic ZT

2 -SPT sur-
face physics [39], and one candidate gapless state is an
SO(5)1 Wess-Zumino-Witten model [40], which has vari-
ous lower-symmetry and dual fermionic incarnations [41].
A closely related field theory also appears in descriptions
of deconfined quantum critical points [42] between anti-
ferromagnet and valence bond solids, or between quan-
tum spin-Hall states and superconductors in fermionic
systems [20] (though both of those involve different emer-
gent anomalous symmetries at the critical point). The
fate of the interaction between gapless Luttinger liquid
edges and bulk DQCP modes was recently studied in a
large-N limit [18], where the edge and bulk naturally
decouple. Understanding the ultimate fate of these 2d
DQCP-type field theories and their interplay with edge
modes remains an outstanding challenge. For example,
it remains an open question whether these DQCPs are
continuous or weakly first order (which in the igSPT con-
text with an emergent anomaly would signal spontaneous
symmetry breaking).

C. Quotient-symmetry-enriched topological
(QSET) order

For 1d igSPTs the only ground-states consistent with
the emergent anomaly are either gapless or symmetry
breaking. In 2d, there is an additional possibility that the
bulk of the igSPT is gapped and symmetric, but with an
anomalous symmetry enriched topological order (SET).
For the 2d ZT

2 in-cohomology that emerges in this model,
a known anomalous SET is a Z2 (toric-code) topological
order with anyons {1, e,m, f = e×m} such that e and m
are both Kramers doublets under time-reversal, denoted
as eTmT [39, 43].

In this section, we construct an explicit lattice model in
which eTmT SET order arises in the bulk of the ZT

4 igSPT
model using the “gauging by fractionalization” procedure
introduced for the 1d igSPT. Analyzing the edge of this
model shows that the edge-SPT-pumping symmetry and
associated self-dual edge gapless states survive when the
bulk becomes gapped to form the anomalous SET order.
Here, some care is needed to properly define what one
means by an anomalous SET, since the anomaly is lifted
deep in the UV. To see this, note that extending the sym-
metry to ZT

4 by adding microscopic Kramers bosons, bT
clearly lifts the eTmT anomaly in the UV, as the SET can
be trivially confined to a symmetric paramagnet by con-

Geometric picture of factorization property => DDW picture

FIG. 5. Decorated domain wall picture As described
in the text, the triangulated simplicial complex (left) can be
redrawn as an inter-penetrating pair of dual square lattices
(right), and the anomalous symmetry can be interpreted as
decorating domain walls on the blue lattice with 1d igSPT
phases on the dashed red sublattice.

densing the composite bT ×mT (or bT × eT )
8. However,

if there is a hierarchy of scales, such that the gap, ∆, to
bT excitations greatly exceeds the gap δ to the anyonic
excitations, we can meaningfully talk about an emergent
anomaly even with a gapped bulk. Borrowing a term
from an analogous situation for SPTs [25], we will call
such a state a quotient-symmetry enriched topolgoical
order (QSET). The sharp distinction between a QSET
and a GUV-SETs is that the QSET will have symmetry-
protected edge states that cannot be removed without
undergoing an edge phase transition in which the gap,
∆, to N -DOF closes.
Following the 1d approach described above, we can

construct a lattice model of this QSET by fractionaliz-
ing the on-site gi ∈ Z2 DOF into (νa ∈ {0, 1}, ga) ∈ Z4

DOF, and couple the fractional n-DOF to an emergent
Z2 lattice gauge field, Aa,b so that the physical (gauge
invariant) degrees of freedom are still GIR = Z2 rotors.
The anomalous time-reversal is implemented as

T frac ≈
IR

∏
i

(−1)gi1i2gi2i3gi3
∏
a

(−1)gaν̂a(−1)ĝaK (38)

To interpret this expression it is useful to redraw the
triangular lattice as shown in Fig. 5. Here, for each 2-
simplex (i1i2i3), we color the i1i2 bond blue and the
i2i3 bond dashed red. The blue and red bonds form
a pair of (skewed) square lattices. We can straighten
the plaquettes and shift the red square lattice relative
to the blue one so that the red and blue square lat-
tices are dual to each other. Here, we must remember
that the purple-circled sites should be regarded as the
same site. Then, we can interpret the non-onsite part of
the symmetry as follows: along TR DWs (gab = 1) on

8 We note that, extending the symmetry by adding local Kramers
doublet fermions, cT , would not lift the eTmT anomaly, but
rather would lift a different beyond-cohomology anomaly which
supports a representative efTmfT SET in which the e and m
particles are both Kramers doublets under time-reversal and also
have fermionic statistics.
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the blue sub-lattice, the non-onsite aspect of the sym-
metry action is essentially the same as that of the 1d
igSPT model with GIR = Z2 described above. We can
make this decorated domain wall (DDW) picture pre-
cise by temporarily extending the IR symmetry group to
ZT
2 × Z2 = {1, T } × {1, g}, with ZT

2 rotors living on the
vertices of the blue lattice and Z2 rotors living on the ver-
tices of the dashed red lattice, and decorating ZT

2 DWs
with 1d GIR = Z2 (GUV = Z4) igSPTs. Then, we can
break the enlarged symmetry back down to the diagonal
subgroup generated by (T , g), by locking the Z2 and ZT

2

rotors together in pairs as indicated by the purple ovals.
With this DDW picture, we can readily extend the

other 1d constructions, to obtain gauge-invariant a uni-
tary V that transforms this fractionalized symmetry into
an almost on-site one (up to edge terms):

V =
∏
i

(−1)gi1i2
gi2 (νi2i3

−ai2i3
). (39)

which performs the same transformation as the 1d Z4

igSPT along blue DWs. We can write the transformed
symmetry schematically as:

T ′ = V†T fracV
=
∏
DW

(−1)
∫
DW DAν

∏
a

(−1)gaν̂a(−1)ĝaK (40)

where DW denotes the blue domain walls, and∫
DW DAν ≡∑(ab)∈GUV

(νb − νa −Aa,b) denotes the lat-

tice version of a Wilson line. These Wilson lines termi-
nate only on the boundary, and so there are no ν opera-
tors in the bulk, only gauge connections Aa,b.
Using V we can write down a Hamiltonian that fully

gaps the bulk:

V†HV = −δ
∑
a∈Σo

2

(−1)ν̂a+ĝa − δ
∏
i

(−1)Ai1i2
+Ai2i3

+Ai3i1

(41)

where the first term makes a trivially-gapped paramag-
net of the bulk matter (Σo

2 denotes the interior of the
space) and the second term produces a gap for gauge
flux excitations.

This produces a lattice model of a Z2 (toric-code)
QSET order. Denote the topological super-selection sec-
tors of the Z4-rotor excitations [(ν̂a, ĝa) ̸= (0, 0)] as e
and the gauge flux as m. The Z4 rotors transform un-
der GUV = ZT

4 , and hence the e particles are Kramers
doublets.

V.C.1) Deducing the QSET anomalous symmetry
properties from the cohomology data — We can deduce
the symmetry properties of m from the properties of the
pumping symmetry operations through the following ar-
gument applied to the case where Σ2 is an open disk
(illustrated in Fig. 6). Since m is a π-flux for ν-DOF,
braiding an m flux around a ν excitation is equivalent to
acting locally on that excitation by T 2. Hence, creating

Edge SPT pumping argument for QSET flux properties
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FIG. 6. Symmetry properties of 2d QSETs constructed
through the symmetry fractionalization approach can be de-
duced by the SPT-pumping symmetry action. Consider a
2d disk geometry where the bulk is a gapped time-reversal
symmetric QSET. (Left) Creating a pair of gauge fluxes (m
particles) and dragging them out of the sample is equiva-
lent to acting locally on the shaded red region by T 2, which
by the SPT-pumping property of the bulk anomaly adds a
Haldane/AKLT chain with spin-1/2 (Kramer’s doublet) edge
states to the boundary. (Right) Considering a similar process
where only one m particle is dragged out of the system, and
noting that projective time-reversal DOF can only be created
in pairs, we deduce that the m particle in the bulk must carry
a Kramer’s doublet. This argument can be readily general-
ized to various other symmetry groups.

a pair of m particles in the QSET bulk dragging them
around a loop Γ and re-annihilating them is equivalent to
locally acting with T 2 in the interior of Γ, which we have
seen pumps a Haldane chain onto Γ due to the anomalous
symmetry action. Thus, if we create and separate a pair
of m’s, each m must behave like the Kramers-doublet
edge of a Haldane chain. This shows that the resulting
QSET bulk is an anomalous eTmT SET.

The symmetry properties of m can also be directly
confirmed by examining the action of T ′ on a gauge flux.
With PBCs, the Wilson loops are all closed, and the mod-
ified symmetry, T ′ differs from the on-site ZT

4 symmetry
by a phase of (−1) whenever the blue DWs enclose a flux
– and we can choose a gauge where we consider the inte-
rior of the blue DW to be regions with gi = 1. Suppose
we have a gauge flux (m particle) in an initially gi = 0
domain. Then acting with T flips gi : 0 → 1. Acting
again with T then yields a (−1) phase since the flux sits
in an 1 domain. This shows that the local action of T 2

on m-particles gives a (−1) phase.

V.C.2) Edge states of the QSET — The SPT-
pumping symmetry prevents the edge of the QSET from
being trivially gapped. We can deduce the structure
of the QSET edge states from the fractionalized lattice
model construction. This follows analogously to the 1d
case discussed above: wherever a blue DW intersects the
boundary one can lock gi to ν̂i, and applying the trivial
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paramagnetic term on other sites without blue DWs:

VHedgeV†

= −δ
∑

(i1i2i3)∩∂Σ2

[
(−1)gi1i2

(gi3+ν̂i3
) + (−1)(1−gi1i2

)(1−ν̂i1
)(1−ĝi1 )

]
.

(42)

The first term in this equation is the same as the Hedge

for the 1d igSPT from the prior section wherever a blue
DW intersects the edge (gab = 1), and the second term
simply implements a trivial paramagnet away from the
DWs (gab = 0). Eliminating the ν variables to satisfy
this edge Hamiltonian, we obtain a 1d closed chain of free
GIR-rotors with the anomalous SPT-pumping symmetry
described above in Eq. 31. Consequently, a valid sym-
metric edge Hamiltonian is Eq. 37 tuned to the self-dual
point (λ = 0) where it realizes a c = 1 CFT. In contrast
to the complicated case of a gapless bulk and edge, this
edge CFT is obviously stable to symmetric coupling to
the gapped QSET bulk.

V.C.3) UV interpretation of the QSET — The QSET
phase is sharply separated from an ordinary GUV-SET by
an edge phase transition where the edge states are lost
by closing the N gap. One can ask what the resulting
GUV-SET is in this case. For the time-reversal symmetric
model we have been considering, the GUV-SET is trivial,
since we can freely relabel the e and m excitations by
binding them to microscopic Kramers-doublet bosons to
make them Kramers singlets. In the GUV = Z2 × Z4

example studied in the appendix, the resulting GUV-SET
is actually a non-trivial one where them particle carries a
projective representation of GUV. Whether the resulting
GUV-SET is trivial or nontrivial seems to depend on how
far the symmetry is extended to lift the GIR anomaly.
Namely, we could lift the anomalous GIR = Z2

2 anomaly
in this example to GUV = D4, (the dihedral group with
four elements), which is not the minimal lift, but would
result in the QSET order being trivial if the N -gap is
closed at its edge.

VI. A 3d Ising igSPT

By now the pattern is clear, and we can readily con-
struct a 3d igSPT model with GIR = Z2,N = Z2, GUV =
Z4 that exhibits the surface anomaly of a notional 4d
GIR-SPT bulk, but when realized as an igSPT, the
anomaly emerges from a gapped N -sector. We note that,
as for the 1d example, the extending degrees of freedom
could either be bosons (e.g. spins) or fermions. The
latter is perhaps more relevant for physical realizations,
as the GIR = Z2 symmetry could arise as an Ising spin
rotation symmetry such as π rotations around a fixed
spin-axis, say x: Rx(π) for a (possibly doped) Mott insu-
lator of spin-1/2 electrons, which would transform under
a GUV = ZF

4 extension with Rx(π)
2 = (−1)NF .

An explicit 5 cocycle for this state is:

ω5(g, h, k, l,m) = (−1)ghklm (43)

The igSPT lattice model consists of n̂ ∈ N̂/g ∈ G-
rotors sitting on sites/simplicies of a 3d simplicial com-
plex (which, can actually be simplified to a 3d cubic
lattice following the DDW picture described previously)
with onsite GUV = Z4 symmetry generated by:

Uos
1 =

∏
i

(−1)gi4 n̂i

∏
a

(−1)ĝa , (44)

anomaly imprinting Hamiltonian

H∆ = −∆
∑
i

δn̂i,gi1i2
gi2i3

gi3i4
, (45)

which gives rise to an emergent anomalous GIR = Z2

symmetry in the IR generated by:

UA
1 =

∏
i

(−1)gi1i2
gi2i3

gi3i4
gi4
∏
a

(−1)ĝa , (46)

which is related to the original on-site symmetry by the
corresponding anomaly-lift unitary:

V =
∏
i

(−1)gi1i2gi2i3gi3i4ni . (47)

We note that just as in 2d, we can view this model as
a DDW construction with a larger Z3

2 = {1, a}× {1, b}×
{1, c} symmetry group, which we then break down its
diagonal subgroup generated by abc. As illustrated above
in 2d, in this extended DDW picture, we can again pull
apart the simplicial complex into three inter-penetrating
sub-lattices, one each for a,b,c links, with the b sublattice
residing on the dual lattice of a and c dual to b. This
phase can then be viewed as a DDW phase in which we
decorate the 1d intersection of a and b DWs with 1d
GUV = Z4 igSPTs. The original GUV = Z4 igSPT with
just a single symmetry factor can then be recovered by
locking the a, b, and c rotors together at each site of the
original lattice.

A. Edge phase(s)

The extended group structure, N = Z2 follows from
noting that

(UA
1 )2 =

∏
i∈∂Σ3

(−1)gi1i2
gi2i3

gi3

pumps a 2d Z2 SPT onto the surface, which has a
H3(Z2, U(1)) = Z2 classification. This tunes the sur-
face to a self-dual point between a Z2 SPT (Levin Gu
phase [30]) and a trivial Z2 symmetry paramagnet.
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3d QSET for G=Z2
FIG. 7. Fully gapped 3d QSET A possible fate of the 3d
GUV = Z4 igSPT model is that the emergent anomaly is sat-
isfied by a fully-gapped anomalous Z2 symmetry enriched 3d
Toric code with point-like e excitations that carry Z4 charge
and string-like m excitations that carry 1d Z4 igSPTs. The
intersection of the m line and the surface hosts the edge zero
mode of the 1d igSPT.

VI.A.1) Spontaneous symmetry breaking edge — A
particular instance of (a gauged version) of a 2d self-
dual Hamiltonian satisfying this pumping symmetry was
studied numerically in [44] which found that it realized a
first order phase transition, which in the present context
corresponds to spontaneously breaking of the GUV = Z4

symmetry. It remains an open question how stable a
putative gapless symmetric edge termination would be,
which would correspond to asking whether there was a
continuous (multi)critical point between the Levin-Gu
phase and trivial PM.

VI.A.2) QSET edge and bulk — A new possibility
that arises in 3d is that the 2d edge of an igSPT can
also exhibit anomalous QSET order that can only arise
at the edge of a system with an emergent 3d anomalous
symmetry. We focus on the simplest theoretical instance
where both the 3d bulk and 2d edge have QSET order.
An explicit lattice model can be readily constructed as
in 1d and 2d, but we instead simply deduce a candidate
QSET from the general principles identified in the previ-
ous sections.

The QSET order can have the structure of an emergent
N gauge theory, in this case a 3d toric code topological
order with e particles, and vortex-line like m string exci-
tations. In our fractionalization construction, the e par-
ticle carries a half-charge of GIR, i.e. transforms under
GUV = Z4. In 2d, the string operator whose ends cre-
ate m particles acted locally like the lower-d SPT pump-
ing operation. Here, the 3d analog of this is that the 2d
membrane operator whose edges createm line excitations
carries a 2d Z2 gapped SPT. The edge of this membrane,
which is the m line therefore carries the (gapless or SSB)
edge of this 2d SPT. In an open geometry, for example
the 3-ball pictured in Fig. 7, the m line excitations can
also intersect the edge of the system. From our study of
1d igSPTs we know that terminating the anomalous 1d
edge of a 2d SPT requires the N extending DOF in the
UV and results in a global 2-fold ground-space degener-

acy of the m line when it intersects the system’s edge. A
succinct summary of these properties is that the anoma-
lous feature of the 3d QSET is that the m line excitations
carry 1d Z4 igSPTs.

VII. Discussion

Our group cohomology based constructions and frame-
work, build on previous (predominately 1d) examples [17,
24], to give a clear picture of how emergent anomalous
symmetries lead to igSPT and QSET states, with SPT
edge states protected by SPT-pumping symmetries. A
natural question for future exploration is whether or not
igSPTs can be constructed with other types of anomalies,
including i) fermionic anomalies, i.e. anomalies involving
fermion parity which is not quite a symmetry because it
cannot be broken by any local operator and also cannot
be sensibly extended [17] to a larger group, and ii) beyond
group-cohomology anomalies that involve gravitational
or mixed-symmetry/gravitational anomalies. To facil-
itate potential experimental realizations, it would also
be interesting to generate examples where the extended
symmetry group was naturally realized by spin-1/2 elec-
trons, which can imprint the anomalous IR symmetry on
the low-energy spin-model of a Mott- or Cooper-pair in-
sulator. As we argue next, this naturally leads one to
consider beyond cohomology anomalies.

A. Selected boson igSPT candidates with beyond
group-cohomology anomalies

Before closing we briefly comment on some candidate
2d igSPTs with emergent anomalies beyond group co-
homology, highlighting ones that could arise in elec-
tronic systems (i.e. emerging from unit charged, spin-
1/2, fermions). We focus on systems with physically rel-
evant symmetries: charge conservation and time-reversal
GIR = U(1)⋊ ZT

2 , that are robust to disorder. In a sys-
tem of electrons, bosonic excitations are composites of an
even number of electrons, and will have charge that is an
even multiple of the electron charge, for example spins
have charge 0 and Cooper pairs charge 2.
In 2d, anomalous GIR = U(1) ⋊ ZT

2 symmetry ac-
tions are governed by three different Z2-topological in-
variants. These are conveniently expressed in terms of
the properties of an anomalous toric-code-like SETs with
anyons {1, e,m, f = e × m}. We can distinguish dif-
ferent SET phases by the symmetry properties of these
anyons. Following standard notation [39, 43], we de-
note a half-integer charge by a C subscript (note that
a half-integer boson charge corresponds to odd number
of units of electron charge), a time-reversal Kramers-
doublet by a T subscript, and fermionic self-statistics
by an F subscript. The 7 non-trivial anomalous GIR-
SETs with can be generated by taking combinations of
the three root phases eCmC , eTmT , and eFmF , where
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the symmetry properties of the fermion follow from
f = e × m. Anomalies involving only C or T are cap-
tured by the group-cohomology classification and are in-
cluded in our results. Anomalies involving eFmF are
beyond the group-cohomology as they involve a mixed
time-reversal/graviational anomaly. Namely, any pure
2d bosonic realization of eFmF must have chiral central
charge ±4, which is half of the minimal “integer” chi-
ral phase of bosons (the E8 state [45]), and hence breaks
time-reversal symmetry.

On general grounds, one can lift the eFmF anomaly by
introducing a (charge-neutral) local fermion excitation, c,
in the system. This can be seen in either of two ways.
First, working directly in the topological order, we can
relabel eF and mF by binding them to a local c fermion,
resulting in bosons with trivial quantum numbers that
can be condensed to trivially confine the SET order. Sec-
ond, fermions have invertible chiral phases with any in-
teger Hall conductance, which can be used to cancel the
chiral central charge ±4 of the 2d realization. Hence, we
expect that one can obtain an emergent eFmF starting
from a system of charge-neutral fermions, and driving
these neutral-fermions into a gapped state that imprints
the anomaly on the IR boson DOF.

A potentially more interesting example is the
eCTFmCTF anomaly (i.e. with all three root anomalies).
In this case, the anomalous properties can be lifted by
introducing fermions with unit charge (i.e. half a boson
charge) and that are Kramers doublets (spin-1/2) under
time-reversal – i.e. ordinary electrons. A concrete, albeit
schematic construction of a 2d QSET order an emergent
eCTFmCTF anomaly can be obtained by the slab con-
struction of [17]. Start from a thin slab of a 3d boson
GIR-SPT with this surface anomaly, in which we view the
bosons as emerging from a Mott insulator of electrons.
Then, close the electron gap on the bottom surface to
bind electrons to the mCTF particles, and condense the
resulting bound state which is now a boson with trivial
quantum numbers. This confines the DOF on the bot-
tom surface, but leaves the anomalous eCTFmCTF SET
order on the top surface. An interesting question, that
we leave for future work, is to investigate the edge of this
2d igSPT/QSET, i.e. the side-interface between the top
and bottom surfaces in this slab construction. While we
have cited the slab construction as a proof-of-principle,
the same phase should be realizable in a strictly 2d lat-
tice model of electrons, and it would be interesting to see
whether this could be accomplished with realistic inter-
actions.

B. Relation to half-filled topological flat bands

Another context in which beyond cohomology anoma-
lies emerge in the IR is half-filled topological flat bands
with a non-local particle hole (CT ) symmetry, including
the 1/2 filled Landau level of ordinary electrons [5–7], and
various multi-component generalizations thereof [8, 9].

Here, the role of H∆ is played by the orbital magnetic
field, which breaks the space into Landau levels (LLs).
Half-filling the lowest LL results in an anomalous CT
symmetry that is emergent, in the sense that it is only
operative within the LL and does not extend to the entire
state Hilbert space. This CT symmetry realizes the same
anomaly as the surface of a 3d U(1)×CT symmetric topo-
logical insulator. This was notably used to argue [5] and
numerically demonstrate [46] that CT -symmetric com-
posite Fermi surface has a π Berry phase.

In this context, the particle-hole transformation is un-
usual in that it involves both performing both a CT
transformation and then adding filled LLs. The lat-
ter operation produces a non-standard notion of CT
symmetry at the edge, and for example is compatible
with non-vanishing thermal and/or electrical Hall con-
ductance that is half of the allowed amount for integer
states. The non-locality of this symmetry follows from
the Wannier obstruction to forming a local tensor prod-
uct structure to the lowest LL, which is also a key aspect
of the beyond-group-cohomology anomalies that emerge.

If we make peace with the non-local symmetry, we
might regard these examples as the first known examples
of igSPTs. In fact, this half-filled flat band construction
provides an example of a system with an emergent eFmF

anomaly discussed above. Namely, consider a four-flavor
half-filled Landau levels of fermions with CT symmetry,
which realizes the same anomaly as a four Dirac cone
surface of a 3d topological insulator in class AIII 9. In
particular, DWs between opposite CT -breaking domains
in this surface carry chiral central charge 8 – the hall-
mark of the eFmF anomaly. Then, consider inducing
CT -symmetry interactions that gap out the fermion ex-
citations (for example introduce fermion pairing and dis-
order the resulting superconductor through vortex pro-
liferation without closing the gap to unpaired fermions
as detailed in [47]). The combination of the orbital
field and symmetrically-gapping interactions results in a
low-energy boson-only model with an emergent anoma-
lous anti-unitary ZCT

2 symmetry that exhibits an eFmF

anomaly at low energies. We remark that this exam-
ple was previously discussed as a realization of an eTmT

anomaly in [8]. If we ignore the hierarchy of scales ∆, the
distinction between the eTmT and eFmF anomaly is lost
in a system with microscopic Kramers-doublet fermions.
Interpreted as an igSPT, this distinction becomes impor-
tant so long as we demand that the fermion gap remains
open.

It remains an open question whether one can realize
such beyond-cohomology anomalies with a local symme-
try, (e.g. one that enforces vanishing thermal Hall con-
ductance).

9 This system naturally has another U(1) symmetry (charge con-
servation) which will not play an important role in the following
discussion.
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C. Open directions

While our focus on topological properties protected
by the gapped sector has let us sharply deduce certain
anomaly constraints on igSPTs and elucidate the origin
of their edge states, it does not permit a detailed descrip-
tion of the bulk phase diagram for realistic interactions,
nor does it characterize boundary-critical phenomena
arising from igSPT edge states. Developing controlled
theory and numerical techniques to address these open
issues, and identify potential experimentally testable sig-
natures of igSPT bulk and edge physics, and explore the
importance of disorder and other non-idealities remain
important targets for future work.

It may also be interesting to explore the connections
of gapless SPTs and quantum information. For exam-

ple, given the importance of gapped SPT phases as re-
source states for measurement-based quantum computing
(MBQC), it is tempting to ask whether gapless systems
can have computational power, and whether they offer
advantages or limitations over their gapped counterparts.
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A. Additional 1d igSPT examples

In this section we develop a few other examples of 1d
igSPTs. Data for these as well as additional examples
are listed in Table. I.

1. GIR = ZN

We represent elements of ZN by operators gi =
{0, 1, . . . N − 1}, and conjugate operators ĝi satisfy-
ing [ĝi, gi] = 1. These define the ZN rotor opera-

tors: e
2πi
N g and their dual operators e

2πi
N ĝ satisfying:[

e
2πi
N ĝ, e

2πi
N g
]
g
= e

2πi
N where [a, b]g = aba−1b−1 is the

group commutator. These are the usual representations
for a ZN quantum clock model, that are an N -level gen-
eralization of the Pauli algebra for a qubit.
The anomaly classification is H2(ZN , U(1)) = ZN ,

with an explicit root cocycle: ω3(a, b, c) = e
2πi
N a·vN (b,c)

(this cocycle generates all the other anomalies). The cor-
responding anomalous symmetry action is

UA
g =

∏
(ij)

e
2πi
N gi,jvN (−gj−g,g)

∏
i

e
2πi
N gĝi (A1)

=
∏
(ij)

e
2πi
N gi,jvN (gj ,g)

∏
i

e
2πi
N gĝi (A2)

We can read from the cocycle that N = N̂ = ZN and
b1(a) = a, e2(a, b) = vN (a, b). Therefore we can onsite
this symmetry by extending the group with N = ZN

rotors, ni, and locking n̂j ≈
IR

gi,j on each link (ij) with

onsite symmetry

Uos
(n,g) =

∏
i

e
2πi
N n̂i(n+v(gi,g))e

2πi
N gĝi , (A3)
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which satisfies the GUV = ZN2 symmetry multiplication
rule: Uos

(n,g)U
os
(n′,g′) = Uos

(n+n′+vN (g,g′),g+g′).

In the IR the SPT pumping operations are generated
by

U(1,0) ≈
IR

∏
(ij)

e
2πi
N gi,j = e

2πi
N (gL−g1)

which pumps the root class of 0d GIR = ZN -SPT onto
the edge(endpoints) of the chain.

2. GIR = U(1)

2d SPTs with GIR = U(1) are classified by an even-
integer Hall conductance σxy = 2n with n ∈ Z. Unlike
their fermionic counterparts these bosonic integer quan-
tum Hall (bIQH) [48] states have vanishing chiral central
charge i.e. vanishing thermal Hall conductance, since
each charged chiral edge mode is accompanied by a neu-
tral counter-propagating one. The result is an SPT phase
since absent U(1) symmetry one could backscatter charge
modes into neutral ones gapping the edge.

Realizing an igSPT with the same edge anomaly would
be quite striking, as its bulk would have a quantized con-
ductance just as for the SPT edge. Unfortunately, our
construction has some pathalogical features when applied
to this case. First, one needs to introduce continuous
U(1) rotors eigi with gi ∈ [0, 2π) and gi ≃ gi + 2π. This
is often a price that one must pay to get exactly solvable
models for bIQH-type states. Ordinarily one can hope
that the same topological phase could arise in a finite-
dimensional truncation of these rotors, e.g. to spin-S
spins with maximum Sz = ±S. Here, there is a more
serious obstruction.

Namely it turns out the minimal extending group that
can lift the anomaly is Z. One way to see this is that the
classification of 0d U(1) SPTs that can get pumped onto
the edge have H1(U(1), U(1)) = Rep (U(1)) = Z classifi-
cation. In our construction, this lower-d SPT classifica-
tion dictates the structure of the symmetry extension.

We can also verify by explicit construction. A cocy-
cle for the root phase with σxy = 2 is: ω3(a, b, c) =
eia·v2π(b,c). The anomalous symmetry implementation is
then

UA
g =

∏
(ij)

eigi,jv(gj ,g)
∏
i

eigĝi (A4)

where ĝi is the conjugate “angular momentum” to the
rotor phase gi satisfying [ĝi, gi] = 1, which has Z eigen-

values. We read from the cocycle that N = Z, N̂ = Ẑ =
U(1) and b1(g) = g, e2(g1, g2) = v2π(g1, g2). To onsite

this symmetry we can introduce additional N̂ = U(1)
rotors, n̂i, and lock n̂j ≈

IR
gi,j on each link (i, j), and

defining the on-site symmetry

Uos
(n,g) =

∏
i

ein̂i(n+v2π(gi,g))eigĝi (A5)

One can verify that the resulting extending symmetry is
actually the entire real line R. Namely, U(1) = R/2πZ,
and the content of the on-site symmetry operator is that
each time the symmetry shifts the phase gi past 2π it
increments n̂i by one unit, so that we can identify each
(n ∈ N, g ∈ R/2πZ) ∈ GUV with 2πn + g ∈ R, and the
on-site symmetry is simply UxUy = Ux+y for x, y ∈ R.
While mathematically possible, we regard these models

as unphysical. For example, while it is perfectly possible
to consider 1d array of quantum beads on loops of wire,
faithfully realizing the R symmetry in such a model would
require having no kinetic energy for the N beads, as the
symmetry under cycling the GIR-rotors from g → g+2π
would increase the N -rotor’s angular momentum, which
must commute with the Hamiltonian, therefore the sym-
metry is essentially reduced to U(1) as N -rotors have no
dynamics. In general, non-compact symmetry faithfully
represented on the Hilbert space is regarded as a physical
extra-dimension instead of a local internal symmetry.

3. GIR =
∏3

I=1 ZNI

An explicit cocycle for the mixed anomaly is

ω3(a, b, c) = e
2πi

N123
a1b2c3 corresponding to anomalous

symmetry

UA
g⃗ =

∏
(ij)

e
2πi

N123
g1
i,j(−g2

j−g2)g3 ∏
i

e
2πi

∑3
I=1

ĝIi gIi
NI . (A6)

We can onsite the symmetry by introducing N̂ = ZN123

rotors n̂j ≈
IR

(g1i,j) and define the UV actions to be

Uos
(n;g⃗) =

∏
i

e
2πi

N123
n̂i(n+(−g2

i−g2)g3)
∏
i

e
2πi

∑3
I=1

ĝIi gIi
NI .

(A7)

which obeys a group multiplication rule:

(n, g⃗) ·
(
m, h⃗

)
=
(
n+m+ g2h3, g⃗ + h⃗

)
(A8)

We see the extended group is ZN2 ⋉ (ZN1 ×ZN3 ×ZN123),
where the action of ZN2 on ZN1 × ZN3 × ZN123 is:

g2 ◦ (g1, g3, n) := (g1, g3, g2g3 + n) (A9)

The pumping actions are generated by

Uos
(1,0) ≈

IR

∏
(ij)

e
2πi

N123
g1
i,j = e

2πi
N123

(g1
L−g1

1) (A10)

which pumps a 1d ZN1 SPT onto the edge.

4. GIR = U(1)⋊ ZT
2

1d anomalies of GIR = U(1) ⋊ ZT
2 are classified by

H3(U(1) ⋊ ZT
2 , U(1)) = Z2. As for the U(1) example
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above, 0d SPTs are classified by H1(G,U(1)) = Z = N ,
so one expects that this example requires an unphysical
Z extension of the symmetry to lift the anomaly. This is
confirmed by direct computation from an explicit cocycle:

ω3(g, h, k) = eig
1h2k2

. We can read from this cocycle that

N = Z, N̂ = R, making the model unphysical as for the
U(1) example.

B. Other 2d igSPTs

1. GIR = Z2
2

In 2d, GIR = Z2
2 has H4(Z2

2, U(1)) = Z2 × Z2, which
can be generated by combinations of the following two
representative cocycles:

ω4(g, h, k, l) ∈ {(−1)g
1h2k2l2 , (−1)g

1h1k1l2} (B1)

In both cases, the anomalies can be lifted by N = Z2

extensions. However, the extension group structure and
edge physics is different. For the first cocycle the anomaly
can be lifted by extending to GUV = Z2 ×Z4, producing
an igSPT with edge states protected by a 1d Haldane
chain (Z2

2-SPT) pumping symmetry. In the second case,
the extension is to GUV = Z4 ⋉ Z2, and the edge states
are not protected by any SPT-pumping aciton

B.1.a) igSPT with SPT pumping symmetry — Let us
first consider the anomalous GIR symmetry with repre-

sentative cocycle ω4(g, h, k, l) = (−1)g
1h2k2l2 , which can

be written as ω4 = b2 ∪ e2 with b2(g, h) = (−1)g
1h2

,
which is a non-trivial element of H2(Z2

2, U(1)), corre-
sponding to the cocycle of a Haldane/AKLT spin chain.
According to the general construction above, we expect
the resulting igSPT has edge states protected by a Hal-
dane SPT pumping symmetry, in close relation with the
time-reversal symmetric 2d igSPT example discussed in
the main text. This phase can also be understood via a
decorated domain wall construction.

Denote the IR symmetry group as ZA
2 ×ZB

2 where A,B
label the two different Z2 factors for clarity. This igSPT
phase can be thought of as a DDW state where ZA

2 DWs
are decorated with 1d ZB

4 igSPTs.

The symmetry can be onsited by introducing N̂ = Z2

rotors that are locked to n̂i ≈
IR

s(i1i2i3)g
1
i1i2

g2i2i3 for each

triangle i where we remind that si = ±1 for up and down
triangles respectively, and writing onsite symmetry:

Uos
(n;g⃗) =

∏
i

(−1)n̂i(n+v(g2
i3

,g2))
∏
a

(−1)
∑

I=1,2 ĝI
ag

I

(B2)

which obeys the group multiplication of GUV = Z2 ×Z4.
The 1d edge of this 2d igSPT phase carry edge

states protected by an SPT pumping symmetry U2
(0,1) ≈

IR∏
(ij)∈∂Σ2

(−1)g
1
i,jg

2
j which pumps a 1d Z2

2-SPT onto the

edge.

We can deduce a possible symmetry gapped QSET
phase for this igSPT by the fractionalization procedure
outlined in the main text. This results in a Z2 gauge the-
ory with a e particle having a unit of Z4 charge, i.e. half
of the elementary B charge in the IR symmetry factor
ZB
2 , and an m particle that carries the projective repre-

sentation of Z2
2 that is found at the end 1d SPT pumped

by U2
(0,1). We refer to this state as eCB

mP where CB

denotes a half-B-charge, and P denotes a projective Z2
2

representation.
The structure above can be readily generalized to prod-

ucts of two cyclic groups, GIR = ZN1
×ZN2

, with the rel-
evant data listed in Table I. These results follow readily
from interpreting these phases in a DDW construction
where ZN1

DWs carry 1d ZN2N12
igSPTs.

B.1.b) igSPT without SPT pumping symmetry —
Now let us turn to the other representative cocycle

ω4(g, h, k, l) = (−1)g
1h1k1l2 = b2 ∪ e2 with b2(g, h) =

(−1)g
1h1

and e2(g, h) = (−1)g
1h2

. We see that the b2
cocycle involves only the first Z2 symmetry factor. Since
there are no 1d SPT phases protected by a single Z2 sym-
metry, when realized as an emergent anomaly, ω4, will
not have a lower-dimensional SPT pumping symmetry,
in contrast to all the previously constructed examples.
Nevertheless, we will find that the igSPT constructed
from this anomaly via our construction has SPT edge
states, which are protected by a long-range string order
where the condensed string has half-charge of the first Z2

symmetry factor.
Following the general procedure outlined in the main

text, define the anomalous IR symmetry action associ-
ated with this anomaly cocycle as:

UA
α =

∏
i

(−1)g
1
i1i2

g1
i2i3

g1
i3

∏
a

(−1)ĝ
1
a+ĝ2

a

Uβ =
∏
a

(−1)ĝ
1
a . (B3)

where for future convenience we have chosen to generate
ZA
2 × ZB

2 = {1, a} × {1, b} by {(α = a+ b), β = b}. This
symmetry can be on-sited by defining an N = Z2 rotor
on each plaquette defining the on-site symmetry action:

Uo.s.
α =

∏
i

(−1)n̂ig
1
i3

∏
a

(−1)ĝ
1
a+ĝ2

a ,

Uo.s.
β =

∏
a

(−1)ĝ
1
a

Uo.s.
n = U2

α =
∏
i

(−1)n̂i , (B4)

which satisfy: U2
α =

∏
i(−1)n̂i , U4

α = 1, U2
β =

1, U†
βUαUβ = U−1

α , corresponding to UV symmetry:

GUV = Zα
4 ⋉ Zβ

2 . Then, lock n̂i ≈
IR

g1i1i2g
1
i2i3

with Hamil-

tonian:

H∆ = −∆
∑
i

δn̂i,g1
i1i2

g1
i2i3

. (B5)



27

Note that, in the IR, the N symmetry acts non-
trivially only on the boundary of the system. Defining
the system on an open spatial 2-manifold, Σ2:

Un = U2
α ≈

IR

∏
i∈∂Σ2

(−1)ai−1,iai (B6)

where we denote g1i as ai. Restricting this symmetry
to an open region R = 1 < i ≤ L of the boundary,
one obtains (Un)|R =

∏
1<i≤L(−1)ai−1,iai , which trans-

forms under the GIR symmetry as: Uβ : (Un)|R 7→
(−1)a1+aL(Un)|R. Examining this expression, one finds
that while the bulk the (Un)|R string operator is in-
variant under GIR, its ends transform as if there is a
local “1/2-charge” of Za

2 . Namely, acting again with
Uβ on the string end transforms the end near site 1
from (−1)a1 7→ (−1)a1+1, and the transformation of the
bulk string adds another factor of (−1)a1 , leaving a local
phase of (−1) indicating the the string ends locally have
U2
β = (−1).
A more precise version of this argument involves gaug-

ing the N symmetry, and the action of GIR on the ends
of the restricted N symmetry action (Un)|R translate to
the GIR transformation properties of the N -flux, which
are well-defined modulo redefining the transformation by

a N̂ = Z2 magnetic gauge transformation, i.e. corre-
spond to an element of a projective symmetry action

(PSG): H2(ZA
2 , N̂ ) = Z2. The non-trivial element of

the PSG corresponds to the flux having a half-charge
of a, which we expect to arise due to the above argu-
ment. We can verify this by confirming that the emer-
gent anomaly cocycle decomposes as ω4 = b2 ∪ e2 where

b2(g, h) = (−1)g
1h1

is the non-trivial element of the PSG

for N -fluxes, and e2 = (−1)g
1h2

specifies the group-
extension that lifts the anomaly.

As we’ve shwon in general in Section IVE of the main
text, the non-trivial transformation rules for the N flux
ensure that the igSPT edge cannot be symmetric and
gapped. Specifically, the edge symmetry action of Un and
Uβ has the same anomaly as a gapped SPT phase with

Zβ
2 ⋉Zn

2 symmetry with cocycle ω3(g, h, k) = (−1)g
1h1k2

.
However, as with previous examples, there is no gapped
SPT with this edge anomaly when the N = Z2 is the
normal subgroup of a larger Zα

4 symmetry, as follows from
the general proof in Appendix E.

One can explicitly construct a symmetric gapless edge
of this model as follows. Define spin Pauli operators:

σz
i = (−1)g

1
i , σx

i = (−1)ĝ
1
i for each site of the edge.

Then, examine the action of Un on these operators: Un :
σx
i 7→ −σz

i−1σ
x
i σ

z
i+1. I.e. the Un-symmetry forbids a

trivial paramagnetic interaction for the edge spins, but
does allow a critical edge Hamiltonian such as:

Hedge = −K
∑
i

(
σx
i − σz

i−1σ
x
i σ

z
i+1

)
, (B7)

which by maps via a standard Jordan-Wigner transfor-
mation to a pair of decoupled critical Ising models in

the even and odd sub-lattice. In fact, this Hamiltonian
has an enlarged emergent U(1) symmetry generated by

Ñ =
∑

j Ñj with Ñj = (−1)j 1
4

(
1− σz

j

) (
1 + σz

j+1

)
=

(−1)jaj,j+1aj+1 measuring the number of ↓↑ domain

walls, and the UN symmetry corresponds to (−1)Ñ . As
for the other cases described in the main text, this Lut-
tinger liquid edge Hamiltonian needs to be symmetrized
over GIR, which will potentially tangle it up with bulk
modes in a manner that is not precisely understood in
general, but in select cases (e.g. the bulk is a gapped
QSET) this edge Luttinger liquid can remain decoupled
from the bulk modes.

2. GIR = U(1)× ZT
2

In this section, we denote: U(1) rotor states by αi ∈
[0, 2π), the phases of U(1) symmetry rotations by Greek
letters without site subscripts, and Z2 time-reversal rotor
states by τi ∈ {0, 1}, in order to clearly distinguish the
role of each in formulas. Moreover, we denote the con-
jugate angular momentum to the rotor phase as ℓi, with
[ℓi, αi] = 1.

This group is physically relevant for spin systems with
a conserved spin-component, say Sz, which is odd un-
der time-reversal (indicated by the direct product with
T ). The 3d group-cohomology anomaly classification for
GIR is Z3

2. One of these Z2 factors is the pure time-
reversal anomaly discussed above. The remaining two
Z2 factors correspond to mixed U(1), T anomalies, and
can be thought of as being generated by two different
root phases and their combinations.

Following [43], we can label the anomalies by a rep-
resentative anomalous SET Z2-gauge-theory (toric code
topological order), labeled by specifying whether or not
the Z2 gauge charge e and flux m have a half-integer
charge (C-subscript) and/or transform as a Kramers dou-
blet under T (T subscript). The pure T -anomaly is la-
beled by eTmT , and the mixed anomalies can then be la-
beled by different stacking combinations of the two root
phases eCmC and eCmT .

B.2.a) A 2d igSPT with eCmC anomaly — The eCmC

anomaly arises at the surface of a 3d GIR-SPT discussed
extensively in [39]. Its gapless states are closely related to
field theories of deconfined quantum critical points [41].
The physics of this anomalous state can be understood
through a DDW perspective in which time-reversal DWs
are decorated with boson integer quantum Hall (bIQH)
states with Hall conductance 2, i.e. where the time-
reversal breaking DW in the anomalous theory carries
gapless edge modes of the root 2d U(1) SPT (analo-
gous to how magnetic DWs in the surface of a 3d elec-
tron GIR-topological insulator carry electron IQH edge
modes [49]). An equivalent statement is that the bulk
response theory of the 3d boson SPT to a background
U(1) electromagnetic field has a quantized magnetoelec-



28

tric response:

Z3d[A] = e
iθ

8π2

∫
dAdA (B8)

Physically this response function is invariant under θ →
θ + 4π (twice the periodi for fermion systems). Since
T : dAdA → −dAdA, this periodicity leaves θ = 0, 2π as
the distinct time-reversal invariant possibilities, with the
latter corresponding to a non-trivial SPT.

An explicit cocycle To construct an explicit cocycle
for this phase, let us warm-up with a lower-dimensional
example. In 1d the axion response theory is Z1d =

ei
θ
4π

∫
dA, with time-reversal symmetric allowing for θ =

0, 2π corresponding to trivial and SPT phases respec-
tively. The 1d SPT phase has edge states that transform
under a projective representation of U(1) × ZT

2 defined
by: U2π−αUα = (−1), corresponding to effectively hav-
ing half-charge. A suitable cocycle which implements this
projective representation is:

ω2[(α1, τ1), (α2, τ2)] = ei
θ
2 v2π(α1,α2) (B9)

with θ = 2π, since UαUβ = ω2Uα+β . To check this ex-
pression, we note that time-reversal restricts θ to be a
multiple of 2π. Namely, since τ does not appear in ω2,
T Uα = UαT in this projective representation. Therefore,
we must have T U2π−αUαT † = U2π−αUα = eiθ/4π. The
left hand side evaluates to T eiθ/4πT † = e−iθ/4π. Com-
paring these requires θ to be an integer multiple of 2π.
The cocycle is obviously trivial for θ an integer multiple
of 4π, since it evaluates to 1 for all arguments. Finally, we
note that, while time reversal does not directly play a role
in this cocycle (there is no explicit τ dependence), it is
crucial to quantizing θ (as for the field theory). Namely,
with just a U(1) symmetry alone, the cocycle is a pure

boundary for θ /∈ 4πZ: ei
θ
4π v2π(α1,α2) = [dω1](α1, α2)

with ω1(α) = ei
θ
4π [α]. However, dω1 ̸= ω2 when the

group is extended to include time-reversal. Namely, for
GIR = U(1) × ZT

2 : denoting gi = (αi, τi) ∈ U(1) × Z2,
the coboundary condition is modified to:

df(g1, g2) =
[f(g2)]

1−2τ1 f(g1)

f(g1g2)
(B10)

and we no longer have dω1 = ω2 for arguments with non-
vanishing τ1. Note, however, that for θ ∈ 4πZ, ω2 = 1
for all arguments and the cocycle is explicitly trivial.

From this 1d picture, we can analogously construct a
3-cocycle for the 2d anomaly:

ω3[(α1, τ1), . . . , (α4, τ4)] = e
iθ
4π v2π(α1,α2)v2π(α3,α4).

(B11)

Again time reversal quantizes θ to be an integer multiple
of 2π, and θ = 4π is trivial because ω3 evaluates to 1 for
all arguments in that case.

igSPT from a U(1) rotor model Since time-reversal
group elements do not explicitly appear in the cocycle,
we can actually construct the 2d igSPT purely from a

U(1) rotors with no Ising spins for the ZT
2 subgroup. This

cocycle defines the anomalous U(1) symmetry action:

UA
α =

∏
i

(−1)v2π(αi1i2 ,αi2i3 )v2π(αk,α)
∏
a

eiαℓa (B12)

We can onsite this symmetry by introducing a N = Z2

extension with onsite symmetry:

Uos
(n,α) =

∏
i

(−1)n̂i(n+v2π(αi3
,α))

∏
a

eiαℓa , (B13)

and energetically locking n̂i ≈
IR

v2π(αi1i2 , αi2i3) on each

triangle i with:

H∆ = −∆
∑
i

δn̂i,v2π(αi1i2 ,αi2i3 )
. (B14)

We can identify each element of the extended symme-
try group (n ∈ Z2, α ∈ U(1) = R/2πZ) ∈ GUV, as
an element of U(1) with half the elementary charge,
i.e. GUV = R/4πZ. To see this map: (n, g) = 2πn +
g mod 4π, and notice that the onsite group operation
is simply ordinary addition in R/4πZ: U(n,g)U(m,h) =
U(n+m+v2π(g,h),g+h). Physically, this corresponds to lift-
ing the anomaly by adding local bosons with half of the
charge of the UV degrees of freedom. Put another way,
we can view this igSPT as arising in a boson-paired Mott
insulator with a gap to unpaired bosons. We note in pass-
ing that, just as for the igSPT with eTmT anomaly, we
expect that the eCmC anomaly cannot be lifted by view-
ing the bosons as Cooper pairs of fermionic electrons with
half of the bosonic charge. This would instead be a nat-
ural candidate for lifting the beyond group cohomology
eCFmCF anomaly.

Edge states The N group is generated by Uos
(1,0). In

the IR, this operation pumps a 1d U(1)× ZT
2 SPT:

Uos
(1,0) ≈

IR

∏
(ijk)∈Σ2

(−1)v2π(αij ,αjk)

=
∏

(ijk)∈Σ2

dU(1)

(
e

i
2 [α]
)
ijk

=
∏

(ij)∈∂Σ2

(−1)v2π(gij ,gj) (B15)

where dU(1) denotes the coboundary operator for the
U(1) symmetry subgroup, and [α] denotes α mod 2π,
and in the second line we have used that v2π(α, β) =
1
2π ([α] + [β]− [α+ β]). In light of our discussion above,

we see that this pumps the 1d U(1)×ZT
2 SPT with mixed

U(1) and T anomaly onto the boundary.
QSET Order To obtain a QSET order here, we can

follow the fractionalization procedure described in main
text. Here, we need to fractionalize the physical boson
unit charge B into a pair of 1/2-charge spinons B = b2

bound together in the UV by an emergent N = Z2 gauge
field. As we have seen in previous examples, in the decon-
fined phase of this gauge theory, the anomaly is “lifted”,
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from the point of view of the fractional excitations, and
the gauge flux (m particles) carry the projective repre-
sentation of U(1)×T that arise at the 1d G-SPT pumped
by U2π−αUα. In this case, the projective representation
is characterized by a half charge of the U(1), and non-
Kramers T 2, i.e. the resulting QSET order is eCmC , as
expected from the outset.

B.2.b) 2d igSPT with eCmT anomaly — The other

nontrivial U(1)×ZT
2 anomaly can be realized by cocycle:

ω4[(α1, τ1), . . . (α4, τ4)] = (−1)τ1τ2v2π(α3,α4), correspond-
ing to anomalous U(1)-symmetry:

UA
α =

∏
i

(−1)τi1i2τi2i3v2π(αi3 ,α)
∏
a

eiαℓa , (B16)

and ordinary T =
∏

i(−1)τ̂iK. This can be on-sited by
introducing N = Z2 rotors and locking n̂i ≈

IR
τi1i2τi2i3

on each triangle i, and defining onsite symmetry action
as in Eq. B13 – again resulting in an extension of U(1)
to include half-charges, i.e. extending from R/2πZ to
R/4πZ.

The edge states are protected by the SPT-pumping
operation:

Uos
(1,0) ≈

IR

∏
i∈Σ2

(−1)τi1i2
τi2i3

=
∏

(ij)∈∂Σ2

(−1)τijτj , (B17)

which we recognize (from the discussion of the GUV = ZT
4

igSPT in the main text) pumps a Haldane/AKLT chain
onto the boundary. Note sharing similar edge states, the
R/4πZ ⋉ ZT

2 2d igSPT is distinct from 2d ZT
4 one which

has a pure time reversal anomaly. The ZT
4 igSPT involves

a pure time-reversal anomaly, and the SPT pumping is
implemented by T 2. Here, instead we have a mixed U(1)
and T anomaly, in which it is the U(1) symmetry that
pumps the lower-d ZT

2 SPT.

Following the pattern of previous examples a possible
QSET order that comes from the fractionalization proce-
dure is eCmT , as expected from our label of the anomaly.

C. The SPT pumping action of N

In this appendix, we demonstrate that the N symmetry actions in Eq. 30 act only on the (D − 1)d edge of the

igSPT and pump (D − 1)d SPTs onto the edge. Recall bD is a D cocycle with coefficient N̂ , the cocycle condition
reads:

1 = ∂bD(g1, · · · , gD+1) = bD(g2, g3, · · · , gD+1) · bD(g1g2, g3, · · · , gD+1)
−1 · · ·

· bD(g1, g2, · · · , gDgD+1)
(−1)D · bD(g1, g2, · · · , gD)(−1)D+1

(C1)

Replacing gi → g−1
il

gil+1
for I = 1, 2, · · · , D, and gD+1 → g−1

iD+1
, we obtain the relation:

1 = bD(g−1
i2

gi3 , g
−1
i3

gi4 , · · · , g−1
iD

giD+1
, g−1

iD+1
) · bD(g−1

i1
gi3 , g

−1
i3

gi4 , · · · , g−1
iD

giD+1
, g−1

iD+1
)−1 · · ·

· bD(g−1
i1

gi2 , g
−1
i2

gi3 , · · · , g−1
iD−1

giD , g
−1
iD

)(−1)D · bD(g−1
i1

gi2 , g
−1
i2

gi3 , · · · , g−1
iD−1

giD , g
−1
iD

giD+1
)(−1)D+1

(C2)

The action Eq. 30 involves the last term, therefore we can use the above relation to replace it by the other D terms,
each of which depends only on a face of the D-complex, i.e. the first term doesn’t depend on gi1 , the second doesn’t
depend on gi2 , etc. Replacing each term of Eq. 30 in this way, we obtain an expression in which each term corresponds
to a face of a D-simplex. Each face in the bulk receives contributions from its two adjacent simplices and cancel,
hence we are left with only an edge action:

Uos
(n,0) =

∏
(i1,··· ,iD)∈∂Σ

bsD(g−1
i1

gi2 , g
−1
i2

gi3 , · · · , g−1
iD−1

giD , g
−1
iD

)⊗Z n, (C3)

where the product is now only over (D− 1) simplices on the edge ∂Σ of the spatial lattice Σ. These N actions pump
(D − 1)d GIR-SPTs onto the edge of the igSPT. Conjugating a trivial symmetry action U trivial

g |{ga}⟩ = |{gga}⟩ by
the operator Uos

(n,0) results in:

Uos
(n,0)U

trivial
g Uos†

(n,0)|{ga}⟩ =
∏

(i1,··· ,iD)∈∂Σ

bsD(g−1
i1

gi2 , g
−1
i2

gi3 , · · · , g−1
iD−1

giD , g
−1
iD

g−1)

bsD(g−1
i1

gi2 , g
−1
i2

gi3 , · · · , g−1
iD−1

giD , g
−1
iD

)
⊗Z n|{gga}⟩. (C4)

This is precisely the symmetry action of a (D − 1)d GIR-SPT with anomaly specified by the D cocycle [bD ⊗Z n] ∈
HD(GIR, U(1)) [23]. To see this, consider restricting the action of Eq. C4 to an open sub-region A of the edge. Then,
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applying the cocycle condition (Eq. C1) with gl → g−1
il

gil+1
, l = 1, · · · , D− 1 and gD → g−1

iD
g−1, gD+1 → g, the above

expression can be further reduced to an action with phase factor supported only on the (D − 2)d boundary of A:(
Uos
(n,0)U

trivial
g Uos†

(n,0)

)
A
|{ga}⟩ =

∏
(i1,··· ,iD−1)∈∂A

bsD(g−1
i1

gi2 , g
−1
i2

gi3 , · · · , g−1
iD−1

g−1, g)⊗Z n|{gga}⟩. (C5)

Comparing with Eq. 19 we see the action is the standard anomalous symmetry action on the edge of a (D − 1)d
GIR-SPT with anomaly specified by the D-cocycle [bD ⊗Z n] ∈ HD(GIR, U(1))

FIG. 8. Gauging the extending symmetry. Schematic
of the effet of gauging the N symmetry in the igSPT lattice
models models (shown in 2d). Recall GIR-rotors live on the
vertices of the simplicial lattice(black dots) while N rotors
live on the vertices of the dual lattice(white dots). The N
gauge fields then live on the links of the dual lattice(green
links). An electric string operator along the dashed blue path
is a product of electric field operator over links that cross
the path(thickened black links), it creates a pair of flux/anti-
flux at its end, shown as the blue hexagons. A gauge field
string(Wilson line) is plotted in red and creates a pair of
charge/anti-charge at its end, shown as the red dots.

D. Gauging the extending symmetry

To gauge N explicitly in our lattice models, we intro-
duce an |N |-dimensional Hilbert space on each link of the
dual lattice with basis |aij ∈ N⟩. We define the gauge
field operator by n̂ ⊗Z Aij |aij⟩ = n̂ ⊗Z aij |aij⟩ and the
electric field operator Eij by Eij ⊗Z n|aij⟩ = |aij + n⟩.
Note in general the operators Aij , Eij are not well de-

fined since they are N , N̂ -valued which are only well de-
fined modulo |N |, only the U(1)-valued vertex operators
n̂ ⊗Z Aij , Eij ⊗Z n are well-defined. Gauge transforma-
tions at i is generated by

Ωi = n̂i

∏
j∈r(i)

Eij , (D1)

here r(i) stands for sites adjacent to i on the dual lat-
tice. The gauge invariant subspace is then obtained by
demanding Gauss’s law Ωi = 1 on every site.

Now we consider excitations in the gauged model. In

the deconfined phase of aGIR-symmetricN gauge theory,
topological excitations include fluxes and charges, fluxes

areN -valued objects and charges are N̂ -valued. A charge
is a site on the dual lattice with nonzero n̂i. Charge cre-
ation is generated by the gauge invariant string operator

We = ni1 −Ai1i2 −Ai2i3 − · · · −AiL−1iL − niL , (D2)

n̂ ⊗Z W creates a charge +n̂ at site i1 and a charge −n̂
at site iL. An elementary flux is an elementary(smallest)
hexagon on the dual lattice with non-zero value of Wilson
loop

∑
(ij)∈h(a) Aij where h(a) stands for the elementary

hexagon surrounding the site a of the simplicial lattice.
A pair of flux/anti-flux can be created by acting on the
vacuum with a string of electric field operators. Denote
the path of the string operator by C, then flux creation
is generated by

Wm =
∏

(pq)⊥C

Epq. (D3)

Wm ⊗Z n generates a flux n and an anti-flux −n on the
two hexagons at the end of the path C, the product is
over all links of the dual lattice that intersect the path C.
The two types of excitation as well as their corresponding
string operators are shown in Fig. 8.

1. Review: symmetry fractionalization within the
group cohomology framework

Before we proceed to analyze the symmetry properties
of excitations in the N -gauged igSPT models, we briefly
review the group cohomology (partial) classification of
symmetry enriched topological orders (SETs). Since we
are interested in studying the result of gauging the cen-
tral extension N , we restrict our attention to Abelian
topological orders enriched by a general (possibly non-
Abelian) global symmetry G.

D.1.a) Symmetry fractionalization in 2d — In 2d, all
excitations are point-like. Local operators cannot cre-
ate topologically non-trivial anyon excitations. Instead,
an isolated anyon, a, can only be created by non-local
operators, for example by a string operator that creates
an a anyon and its anti-particle, ā and moves the ā far
away. Therefore while the overall symmetry action on
the system must form an ordinary linear representation,
Ug, with UgUh = Ugh∀g, h ∈ G, the action of symmetry
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restricted to a region with an anyon a, Ua
g , may act pro-

jectively: Ua
gU

a
h = ωa(g, h)Ua

gh where ωa(g, h) ∈ U(1).
This is analogous to the projective action at the edge of a
1d G-SPT, with one key difference: the projective phases
are discrete and constrained by the fusion rules of the the-
ory. For example, given an anyon a such that N copies
of a fuse to the identity: aN = (a× a× . . . a)︸ ︷︷ ︸

N×

= 1, it is

possible to create N a-excitations with a local operator.
Since all local operators must transform under an ordi-

nary linear representation of G, this requires [ωa(g, h)]
N

be trivial, i.e. is ZN valued rather than U(1) valued. Let
us now formalize this structure.

For a general Abelian topological order, the set of
anyon excitations A together with the fusion rules × :
A × A → A form an Abelian group. The porjective
phases ωa can be regarded as a map: G × G × A →
U(1), (g1, g2, a) 7→ ωa(g1, g2). Consistency with the fu-
sion rules requires ωaωb = ωab which allows us to view ω

as a map: G×G → Â = Hom(A,U(1)), i.e. a 2-cochain

with Â-coefficients. The associativity of the unitaries Ua
g

requires the cochain ω be closed: ω ∈ Z2(G, Â).

The symmetry restriction Ua
g is not uniquely defined,

but rather can be modified by relabeling by Ua
g →

βa
gU

a
g , which redefines ω → dβω, where dβ ∈ B2(G, Â).

Thus, equivalence classes of symmetry fractionalization

are classified by [ω] ∈ H2(G, Â) = Z2(G, Â)/B2(G, Â).

As an example, in an N gauged theory the fusion rules

form the groupN×N̂ , where the groupN is generated by

gauge fluxes and N̂ is generated by gauged charges. The
symmetry fractionalization pattern is therefore classified

by H2(G, N̂ × N ) = H2(G, N̂ )×H2(G,N ).

D.1.b) Symmetry fractionalization in 3d — In 3d
Abelian topological orders, which may be regarded as
N gauge theories, there are both point-like gauge-charge
excitations, and loop-like gauge flux excitations. In an

N gauge theory, gauge charges have fusion group N̂ and
gauge fluxes have fusion group N . As in 2d, symme-
try properties of point-like excitations are classified by

H2(G, N̂ ), where N is the fusion group of point-like
excitations. For loop excitations, there are two cases
for their symmetry properties. First, loops can carry
an overall fractional charge. Second, loops may carry
symmetry-protected gapless modes 10. Without loss of
generality, we ignore the first possibility because one can
always shrink the loop to a point to produce a fractional-
charged point-excitation, or equivalently, the fractional
charge can be removed by relabeling excitations by bind-
ing a point excitation to the loop. For the second case,
we follow closely the formalism of [33] for studying 1d
symmetry-protected gapless modes at the edge of a 2d
SPT. Specifically, in-cohomology symmetry-obstructions

to gapping flux-lines arise from non-trivial fusion sym-
bols for G-domain walls along an flux line. Denote the
flux line anyon type as a, and label domain walls by the
element g ∈ G that relates the change in the symmetry
breaking configuration across the domain wall. Then,
the fusion symbols, ωa(g, h, k) ∈ U(1) denote overall
phase difference resulting from fusing domain walls g, h, k
within an a-flux line in different orders [(gh)k vs. g(hk)].
For the 1d edges of 2d G-SPTs equivalence classes of ω
are characterized by H3(G,U(1)) [33]. Here, an impor-
tant difference for the SET rather than the SPT, is that
ω depends on the type of flux-line, a and is required to
be consistent with the fusion rules. Following the argu-
ments for 2d above, this implies that equivalence classes

of ω for G-SETs are characterized by H3(G, Â) where A
is the dual of the fusion group for loop excitations.

As an example, in a 3d G-enriched N -gauge theory,

fusion rules of gauged charges form the group N̂ while
fusion rules of flux loops form the group N . Apply the
general classification we see the symmetry fractionaliza-

tion pattern is given by the group H2(G,N )×H3(G, N̂ ).

2. Symmetry fractionalization of the N -gauged
igSPT

Let us first focus on 2d. To determine the symmetry
fractionalization pattern one looks for restriction of the
symmetry action Ug to a subregion M that only contains
a single charge or flux. The GIR action is given by Eq. 22

Ug|{n̂i}, {ga}⟩ =
∏
i

n̂i ⊗Z e2(g
−1
i3

g−1, g)|{n̂i}, {ga}⟩

(D4)

Now consider creating a pair of charge n̂ and anti-charge
−n̂ using the gauge field string Eq. D2 Now since only two
sites i1, iL host non-zero n̂, we can restrict the symmetry
action to i1 by setting

Ue,i1
g |{n̂i}, {ga}⟩ = n̂⊗Z e2(g

−1
(i1)3

g−1, g)|{n̂i}, {ga}⟩,
(D5)

which satisfies Ue
gU

e
h = n̂ ⊗Z e2(g, h)U

e
gh showing that

chargs carry fractionalized transformation given by [e2] ∈
H2(GIR,N ).

In order to see the symmetry fractionalization of a
gauge flux, it’s useful to do a change of basis that trans-
forms the IR space into simple n̂i paramagnet as we did
for the 1d Ising igSPT in IIID 1. Before gauging, this is
accomplished by the unitary:

V =
∏
i

bsiD({giα})⊗Z ni (D6)

where bD({giα}) stands for bD(gi1i2 , gi2i3 , . . . , giD−1iD ).
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V transforms the Hamiltonian to

V †H∆V = −∆
∏
i

b−s
D ({giα})⊗Z ni

∑
j

δn̂j ,bsD({gjα})

 bsD({giα})⊗Z ni = −∆
∑
j

δn̂j+bsD,bsD

= −∆
∑
j

δn̂j ,0 (D7)

Such change of basis allows us to identify the symmetry fractionalization pattern for fluxes, to illustrate this, let us
focus on the case of two special dimension.

After gauging N we need to make sure the unitary V
used for changing basis is gauge invariant. To achieve
this we first rewrite V in a form that is convenient for
gauging. Recall the cocycle condition for b2,

1 = db2(g, h, k) =
b2(h, k)b2(g, hk)

b2(gh, k)b2(g, h)
(D8)

replace g → g−1
i1

gi2 , h → g−1
i2

gi3 , k → g−1
i3

, we have:

b2(g
−1
i1

gi2 , g
−1
i2

gi3) =
∏

(ab)∈∂∆i

b
siab
2 (g−1

a gb, g
−1
b ), (D9)

here ∆i is the simplex i and ∂∆i are the three edges of it.
siab = ±1 depends on the direction of the edge ab being
compatible with the orientation of the triangle i or not.
With the help of this identity we can write

V =
∏
i

bsi2 ({giα})⊗Z ni =
∏
i

∏
(ab)∈∂∆i

b
si·siab
2 (g−1

a gb, g
−1
b )⊗Z ni

=
∏

(ab),(ij)⊥(ab)

b2(g
−1
a gb, g

−1
b )⊗Z (ni − nj) (D10)

the last line is obtained by noticing that in the product in
the second last expression, each edge (ab) of the simplicial
lattice receives contributions from its two adjacent trian-
gles i, j with (ij)⊥(ab), and the exponets sis

i
ab in these

two terms are always opposite of each other. Therefore
the result is a product over directed links (ab), and for
each fixed (ab) the corresponding (ij) link on the dual
lattice is perpendicular to (ab) with i to the left and j to
right of (ab).

With this new form we can make V gauge invariant by
replacing ni − nj by the gauge invariant quantity ni −
nj +Aji,

Ṽ ≡
∏

(ab),(ij)⊥(ab)

b2(g
−1
a ab, g

−1
b )⊗Z (ni − nj +Aji)

(D11)

= V
∏

(ab),(ij)⊥(ab)

b2(g
−1
a ab, g

−1
b )⊗Z Aji (D12)

The Hamiltonian is transformed by Ṽ to the trivial paramagnet one as before. Next we calculate the transformed
GIR-symmetry action. We do it by examining the action on the basis |{n̂i}, {ga}, aij⟩,

Ṽ †UgṼ |{n̂i}, {ga}, {aji}⟩ = Ṽ †Ug

∏
(ab),ij⊥ab

b2(g
−1
a gb, g

−1
b )⊗Z aij |{n̂i + b2({giα})}, {ga}, {aij}⟩ (D13)

= Ṽ †∏
i

(n̂i + b2({giα}))⊗Z e2(g
−1
i3

g−1, g)
∏

(ab),ij⊥ab

b2(g
−1
a gb, g

−1
b )⊗Z aji|{n̂i + b2({giα})}, {gga}, {aij}⟩ (D14)

=

(∏
i

(n̂i + b2({giα}))⊗Z e2(g
−1
i3

g−1, g)

) ∏
(ab),ij⊥ab

b2(g
−1
a gb, g

−1
b )

b2(g
−1
a gb, g

−1
b g−1)

⊗Z aji

 |{n̂i}, {gga}, {aij}⟩ (D15)

≈
IR

 ∏
(ab),ij⊥ab

b2(g
−1
a gb, g

−1
b )

b2(g
−1
a gb, g

−1
b g−1)

⊗Z aji

(∏
i

b2({giα})⊗Z e2(g
−1
i3

g−1, g)

)
|{gga}, {aij}⟩ (D16)

=
∏

(ab),ij⊥ab

b2(g
−1
a gb, g

−1
b )

b2(g
−1
a gb, g

−1
b g−1)

⊗Z ajiU
A
g |{ga}, {aij}⟩ (D17)

10 It is also possible that loop excitations carry ungappable chiral
modes, however these cases are beyond the group cohomology
formalism and will not be relevant for the in-cohomology igSPT

examples here.
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FIG. 9. The terms in
∏

(ab),(ij)⊥(ab)

b2(g
−1
a g−1,g)

b2(g
−1
b

g−1,g)
⊗Z aji that

involve the vertex a are links (abk) shown in the figure,
and the dual links (ij) that are perpendicular to (abk) form
blue hexagon that encircles the site a. Notice when the
arrow on a link abk is pointing away from a, the term is
b2(g

−1
a g−1, g)[aji], while when the arrow is pointing towards a,

the term is b−1
2 (g−1

a g−1, g)⊗Zaji = b2(g
−1
a g−1, g)⊗Zaij , either

way the gauge field aij that appears is pointing in the counter-
clock direction, therefore the product of all 6 terms that in-
volve the vertex a is simply b2(g

−1
a g−1, g) ⊗Z (flux of h(a)),

where we h(a) stands for the hexagon on the dual lattice that
encircles site a.

where UA
g is the anomalous symmetry action defined in Eq. 19. To get to the second last line notice in the Ṽ

transformed frame the IR space corresponds to n̂i = 0. Now to further simplify the expression, we apply the cocycle
condition db2(g, h, k) = 1 with g = g−1

a gb, h = g−1
b g−1, k = g and obtain

1 =
b2(g

−1
b g−1, g)b2(g

−1
a gb, g

−1
b )

b2(g
−1
a g−1, g)b2(g

−1
a gb, g

−1
b g−1)

(D18)

apply it to Eq. D17 we obtain

Ṽ †UgṼ ≈
IR

∏
(ab),(ij)⊥(ab)

b2(g
−1
a g−1, g)

b2(g
−1
b g−1, g)

⊗Z ajiU
A
g (D19)

Now we can change the product from being over links to being over sites, for each fixed site a there is one term
b2(g

−1
a g−1, g)[aji] from each edge ij of the dual lattce the encircles the the site a, as shown in Fig. 9. Therefore we

have

Ũg = Ṽ †UgṼ ≈
IR

∏
a

b2(g
−1
a g−1, g)⊗Z

 ∑
(ij)∈h(a)

aij

UA
g =

∏
a

b2(g
−1
a g−1, g)⊗Z (flux of h(a))UA

g (D20)

where h(a) stands for the hexagon in the dual lattice that surrounds the site a.

Now it is clear how to localize the symmetry Ũg to
a single flux. If we start with a zero flux and GIR-
symmetric vacuum and create a pair of flux +n and
−n at site a and b using a string of electric field op-

erators, then we can localize the symmetry action Ũg to
a region M that contains only the +n flux by setting

Ũm
g = b2(g

−1
a g−1, g) ⊗Z nUA,M

g , here UA,M
g stands for

the restriction of the anomalous action to the region M .

Now it’s clear the restricted symmetry action Ũm
g forms

a projective representation Ũm
g Ũm

h = b2(g, h) ⊗Z nŨm
gh,

confirming that the symmetry properties of fluxes are
determined by the cocycle b2.
An analogous derivation to that above shows that in

3d the local symmetry action of GIR on N -flux lines is
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governed by the cocycle b3 ∈ H3(G,N ) appearing in the
emergent-anomaly cocycle decomposition ω5 = b3 ∪ e2.
Physically, we can interpret b3 as the N -valued fusion-
symbol for fusing the 0d endpoints of 1d GIR domain wall
defects within an N -flux line [33].

E. Proof of Intrinsicness of igSPT with group
cohomology anomalies

In this appendix we show that the gapless SPTs in
our construction are in fact intrinsic, i.e. that their edge
states can not be realized as edge states of gapped SPTs
with the same symmetry, GUV. This can be straightfor-
wardly verified for the examples in the main text: for
GUV = Z4 in 1d and 3d, and GUV = ZT

4 in 2d where
there are no non-trivial gapped SPTs. In other cases,
such as GUV = Z2 × Z4, GIR = Z2

2 in 2d, there is not
only a single 2d igSPT but also various 2d gapped SPTs
with anomalies in Z2, Z4 and one with mixed Z2,Z4

anomaly. However one can check explicitly that none of
these gapped SPTs have the same SPT pumping prop-
erty of the igSPT, which has the property that acting
twice with the Z4 generator in the igSPT pumps a 1d
GIR = Z2

2 SPT onto the boundary. In a gapped sys-
tem, consistency would then require that each GIR-DW
carry “half” of the minimal allowed 1d GIR = Z2

2 SPT.
However, this is not possible in a gapped system.

In this appendix, we give a general argument that such
obstructions to realizing the SPT pumping behavior in
a gapped system are intrinsic, i.e that an igSPT with
emergent group cohomology anomaly is intrinsically gap-
less. We proceed by assuming the converse and deriving
a contradiction. Let Σ be the Dd bulk of a igSPT, ∂Σ
be the (D − 1)d edge. The igSPT edge is character-
ized by two key features: i) an SPT pumping symmetry:
Un, n ∈ N pumps a lower dimensional GIR SPT, and
ii) an N -gap: there are no gapless N DOF in the bulk
or at the edge. Suppose now that the same two char-
acteristics were possible with a gapped GUV-symmetric
bulk. Then there would be an action of GUV on ∂Σ, de-
noted as Vγ , γ ∈ GUV, that contains the pumping actions:
Vn = Un, ∀n ∈ N of the form:

Vγ |{gi}⟩ = Ω(γ, {gi})|{p(GUV)gi}⟩ (E1)

where p is the projection GUV
p−→ G and Ω(γ, {gi}) is a

general phase factor that depends on the spin configu-
ration as well as the group element γ. Crucially, if the
bulk is gapped, the global action of Vγ∈GUV

on the entire
boundary must form an ordinary linear representation of
GUV. We will now show that this fail to be the case for
systems with SPT pumping symmetries. For n ∈ N , Vn

is a {gi}-dependent phase Ω(n, {gi}) since p(n) = 1G.
For nontrivial extensions GUV ̸= G ×N and there exist
γ1, γ2 /∈ N , but n ≡ γ1γ2 ∈ N . Since N is central, n =
γ−1
1 nγ1 = γ2γ1. Hence for an ordinary linear representa-

tion we should have: Vγ1
Vγ2

= Vγ1γ2
= Vγ2γ1

= Vγ2
Vγ1

.

Instead, considering the action of these operations on ∂Σ,
one finds:

Vγ1Vγ2 |{gi}⟩ = Ω(γ1, {p(γ2)gi})Ω(γ2, {gi})|{gi}⟩,
(E2)

Vγ2
Vγ1

|{gi}⟩ = Ω(γ2, {p(γ1)gi})Ω(γ1, {gi})|{gi}⟩,
(E3)

Vn=γ1·γ2
|{gi}⟩ = Un({gi})|{gi}⟩. (E4)

Denote by a GIR-rotor configuration with a domain wall
between g and h configurations by DW(g, h) (we will not
need to specify the detailed form of the DW configura-
tion just that we have a region A such that gi∈A = g
and gi∈Ac = h where Ac denotes the complement of
A). Let {gi} = DW(1G, p(γ1)), which is a nontrival do-
main wall since γ1 /∈ N . Notice p(γ2) ·DW(1G, p(γ1)) =
DW(p(γ2), 1G), thus from Eq. E2=Eq. E4 we have

Ω(γ1,DW(p(γ2), 1G))Ω(γ2,DW(1G, p(γ1)))

= Un(DW(1G, p(γ1))) (E5)

Next set {gi} = DW(p(γ2), 1G), then p(γ1) ·
DW(p(γ2), 1G) = DW(1G, p(γ1)), therefore from
Eq. E3=Eq. E4, we have

Ω(γ2,DW(1G, p(γ1)))Ω(γ1,DW(p(γ2), 1G))

= Un(DW(p(γ2), 1G)) (E6)

Notice Eq. E5 and Eq. E6 have the same LHS,while the
RHS are in general different, because the phase factor Un

takes the form:

Un({gi}) =
∏

(i1,··· ,iD)

bsD(g−1
i1

gi2 , · · · , g−1
iD−1

giD , g
−1
iD

)⊗Z n,

(E7)

which is not a function of domain wall classes. That
is to say, although DW(p(γ2), 1G) and DW(1G, p(γ1))
are equivalent domain walls in the sense that the
DW(1G, p(γ1)) = p(γ1) · DW(p(γ2), 1G), the last argu-
ment of bsD in Un is g−1

iD
, which is not a function of domain

wall classes. Because of this, Un in Eq. E7, gives different
phases depending on the order of application of γ1 and
γ2. This raises a contradiction with the assumption that
the bulk is gapped since the edge-restriction of symmetry
on the edge of a gapped bulk would necessarily have com-
muting action of γ1,2. As a simple example, consider 2d
igSPT with GUV = Z2×Z4 and GIR = Z2

2. The sole non-

trivial SPT pumping operation is U = (−1)(g
1
i+1−g1

i )g
2
i+1 ,

and the g2i+1 factor is what makes U not a function of
domain wall classes. Apply the construction to this ex-
ample by setting γ1 = γ2 = (1, 1) ∈ Z2 × Z4, which
satisfy γ1 + γ2 = (0, 2) ∈ N . Then the phase fac-
tor W receives a single contribution in the configuration
DW((0, 0), (1, 1)): (−1)1·1 = −1, while it is one in the
configuration DW((1, 1), (0, 0)).
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F. Relating anomaly cancellation and SPT
pumping pictures of igSPT edge states

While we have focused on the SPT pumping as the
origin of igSPT edge states, TVV [17] instead deduce the
existence of edge states from an anomaly cancellation
argument. Here, we recount this argument and relate
these two mechanisms.

First recall the anomaly cancellation argument. Con-
sider gauging the GUV symmetry by coupling the igSPT
on a (D+1)d spacetime manifold XD+1 to a background
GUV-gauge field AGUV = (AN , AGIR), where AN is an N
gauge field that acts only on the gapped sector and AG

IR a
GIR-gauge field that acts on the IR DOF. Then, consider
integrating out the gapped N -DOF, which results in the

partition function Z[AGUV ] = ZIR[A
GIR ]e

i
∫
XD+2

ω(AGUV )

where ωD+2 is the anomaly cocycle, and XD+2 is a
Wess-Zumino-Witten (WZW) type extension of space-
time whose boundary is the physical spacetime: XD+1 =
∂XD+2, and ZIR is the partition function for the gapless
IR DOF, which couple only to the IR part of the gauge
field. When considered as a function of g ∈ GIR, ωD+2

is a non-trivial cocycle, and there is no way to define
the above action on a spatial manifold with a bound-
ary, ∂XD+1 ̸= ∅. Rather, in this case, the anomalous
GIR-action can only arise as the boundary of a gapped
GIR-SPT on XD+2. However, the group extension lifts
the anomaly such that interpreted as a GUV-cocycles one
writes ωD+2 = ∂αD+1 [22], and with the extended DOF
it is possible to define the action on an open spacetime

as: Z = ZIR

[
AG
]
e
i
∫
XD+1

α(AGUV )
. As argued in [17],

α cannot be invariant under N gauge transformations:
AN → AN + dχN , otherwise one would have ω = dα
as GIR-cocycles, and there would be no emergent GIR-
anomaly. Rather, N gauge transforms change α by
an exact but nonzero form: α → α + dλ(AGUV , χN ),
which results in a transformation of the partition func-

tion: Z → e
i
∫
∂XD

λZ. From this, one deduces that ad-
ditional gapless edge states are required to cure this lack
of gauge invariance.

We now show that the SPT pumping picture repro-
duces the anomaly cancellation picture as well as clari-
fying the physical properties of the gapless edge states
that produce the cancellation. Consider instead the the
decomposition ωD+2 = bD ∪ e2 given by the anomaly-
lifting extension. Due to the non-trivial group extension
structure, the merger of two AGIR fluxes with flux val-
ues gi1, g2 with 0 ̸= e2(g1, g2) ∈ N , acts as a source
for AN : ∂AN = e2(A

GIR) [22]. This gives a solution
to the anomaly lifting equation ωD+2 = ∂αD+1 with
αD+1 = bD∪AN 11, from which we can deduce explicitly

11 Note that from ω ∈ H∗(GIR,M) = H∗(BGIR,M) and gauge
field AG

IR : X → BGIR, we can define an action
∫
X ω[A] by the

pull back ω[A](x) ≡ ω (A(x)) where we use the same symbol for
both interpretations of ω.

the lack of gauge invariance of the partition function Z on
open manifolds and see the connection to our SPT pump-
ing picture. Specifically: consider an N gauge transfor-
mation AN → AN + dχN where χN (x ∈ ∂X) = n ∈ N
is constant on the boundary. This changes the partition

function by: Z → e
i
∫
∂XD

bD(AGIR )⊗ZnZ. The prefactor
of this change is precisely the partition function for the
(D − 1)d SPT pumped by the n ∈ N symmetry. From
this, we see that the SPT-pumping picture reproduces
the anomaly cancellation argument, but additionally re-
veals a further substructure: α = b∪AN for the solution
to the the anomaly lifting equation ∂α = ω, and gives a
simple physical interpretation in terms of SPT pumping
for the relevant class of igSPTs.

G. Perspective from Gauge-Response Theory from
Gapped SPTs

The emergent GIR-symmetry anomaly underlying the
topological feature of a Dd igSPT arises from an
anomaly-free UV symmetry extension GUV. A more con-
ventional context for this anomaly is to arise at the Dd
surface of a (D+1)d gapped GIR-SPT with no extended
DOF. A useful way to characterize gapped GIR-SPTs is
to consider their response to a background GIR-gauge
field, which will be described by a TQFT. In this section,
we review some TQFTs for various GIR-SPTs relevant to
the igSPT examples we study, recall the construction of
Ref. [50] which enables one to deduce explicit cocycles
from these TQFTs. We then argue that the structure of
these TQFTs and corresponding cocycles implies the de-
composition form ωD+2 = bD ∪ e2 needed for our igSPT
construction, and show how the lower-d SPT edge pump-
ing symmetry that protects the igSPT edge states arises
from a dimensional reduction procedure from the TQFT
describing the higher-d GIR-SPT with the same surface
anomaly.

In this section we consider only Abelian, unitary sym-
metries.

Topological terms in discrete gauge theories

We follow the notation of Ref. [50], where we define
a ZN gauge field A such that its holonomies take values∮
A ∈ 2π

N and its gauge transformations satisfy
∮
δA = 0

where
∮
is short-hand for a discrete lattice sum around a

closed loop. We abbreviate N12 = GCD(N1, N2) where
GCD denotes the greatest common divisor.
We define the response field theory as the partition

function for the system in the presence of a background
(nondynamical) gauge field A. This is well defined as
long as the system has a unique gapped ground-state,
which requires that we consider an SPT with periodic
boundary conditions. This gapped requirement may fail
in the presence of certain gauge flux configurations, which
must then be excluded.
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For example, in 1d the GIR = ZN1
×ZN2

SPTs, which
can be interpreted as ZN1

domain walls (DWs) being dec-
orated by p ∈ N12 charges of the ZN2

symmetry. As a re-
sult, the configurations with dA1 ̸= 0, i.e. with spacetime
instantons where the A1 flux changes, induce a change in
the ZN2 charge of the system causing a zero of the parti-
tion function, tre−βH[A] since the trace forces the start-
ing and ending states to have the same charge. Hence,
we only expect to get a well-defined partition function if
A1,2 are flat, i.e. dA1,2 = 0. The corresponding gauge
response theory is [50]:

Z[AI=1,2] = e
ipN1N2

N12

∫
M2

A1A2

(G1)

where AI=1,2 is a ZNI
gauge field, M2 is a (closed) 1+1d

spacetime, and we have suppressed ∧ products between
each term for simplicity. This term is gauge invariant
under AI → AI + dgI with I = 1, 2 only if we demand
that the gauge fields are flat: dA1,2 = 0. The restrictions
on gauge configurations depend on dimensionality and
topological term in a way detailed in Ref. [50].

Deducing Cocycles from Response Theory

In general, for finitely generated Abelian symmetry

groups, GIR =
∏Q

I=1 ZNI
the topological terms will

have Lagriangian proportional to products of k factors
of AI distinct I and ⌊(D − k)/2⌋ factors of dAJ . For
example in 2d, one could have either mixed Chern-
Simons terms type terms 2d, L2d ∼ AIdAJ , or dis-
crete terms such as A1A2A3. In 3d one can have ei-
ther L = A1A2dA3 or A1A2A3A4. In 4d (which is rel-
evant to 3d IGSPTs) there are various possibilities such
as L ∼ AdAdA,AAAdA,AAAAA with various combina-
tions of flavor indices.

As shown in Ref. [50], from these topological terms,
one can readily read off an explicit cocycle, ωD+2 for
the corresponding SPT, by taking eiL[A] and replacing
each factor of AI → 2π

NI
gI and each factor of dAI by

2πvNI
(g, h) where we remind that the the vorticity func-

tion is defined by vN (a, b) = 1 if a+b > N (with addition
taken in Z i.e. not modulo N) and 0 otherwise. For ex-

ample for GIR = ZN1
× ZN2

in 3d,

Z[A] = e
i

N1N2
(2π)2N12

∫
A1A2dA2

↓
ω4(g, h, k, l) = e

2πi
N12

g1h2vN2
(k2,l2). (G2)

We note that, the decomposition ωD+2 = bD ∪ e2 fol-
lows naturally from the exterior product structure of the
topological terms in the response theory in this case.

igSPT edge-SPT pumping symmetry from
dimensional reduction

We also note that there seems to be a rather general
prescription to deduce the (D − 1)d SPT pumping sym-
metry of a Dd igSPT with emergent anomalous GIR sym-
metry, from the response theory for the (D+1)d gapped
SPT whose surface has the same anomaly.
We illustrate this first with a D = 1 GIR = ZN exam-

ple, with Z[A] = e
i

2π

∫
M2

AdA
, with corresponding cocycle

ω3(g, h, k) = e
2πi
N gvN (h,k). We say that the 0d SPT pump-

ing symmetry arose from just the first factor e2πig/N ,
which we could obtain by composing symmetry transfor-
mations (N − j) and j which set the vN argument to 1
in the cocycle term.
Acting with a symmetry j is like considering

tr
[
Uje

−βH
]
which is equivalent to a gauge configuration

with a flux
∮
τ
A = 2πj

N in the time cycle of the parti-
tion function. Composing symmetries that add up to
N is then like performing a large gauge transformation
around the time-cycle. In the igSPT context, we would
like to explore the effect of applying this transformation
only to the anomalous 1d surface of the 2d SPT (in fact,
we would like to go further and ask about the effect on
the 0d edges of the 1d igSPT which do not exist when
realized as the surface of a 2d SPT).
Considering the 2d SPT response theory on a three-

torus with coordinates (τ, x, y), we can emulate the ef-
fect of the SPT-pumping transformation restricted to the
y = 0 line at time τ = 0 by taking A = A1d(x)+AF with
dAF = −2πdτdyδ(τ)δ(y), which inserts a 2π flux in the
τ -cycle of the torus only at y = 0. Inserting this form
into the response theory results in a 1d partition func-
tion Z1d[A1d] = ei

∫
Ax

1ddx, which we can identify as the
response field theory for the (0 + 1)d GIR-SPT that gets
pumped onto the igSPT boundary by the N symmetry.
This dimensional reduction procedure works for all of

the examples listed in Table I. Selected additional exam-
ples are summarized in Table. II below.
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igSPT
Response Theory

ZD[A]
Reduction Ansazt
A = AD +AF

Reduced Response
Theory ZD−2[A]

1d ZN e
i

2π

∫
M2

AdA
dAF = 2πδ(τ)δ(y)dτdy ei

∫
Ax

1dx

2d ZN1 × ZN2 e
i

N1N2
(2π)2N12

∫
A1A2dA2

dAF = 2πδ(τ)δ(x3)dτdx3 e
iN1N2
2πN12

∫
M2

A1A2

3d ZN e
i

(2π)2

∫
M5

AdAdA
dAF = 2πδ(τ)δ(x4)dτdx4 e

i
2π

∫
AdA

TABLE II. edge-SPT pumping symmetry from dimensional reduction
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