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Recent experiments have established that semiconductor-based moiré materials can host incom-
pressible states at a series of fractional moiré-miniband fillings. These states have been identified as
generalized Wigner crystals in which electrons localize on a subset of the available triangular-lattice
moiré superlattice sites. In this article, we use momentum-space exact diagonalization to investigate
the many-body ground state evolution at rational fillings from the weak-hopping classical lattice
gas limit, in which only spin degrees-of-freedom are active at low energies, to the strong-hopping
metallic regime where the Wigner crystals melt. We specifically address the nature of the magnetic
ground states of the generalized Wigner crystals at fillings ν = 1/3 and ν = 2/3.

I. INTRODUCTION

It is now several years since Wu et al. [1] pointed out
that the Hamiltonian of interacting holes in the moiré
bands of transition metal dichalcogenide (TMD) heter-
obilayers can be mapped to the triangular lattice Hub-
bard model. Experiments quickly confirmed the validity
of this assertion by observing Mott insulating states at
band filling ν ≡ N/M = 1 of the moiré superlattice [2–
5], where N is the number of holes and M the number of
moiré unit cells in the system. Subsequent experiments
have established that TMD-based moiré materials also
exhibit correlated insulating states at a discrete series
of fractional fillings of the lowest moiré miniband [5–10].
These insulating states form because electrons localize on
a subset of moiré sites in order to minimize strong long-
range Coulomb interactions. Because they break transla-
tional symmetry, they are reminiscent of the Wigner crys-
tals expected to appear in the two-dimensional electron
gas (2DEG) at very low densities [11]. There are how-
ever some qualitative differences between Wigner crystals
formed in an electron gas with continuous translational
symmetry, and the incompressible states at fractional fill-
ings in moiré materials, which have only discrete trans-
lational symmetry. Most importantly, the moiré super-
lattice potential narrows bands and reduces the relevant
single-particle energy scales, making interactions domi-
nant in much of the available phase space.

The incompressible states in moiré superlattices are
commonly referred to as generalized Wigner crystals and
we adopt that terminology in this paper. The ubiquity of
robust crystalline states at fractional fillings in the moiré
material platform opens up a new thread in the study
of strongly interacting electrons in low dimensions and
promises to reveal new physics. Given the abundance
of distinct moiré semiconductor heterostructures, even
within the group VI transition metal dichalcogenide fam-
ily alone, and the ability to tune samples through large
ranges of filling factor by varying gate voltage, it seems
likely that it will be possible to realize a rich variety of
generalized Wigner crystal states with distinct structural

and magnetic properties in the coming years.
The emergence of incompressible states at non-integer

partial band filling can be explained only if inter-site
electron-electron interactions are included. Recent ex-
periments have therefore established moiré TMDs as a
platform to simulate extended Hubbard models whose
Hamiltonians have tunable hoppings tn, on-site inter-
action U0, and long-range interaction strengths Un (n
stands for n-th neighbor). Assisted hopping and direct
exchange non-local interaction terms can also play a cru-
cial role [12] in determining the magnetic properties of
moiré Hubbard systems. The mapping to a Hubbard
model is a one-band approximation, whose applicability
at ν ≤ 1 has generally been confirmed by experiment. For
fillings above half-filling, there is a competition between
the upper Hubbard band and remote bands; hence the
simple one-band Hubbard model is often insufficient. For
that reason, in this work we focus on the regime ν < 1,
having addressed ν = 1 in a previous study [12, 13].

In moiré superlattices, localization of electrons in an
insulating state is expected [1] in the long-moiré-period
narrow-moiré-band limit. In this regime, the dominant
energy scale is U0 at ν = 1 and U1 for 1/3 ≤ ν < 1. When
the twist angle is increased and the moiré period de-
creased, or a displacement field is applied to decrease the
moiré potential strength, the effective hopping parame-
ters t between moiré lattice sites increase and eventually
become comparable to inter-site interaction strengths U1,
complicating the electronic properties. The interplay be-
tween spin and charge degrees of freedom can give rise
to different magnetic orders at each filling factor. For
example, recent experiments have reported that some of
the crystal states are striped phases [8], and that antifer-
romagnetic interactions are frustrated for ν = 2/3 band
filling factor [14]. When hopping is strong enough to
overcome the near-neighbor interaction, the Wigner crys-
tal will melt into a liquid state – the Mott-Wigner tran-
sition. Interestingly a recent experiment performed on
MoSe2/WS2 observed that the charge gap continuously
vanishes as the superlattice potential is weakened [10].
Further experiments have shown that the charge gaps
of the generalized Wigner crystal states are asymmetric
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with respect to half-filling (ν = 1) of a single spinful
band, and also with respect to quarter-filling (ν = 1/2)
[6] and demonstrate the role of quantum fluctuations in-
volving remote bands, as we will show in this work, before
and across the Mott-Wigner transition.

The magnetic order of the generalized Wigner crys-
tal phases, as well as the nature of their bandwidth
and density-tuned quantum melting transitions are still
a matter of debate. Previous theoretical efforts to un-
derstand moiré Wigner crystals and their evolution with
interaction strength have focused on the deep crystalline
regime [15–17], where classical Monte Carlo simulations
can be used to investigate the ground state charge order
at different fillings. Hartree-Fock [18–20] and classical
Monte Carlo studies [21] have addressed the competition
between different charge and spin orders in the crystal
phase, and its transition to metal when bandwidth or
density are tuned. An analysis that includes quantum
fluctuations and goes beyond mean-field is needed, how-
ever, since mean-field theory approximations are known
to favor ferromagnetic groundstates and to overestimate
the stability of insulating states in the proximity of metal-
insulator transitions.

In this work, we report on a finite-system exact di-
agonalization study of semiconductor moiré materials at
fractional filling factors. Starting from the continuum
model description [1], we add relevant electron-electron
interactions projected to the topmost moiré band and ob-
tain the many-body spectrum. We find, as already sug-
gested by experiment, that a rich set of fractional band
fillings ν support correlated insulating states with tun-
able magnetic properties. We show that there is an over-
riding competition between antiferromagnetism and fer-
romagnetism particularly at ν = 2/3 band filling, which
we explain using a low-energy effective spin model de-
scription and relate to a recent experiment [14]. We also
address the Mott-Wigner transitions at fractional fillings,
finding that as in the ν = 1 case they are not strongly
first order.

II. MOIRÉ MATERIAL MODEL

A. Continuum model

Our starting point is the continuum model description
of TMD heterobilayers with type-I or type-II band align-
ment [1]. In this case the topmost moiré band is concen-
trated in one of the layers, which we refer to as the active
layer, depicted in red in Fig. 1(a)-(b). The influence of
the second layer, shown in blue in Fig. 1(a)-(b), is re-
sponsible for a moiré potential that affects charge carriers
in the active layer. The moiré pattern can be induced by
a small twist angle θ or a lattice mismatch δ between
the two layers. The moiré lattice constant is given by
aM = a0/(θ

2 + δ2)1/2, with a0 the lattice constant of
the active TMD layer. To date most heterobilayer ex-
periments have focused on unrotated WSe2/WS2 with a

moiré lattice constant of aM ≈ 8.2 nm, or MoSe2/WS2,
with a moiré lattice constant of aM ≈ 7.5 nm. Because
the moiré lattice constant reaches a maximum, the sys-
tem is expected to be less sensitive to twist angle disorder
at zero twist angle.

Valley and spin are locked in TMD heterobilayers and
the valley (or spin) projected continuum Hamiltonian is
given by [1]

H0 = − ~2

2m∗
k2 + ∆(r), (1)

∆(r) =2Vm
∑

j=1,3,5

cos(bj · r + ψ). (2)

The first term in Eq. (1), which corresponds to the kinetic
energy of carriers in the top moiré band, is diagonal in
momentum space and the second term, the moiré poten-
tial, is diagonal in coordinate space. The moiré potential
depends on only two parameters (Vm, ψ) because [1] of
the system’s C3 symmetry. The phase ψ fixes the ge-
ometry of the moiré superlattice, which we take to be
triangular as it is in most of the TMD heterostructures,
and the strength of the moiré potential Vm can be re-
lated to the experimentally tunable displacement field.
For concreteness, throughout this work we take the ef-
fective mass m∗ = 0.45m0 and ψ = 45◦, corresponding
to WSe2/WS2 [22]. We take the modulation potential
strength Vm as an experimentally controllable parameter
since it has been demonstrated to be sensitive to the dis-
placement field D. The form we have used for the moiré
modulation parameter assumes that it varies smoothly
with position on the moiré scale; higher harmonics in the
plane-wave expansion are more important in longer pe-
riod moirés in which relation relative to rigidly twisted
bilayers is stronger.

An example of the bandstructure obtained from di-
agonalizing Eq. (1) is shown in Fig. 1(c). We label
the band energies of Eq. (1) as εnk, while the eigen-
states can be written in a plane wave expansion as
|n, ψk〉 =

∑
G znk,G |k +G〉, where n is a band index

and G are reciprocal lattice vectors. In order to study
the emerging many-body phases we consider the interact-
ing Hamiltonian projected to the topmost moiré valence
band (hence we omit band index)

H =
∑
k

εkc
†
kσckσ +

∑
i,j,k,l
σ,σ′

V σ,σ
′

i,j,k,l

2
c†kiσc

†
kjσ′cklσ′ckkσ, (3)

where the Coulomb matrix elements are given by

V σ,σ
′

i,j,k,l =
1

A

∑
Gi,Gj

Gk,Gl

(
z∗ki,Gi

z∗kj ,Gj
zkk,Gk

zkl,Gl

) 2πe2

ε q
. (4)

The summation involving the term in brackets results
from the projection of interactions to a single band and
can be rewritten in terms of the form factors, as described
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elsewhere [23]. In Eq. (4), q = |ki +Gi − kk −Gk| is
the momentum transfer, A is the area of the system,
ε the effective dielectric constant, and total momentum
conservation is implicit.

FIG. 1. (a) Schematics of a TMD heterobilayer with metallic
gates at distance d from the sample. By varying gate voltages
a displacement field is applied. (b) Schematics of the heter-
obilayer in momentum space. Charge carriers populate the
active WSe2 band while the presence of a WS2 layer generates
the moiré potential, Eq. (2), whose strength is modified by
the displacement field D. (c) Example of WSe2/WS2 moiré
minibands obtained from Eq. (1), with Vm = 40 meV. (d)
Evolution of the energy scales of the problem as Vm is varied:
the interaction strength UM (green), the kinetic energy scale
WM (black), the bandwidth B (blue) and the gap to the first
remote ∆R (brown).

B. Exact Diagonalization Methodology

In this article we take the same approach as in pre-
vious work [12, 13], utilizing exact diagonalization (ED)
to solve the many-body Hamiltonian. We present our
results in phase diagrams that depend on dimensionless
parameters obtained by taking ratios of the relevant en-
ergy scales of the system. In particular, three energy
scales can be identified; the moiré potential depth Vm,
the interaction strength UM = e2/(εaM ), and the kinetic
energy scale WM = ~2/m∗a2

M . By varying the two ratios
of these three scales, we can simulate any heterobilayer as
long as the moiré period is much larger than the micro-
scopic lattice constant. This ensures that our conclusions
apply for arbitrary heterobilayers as long as their low en-
ergy physics is captured by the continuum model, Eq.
(1) and that the shape of the moiré potential is similar to
that of a triangular lattice model. The energy gap to the
remote moiré bands ∆R can, in principle, be viewed as

another relevant energy scale. We take parameter values
such that this scale is always larger than all other scales
involved, as can be seen in Fig. 1(d), justifying the sin-
gle band projection of Eq. (3). As we have pointed out
above, however, interactions renormalize bands more at
higher electron densities. For this reason the single-band
approximation should be treated with caution for fillings
ν > 1, where remote band mixing is often relevant.

The model we study has orbital and spin degrees of
freedom, discrete triangular lattice translational symme-
try, SU(2) spin-rotational invariance, and no spin-orbit
coupling. The Hilbert space can be divided into smaller
subspaces with total momentum K with discrete values
determined by the number of moiré unit cells M , to-
tal spin S, and azimuthal spin Sz. The basis is con-
structed in an occupation number representation, dis-
tributing particles among single-particle states labeled by
Sz quantum number and quasi-particle (kx, ky) momen-
tum. The total number of possible configurations Nconf
for particles distributed on M single particle states with
N↑ spins up and N↓ spins down is determined by a prod-

uct of binomial coefficients, Nconf =
(
M
N↑

)
·
(
M
N↑

)
. The

many-body Hamiltonian projected to a given total mo-
mentum K is diagonalized in Sz subspaces. We do not
rotate the Hamiltonian matrix to a S basis as this is
an additional computational cost, and instead determine
the ground state total total spin S by identifying mul-
tiplets from the Sz-dependent energy eigenvalues. The
total spin S assignments have been confirmed by calcu-
lating the spin structure factor S(q = 0). For a given
momentum, the S-multiplet structure implies that the
largest subspace corresponds to the lowest possible Sz

which contains states with all values of total spin S.
All of our exact diagonalization calculations are limited

only by the maximal matrix size of a given subspace, with
the largest subspace corresponding to the lowest possible
Sz. The results presented here correspond to systems
containing M = 9, 12 and 16 moiré unit cells. Despite the
limited system sizes that can be reached with the exact
diagonalization method, important information can still
be extracted concerning the behaviors of charge gaps and
the nature of the magnetic order of insulating states. Nu-
merical non-perturbative approaches, like the one taken
in this paper or DMRG, are particularly important in the
quantum melting regime, where Hartree-Fock is known
to overestimate the stability of the insulating phase.

III. FINITE-SIZE PHASE DIAGRAMS

A phase diagram for TMD heterobilayers as a function
of filling factor and the kinetic-energy-scale to moiré-
depth ratio W/Vm is shown in Fig. 2(a) . The color
scale specifies the ratio of the charge gap to the Coulomb
interaction-energy scale ∆c/U . A finite value of the
charge gap indicates an incompressible state, while a van-
ishing charge gap indicates a metallic state. The charge
gap is extracted from the many-body spectrum via the
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relation ∆c(N) = E(N + 1) +E(N − 1)− 2E(N), where
N is the number of particles in the system and E is the
energy of a many-body ground state obtained from diag-
onalization of the Hamiltonian in Eq. (3) for a system
with a finite number of moiré unit cells M . When in-
teractions are sufficiently strong, we verify the presence
of a Mott insulating state at half-filling ν = N/M = 1,
and also of a set of incompressible states at the fractional
fillings: ν = 1/3, 2/3, 4/3, 5/3, 1/4, 1/2, 3/4, 5/4, 3/2, 7/4
[24]. All insulating states become metallic when Vm is
decreased below a critical value, in qualitative agreement
with experimental results. Fig. 2(b) shows the evolution
of the charge gap in meV with W/Vm for selected multi-
ples of ν = 1/3 and ν = 1/4. The typical gap values in
the localized limit ∆c ∼ 3 − 5 meV, are in accord with
those measured in experiment [10, 14].

FIG. 2. (a) Exact-diagonalization phase diagram for TMD
heterobilayers as a function of filling factor ν and W/Vm (ki-
netic energy to moiré potential depth ratio). We perform
calculations on finite-size systems with N electrons in M unit-
cells. Results shown are obtained at M = 9 for fillings multi-
ples of ν = 1/3 and M = 16 for fillings multiples of ν = 1/4.
Incompressible (gapped) states are clearly present at several
values of ν = N/M specified in the main text, with the color
scale indicating the magnitude of the charge gap ∆c relative
to the interaction scale U , at ε = 20. Our results are for
a discrete set of (N,M) and we do an interpolation to ob-
tain a continuous plot, which is saturated for clarity. (b)-(c)
Evolution of the charge gaps for selected values of ν. The
gaps coincide with known classical values in the atomic limit
and vanish at various different values of W/Vm in the melting
regime. Insets show the finite geometries used.

At each fractional filling factor we can follow the evo-
lution of the ground state from the atomic limit as the
bandwidth increases. For very narrow bands, the physics
reduces to that of a triangular lattice-gas model. At ra-
tional filling factors the charge distributions that mini-

mize the interaction energy break translational symme-
try and have an energy gap for unbound electron-hole
pairs. As the bandwidth increases, quantum fluctuations
induce interactions between electron spins that is usu-
ally expected to yield a ground state with magnetic or-
der. Quantum fluctuations can potentially change the
preferred charge order [17] from that of the atomic limit
and they eventually dominate, driving a transition to a
metallic state. In the following we first make a number
of general remarks about our numerical results and then
focus on the filling factors ν = 1/3 and ν = 2/3 that
have the most prominent insulating states in experiment
[5–9].

A. General Trends

We can identify three main regimes in our phase dia-
gram, Fig. 2(a)

1. Atomic limit – W/Vm � 1. This limit corresponds
to a perfectly flat band with t = 0, equivalent
to a classical electron gas on a lattice created by
the strong moiré potential. Electrons are expected
to localize on a subset of superlattice sites so as
to minimize on-site and near-neighbor interactions,
giving rise to generalized Wigner crystal states.
Classical Monte Carlo [7, 17] and Hartree-Fock [25]
calculations can address the specific form of the
charge order, which depends on the filling. We see
in Fig. 2(b) that the charge gaps at all multiples
of 1/3 and 1/4 are equal in the atomic limit. The
many-body ground state manifold contains a large
number of nearly degenerate states, corresponding
to different spin states on the same sublattice of oc-
cupied sites. As the atomic limit is approached, the
spacings between these levels become too small to
allow numerical determination of the ground state
magnetic order. The small spacing of these levels
implies that the full entropy of the spin subspace
will be realized at a low temperature.

2. Melting regime – W/Vm ∼ 0.05− 0.1. In the inter-
mediate regime, the competition between electron
localization due to long-range Coulomb interaction
and quantum fluctuations controls the generalized
Wigner crystal melting. Quantum fluctuations of
charge distributions are enabled by the hopping
term, t. When t increases from the atomic limit,
interactions between spins located on different sites
strengthen. The ground state spin manifold then
broadens sufficiently to allow the magnetic proper-
ties of some crystal states to be addressed. Inter-
estingly, depending on the dielectric constant value
ε and the filling fraction ν, we can obtain either
ferromagnetic or antiferromagnetic states.

3. Electron gas limit – W/Vm � 1: This is the limit
of weak moiré modulation. The system will resem-
ble a 2DEG and the ground state is determined by



5

the electron density. The question of how Wigner
crystallization in the 2DEG is modified by adding
an underlying lattice as a small perturbation is not
a trivial one and the properties expected for elec-
tron crystals in the 2DEG are significantly modi-
fied. We obtain vanishing charge gaps at all fillings
corresponding to Fermi liquid states as can be seen
in Fig. 2(a) (in Appendix B we show examples of
occupation distributions where the Fermi surfaces
can be identified). This is a limit where Hartree-
Fock calculations do not give reliable results [26].

In focusing on filling fractions ν = 1/3 and ν = 2/3,
we will mainly discuss results for a system containing
M = 9 moiré unit cells in the main text and present some
additional results for M = 12 in Appendix B. Despite
the small system size, the M = 9 geometry captures the
charge distribution observed in experiments [9, 27], hence
it can give us some insight into how increasing hopping
amplitudes from the localized limit initially determines
the magnetic ground state and then, ultimately, drives
melting.

In order to determine the nature of the magnetic
ground states, translational symmetry breaking can be
tested by evaluating the static spin-spin correlation func-
tion

ξ(r, r′) = 〈S(r) · S(r′)〉, (5)

and using it to calculate a static spin structure factor
defined as

S(q) =
1

A2

∫
dr

∫
dr′ e−i q·(r−r

′)ξ(r, r′). (6)

In these equations q is an extended zone wavevector, A
is the sample area, and the expectation values are taken
in the many-body ground state. Finite size peaks in this
quantity at wavevectors that are not reciprocal lattice
vectors indicate broken translational symmetry. The in-
verse Fourier transform of S(q),

ξ(r) =
1

A

∑
q

ei q·r S(q) =
1

A

∫
dx ξ(x,x+ r), (7)

is used below to characterize the correlations between
spins at positions separated by r.

Additional insight is provided by the number of finite-
size many-body eigenvalues in different energy ranges.
The Hilbert space can be divided into a singly-occupied
subspace (low energy sector) and a doubly-occupied sub-
space (high energy sector) analogous to the lower and
upper Hubbard bands for half-filling. Since the spectrum
connects adiabatically to the atomic limit, the number of
states with energy smaller than ∼ U0 is equal to the di-
mension of the full single-occupancy Hilbert space. For
filling ν = N/M , the subspace of the single-occupancy
Hilbert space with N↑ spins up and N↓ spins down has
dimension given by

d(N↑, N↓) =
M !

N↑!N↓!(M −N)!
. (8)

By considering all possible configurations (N↑, N↓) we
obtain the total dimension of the single occupancy, low-
energy, sector.

B. ν = 1/3 Band Filling

In Fig. 3(a) we illustrate the spatial configuration of
the ground state for ν = 1/3. In the atomic limit (t = 0)
all spin configurations are degenerate and the ground
state charge distribution corresponds to a triangular lat-
tice with periodicity

√
3 aM (represented as green sites).

This is the only charge configuration that avoids the U1

nearest neighbor interaction scale. This charge order has
been measured by STM [9, 27]. Other theoretical studies
[18–20] have also found the charge configuration of Fig.
3(a) in the highly localized limit.

FIG. 3. Generalized Wigner crystal state at ν = 1/3. (a)
Real space configuration indicating charge order (green) and
localized spins forming a 120◦-Néel state. The magnetic unit
cell is indicated in gray. Super-exchange processes of order t22,
t41 and t21 t2 are represented by blue arrows. (b) Schematics
of the low-energy spectrum and the double-occupancy mani-
fold with energy ∼ U0, with the hopping processes connecting
different sectors. (c) Many-body low-energy spectrum as a
function of W/Vm showing the evolution of the three bands
corresponding to the ground state manifold, bound particle-
hole pairs (excitons) and itinerant charged excitations. The
charge gap evolution is shown as a green solid line (We have
added a Coulomb-blockade correction that brings ∆c and the
bottom of the charged excitation band of many-body excita-
tions into coincidence). (d) Structure factor and (e) spin-spin
correlation function calculated at Vm = 30 meV. Lattice sites
in (e) are indicated as white circles.

Starting from the atomic limit, there is a regime of fi-
nite t in which the charge order pattern and the insulat-
ing state gap survive, but quantum fluctuations induce
interactions between localized spins that lift the large
ground state spin degeneracy. From our ED results we
obtain a ground state with minimum total spin, indicat-
ing an antiferromagnetic state. The magnetic configura-
tion in this regime is also shown in Fig. 3(a). We con-
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firm that spins form a 120◦-Néel antiferromagnetic state
by evaluating the structure factor S(q) and its inverse
Fourier transform ξ(r), presented in Fig. 3(d) and (e)
respectively. We observe structure factor peaks at the
middle inner points ϑ of the Brillouin zone, indicating
a magnetic unit cell with 9 sites. From the correlation
function ξ(r) we see that all first neighbors of an occu-
pied site are empty, while the spin orientations on the
second neighboring sites form an angle larger than π/2
with respect to the occupied site, which translates into
negative values. In the limit of classical spins, for this
triangular Néel state, evaluation of the structure factor
at high symmetry points results in a finite value only at
ϑ

S(γ) = S(κ) = 0, S(ϑ) =
1

72
. (9)

When quantum fluctuations are not too strong, these
classical estimates are still approximately valid [28].
Therefore the appearance of peaks at ϑ in Fig. 3(d)
is in agreement with the indicated spin configuration.

The many-body spectrum separates into a high-energy
sector associated with double occupations and character-
istic energy U0 and a low-energy sector of configurations
with no double occupations. For N = 3 particles on
M = 9 sites, the full Hilbert space has dimension 816
and the low-energy sector of single-occupancy consists of
672 states. Fig. 3(c) shows the many-body energies as a
function of W/Vm, obtained by ED, corresponding to the
low-energy single-occupancy Hilbert space, that in turn
separates into three bands.

The lowest band, or ground state manifold, contains
24 states that are degenerate in the atomic limit. This
number can be understood by noting that there are three
inequivalent Wigner crystal configurations at ν = 1/3–
filling, corresponding to choosing one of the three sites to
occupy within the unit cell. For each of these states there
is a multiplicity of 23 when the spin degree of freedom is
taken into account. As t is increased (right limit of the
plot) the degeneracy is lifted. In contrast to the half-filled
case, the ν = 1/3 state has a branch of excitonic states
with energies that lie below the charge gap, indicated by
a dark green line with dots, as can be observed in our
spectrum. The number of these particle-hole excitations
is Nex = 432 = 24× 3× 6, corresponding to the product
of the number of states in the ground state manifold,
the number of electrons, and the number of neighboring
empty sites around each filled site. Finally, the third
band in Fig. 3(c) is the manifold of itinerant charged
excitations. Its minimum coincides with the charge gap
∆c in the atomic limit. This band has 216 states for the
system size considered, corresponding to configurations
where the three particles occupy neighboring sites. The
multiplicity of the itinerant charged excitation branch
grows most quickly as the system size is increased.

From the mapping of the TMD continuum model to an
extended triangular Hubbard model [1, 12], we have de-
rived an effective spin model that describes the magnetic

ground state we observe. The Heisenberg interaction be-
tween localized spins in the configuration shown in Fig.
3(a), up to order t41/U0U

2
1 , is

J1(1/3) =
4t2eff

U0
− 2t21t2

U2
1

+
4t41
3U3

1

− 2X2, (10)

where t1 and t2 stand for the first and second nearest-
neighbor hopping parameters, X2 is the second-neighbor
direct exchange and we have defined an effective second-
neighbor hopping teff = t2 − t21/U1. Fig. 3(a)-(b) show a
schematic of the virtual state processes that contribute
to teff. This virtual second-neighbor hop process does
give a contribution to the effective spin model, Eq. (10),
that is similar to the analogue half-filling t1 process.

Hopping of an arbitrary particle to a neighboring site
by t1, increases the energy by 2U1 (we neglect the long
range part of Coulomb interaction in this analysis, for
simplicity). Note that terms of order t21 do not influence
spin interactions, but repeated t1 and t2 hops without
double-occupying a site yield the second and third terms
in Eq. (10). The value of J1(1/3) as a function of inter-
action strength is plotted in Fig. 5(a) below.

C. ν = 2/3 Band Filling

The spatial configuration of the ground state for N = 6
particles on M = 9 sites (for the same parameters as
those of Fig. 3) is shown in Fig. 4(a). In the atomic
limit the charge distribution forms a honeycomb lattice,
in agreement with recent STM measurements [9]. When
quantum fluctuations are turned on, the ground state
has antiferromagnetic order, consistent with the mea-
sured Curie-Weiss (CW) temperature indicator [14] on
a similar heterobilayer system.

The structure factor, shown in 4(d), has peaks at κ,
indicating a magnetic unit cell with three sites, while also
showing smaller non-zero values for the middle points ϑ.
The function ξ(r) is illustrated in Fig. 4(e). The second
neighbor sites have a positive value indicating same spin
orientation, while the six nearest neighbors of an occu-
pied site have negative values. We interpret these small
negative values as the average of three occupied sites with
opposite spin orientation and three empty sites. These
spin correlation function results seem to indicate that
at ν = 2/3–filling, there is greater virtual occupation
of empty sites compared with the ν = 1/3–filling case.
A classical analysis of the structure factor for the spin
configuration in Fig. 4(a) yields the following values for
high-symmetry points

S(γ) = S(ϑ) = 0, S(κ) =
1

12
, (11)

allowing us to conclude in favor of the state in Fig. 4(a)
when quantum fluctuations are not strong.

For N = 6 particles on M = 9 sites, the full Hilbert
space has dimension 18564, while the dimension of the
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FIG. 4. Generalized Wigner crystal state at ν = 2/3. (a) Real
space configuration, which effectively forms a honeycomb lat-
tice (blue sites) with near-neighboring occupied sites having
opposite spins. Processes contributing to the spin coupling
and to the formation of the excitonic band are depicted in
blue and red respectively. (b) Schematics of the three low-
energy bands and the double-occupancy manifold, the dom-
inating super-exchange process of order t21 is represented by
the blue arrows, however direct exchange X1 also gives a sig-
nificant contribution to the spin coupling. (c) Many-body
low-energy spectrum as a function of W/Vm showing three
bands: the ground state manifold, particle-hole pair excita-
tions and charged excitations. The charge gap evolution is
shown as a blue solid line. (d) Structure factor and (e) Spin-
spin correlation function, calculated at Vm = 30 meV.

single-occupancy Hilbert space is 5376. Fig. 4(c) shows
the low-energy many-body spectrum, which separates
into three bands as in the ν = 1/3 case, with a higher-
energy charged sector, and a mid-energy region contain-
ing excitonic states with bound electron-hole pairs, in-
dicated by red arrows in Fig. 4(a)-(b), and the ground
state manifold. The ground state band has 192 states,
corresponding to three inequivalent Wigner crystal con-
figurations (the conjugate configurations of the ν = 1/3
case) and a multiplicity of 26 for each, when the spin
degree of freedom is accounted for. The electron-hole
bound pair sector has Nex = 3456 = 192 × 6 × 3 states,
which result from the product of the number of states
in the ground state manifold, the number of electrons
and the number of empty sites where each electron can
hop. The higher band contains the charged excitations
and has 1728 states, which correspond to the conjugates
of the charge distributions forming the higher band in
the ν = 1/3 case, times the spin multiplicity 26. In this
case the Heisenberg coupling constant of the effective spin
honeycomb model for the configuration in Fig. 4(a), at
lowest order, is

J1(2/3) =
4t21

U0 − U1
− 2X1, (12)

where X1 is nearest neighbor direct exchange. Virtual

hopping to a double occupied site by t1 is the main pro-
cess responsible for antiferromagnetism, the first term in
Eq. (12), shown by blue arrows in the cartoon of Fig.
4(a)-(b). The value of J1(2/3) as a function of interac-
tion strength is plotted in Fig. 5(b).

D. Tuning magnetic properties

The magnetic honeycomb pattern found at ν = 2/3,
shown in Fig. 4(a), is sensitive to model parameters. If
the value of the dielectric constant ε is increased, the
ground state transits from antiferromagnetic to ferro-
magnetic. The dielectric function increase can be ac-
complished experimentally by modifying the substrate
or varying the distance from active device to electrical
gates. This change of properties is illustrated in Fig. 5,
where we present structure factors for two values of ε for
both fillings ν = 1/3 and 2/3. (We also include results
corresponding to M = 12.) For ν = 1/3, shown in Fig.
5(a), the main peaks are at the middle points, ϑ, for the
two system sizes and for both values of ε, in agreement
with the state of Fig. 3(a). On the other hand, structure
factors for ν = 2/3 change qualitatively from ε = 20 to
ε = 10, as seen in Fig. 5(b). In particular, we observe
peaks at γ in the structure factors for ε = 10 in both sys-
tem sizes, characteristic of a ferromagnetic state. Smaller
peaks at κ can also be observed, indicating that the sys-
tem still breaks the moiré lattice translation symmetry.
For ε = 20, the main peaks in the structure factor are at
κ, in agreement with the state depicted in Fig. 4(a).

FIG. 5. Competing magnetic interactions in generalized
Wigner crystals. Solid lines show the effective spin couplings,
(a) J1(1/3) and (b) J1(2/3), as a function of ε. Insets corre-
spond to structure factors for system sizes M = 9, 12 and two
values of dielectric constant ε = 10, 20. Peaks in (a) always
remain at ϑ, consistent with a magnetic unit cell of 9 sites
with antiferromagnetic order. In contrast, at ν = 2/3-filling
the main structure factor peak changes location from κ at
ε = 20 to γ at ε = 10, indicating a transition from a an anti-
ferromagnetic to a ferromagnetic state. Results shown in (a)
and (b) have been obtained for Vm = 30 meV and Vm = 40
meV respectively.
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The behavior at ν = 2/3 can be qualitatively under-
stood in terms of the effective spin model of Eq. (12).
As the value of ε is decreased, the contribution from di-
rect exchange starts to dominate, eventually turning the
coupling constant negative and driving the ground state
ferromagnetic. We show in Fig. 5(b) that J1(ν = 2/3)
changes sign as ε decreases. For the other filling, ν = 1/3,
the effective spin coupling J1(ν = 1/3) remains positive
for all values of ε considered, as seen in Fig. 5(a). How-
ever, because the main processes determining the mag-
netic properties have a much smaller energy scale for
J1(ν = 1/3), it is almost one order of magnitude smaller
than J1(ν = 2/3) at the same Vm. This trend agrees
with a recent experiment by the Cornell group [14], where
the Curie-Weiss temperature measurements for ν = 2/3–
filling clearly confirmed antiferromagnetic order, while
for ν = 1/3–filling the result is inconclusive due to the
very small values obtained. The experiment also found
that the Curie-Weiss temperature vs. ν has a strong local
minimum at ν = 2/3, suggesting a competition between
super-exchange and direct exchange. Our simple finite
size calculations allow us to reproduce this phenomenol-
ogy. We note that in [14] a similar effective honeycomb
spin model with positive first-neighbor coupling but neg-
ative second-neighbor coupling was proposed, and it can
also give rise to a ferromagnetic groundstate.

IV. DISCUSSION

Generalized Wigner crystal states are ubiquitous in
semiconductor moiré materials at fillings ν 6= 1, indi-
cating that extended-range Coulomb interactions play a
more relevant role in those systems than has been rec-
ognized in atomic materials, which are often successfully
described by the standard Hubbard model. The crystal
states can give rise to rich physics due to an interplay
between spin and charge order. We have numerically
explored how the effects of weak quantum fluctuations
affect the charge order observed experimentally in the
localized limit at fillings ν = 1/3 and ν = 2/3 of tri-
angular moiré superlattices. In particular, we found a
tunable magnetic ground state at ν = 2/3–filling, which
is more sensitive to the superexchange-exchange compe-
tition of localized spins than its ν = 1/3 counterpart.
This delicate competition, that is also suggested by ex-
periment, indicates that it would be possible to investi-
gate the antiferromagnet-to-ferromagnet transition that
is expected at ν = 1 [12] also at ν = 2/3.

By further increasing the band dispersion, we ad-
dressed the melting of the Wigner crystal states. The
nature of the Mott-Wigner transition [10, 29] between in-
sulating broken translations symmetry states and metal-
lic states with no broken symmetries is a fundamentally
important issue. Musser et al. [29] theoretically explored
the possibility of two continuous transitions with an in-
termediate spin liquid phase. Recent experiments, which
are sensitive mainly to the charge gaps, have found that

the transitions appear to be continuous as the moiré dis-
placement field is varied [10]. From our results, Fig. 2,
we can only conclude that the Mott–Wigner transition is
not strongly first order, in the sense that the jump in the
charge gap upon melting is very small compared to the
atomic limit gap.

The one-band models we study have particle-hole sym-
metry in the t = 0 atomic limit which guarantees iden-
tical charge gaps at filling factors ν and 2− ν. Hopping
on a triangular lattice at finite t violates this symme-
try as we see for instance in Fig. 2(b)-(c), which show
larger gaps for fillings below ν = 1 than for fillings above
ν = 1, in agreement with experiment [5–7, 9, 10, 14]. We
note however that remote band effects, neglected in our
single-band study, are likely to play an equally important
role in the particle-hole asymmetry seen in experiment.
In appendix B we show the effects of including remote
bands in our calculations, indicating that the importance
of mixing with remote bands increases with filling factor.
This is in agreement with different experimental mea-
sures where states for smaller hole fillings of the topmost
band always have larger charge gaps [5–7, 14].

Finally we comment on the importance of two items
that can be relevant in experiment, gate distance and
disorder. First, extended Coulomb interactions that trig-
ger generalized Wigner crystal formation, are much more
sensitive to the sample-gate coupling than the on-site in-
teractions and can be controlled by varying the distance
to the gate electrodes. The results presented in the main
text have been obtained for the limit of infinite gate dis-
tance. In appendix B we study the effect of modifying
the distance d to gates on our phase diagrams for the
fillings multiples of ν = 1/3, finding the same general
trends with only quantitative changes.

Unrotated bilayers with a lattice mismatch, as con-
sidered here, eliminate the twist-variation source of dis-
order. Disorder is always present however, and it may
have some importance in determining the details of the
observed metal-insulator transitions [30–32] at fractional
and half-filling. Our calculations which neglect disorder
nevertheless reproduce many qualitative and quantitative
experimental features.

In this work we have focused on generalized Wigner
crystal states on a triangular moiré superlattice, ap-
pearing on TMD heterobilayers and tuned by the
displacement field. Some TMD homobilayers can be ap-
proximated by honeycomb moiré superlattice models [33]
and incompressible states are also expected to appear if
long-range interactions are strong enough [17, 25]. In
that case applying a displacement field breaks inversion
symmetry and induces a complex hopping, which could
modify the picture presented here and deserves further
analysis. In a broader context, recent experimental
efforts on designing patterned dielectrics that induce a
superlattice on semiconductors or semimetals [34] could
also host generalized Wigner crystals and the results
obtained here would apply in the triangular case of those
systems.
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ings of the National Academy of Sciences 118,
10.1073/pnas.2021826118 (2021).

[34] C. Forsythe, X. Zhou, K. Watanabe, T. Taniguchi, A. Pa-
supathy, P. Moon, M. Koshino, P. Kim, and C. R. Dean,
Band structure engineering of 2d materials using pat-
terned dielectric superlattices, Nature Nanotechnology
13, 566 (2018).

Appendix A: Structure factors of the classical crystal states

The Brillouin zone mesh of size M = 9 includes the γ–point, the κ/κ′–points and six internal points that we label
ϑ. We want to calculate the values that the structure factor acquires at these points for the magnetic states presented
in the main text, but in the classical limit and for a lattice with an arbitrary number of sites M . The coordinates of
the momentum points of interest are given by γ = kθ(0, 0), ϑ = kθ(1/3, 0) (due to the symmetry, it suffices to take

one of the six internal points) and κ/κ′ = kθ(1/2,±1/2
√

3), with kθ = 4π/
√

3aM . For convenience, we will consider
a triangular lattice with M sites, where M is a multiple of 3, such that we can divide the lattice into three triangular
sublattices that we denote A, B and C, each containing M/3 sites. We want to calculate

S(q) =
1

M2

∑
i,j

eiq·(Ri−Rj) 〈Si · Sj〉 , (A1)

For magnetic states in the classical limit, we can replace spin operators Si by vectors of norm 1/2, and expectation
values 〈Si · Sj〉 become dot products.

For the classical state at ν = 1/3–filling, only one of the three sublattices is filled (we choose it to be the A–sublattice)
and we can divide it again into three sublattices A1, A2 and A3 with different spin orientations, obtaining the Néel
state. Their coordinates within the magnetic unit cell are RA1 = a′M (0, 0), RA2 = a′M (1,

√
3), RA3 = a′M (−1,

√
3),

with a′M =
√

3aM/2. We note that Si · Sj = 1/4 when the two spins at i and j are aligned and that Si · Sj = −1/8
when spin orientations differ by ±2π/3. Therefore we get

S(γ) =
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= 0. (A2)

For the edge points of the Brillouin zone the phase factors are exp [iκ · (RAi −RAj)] = 1, with i 6= j, hence the
calculation is similar to the γ-case,

S(κ) = S(κ′) =
1

M2
3
∑
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(
M

9

)[
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4
− 1

8
− 1

8

]
= 0. (A3)

For the internal point we obtain a finite value,

S(ϑ) =
1

M2
3
∑
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. (A4)

For the ν = 2/3–filling classical ground state, we choose to populate sublattices B and C within the magnetic unit cell,

with coordinates RB = a′M (0, 2
√

3) and RC = a′M (0, 4
√

3), respectively. In this case the product is Si · Sj = ±1/4,
for aligned and anti-aligned spins respectively. The structure factor at the three points of interest is given by

S(γ) =
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where in the last line we used that RC = RB+R0, with R0 = a′M (0, 2
√

3) the vector that separates the two sublattice
sites within each unit cell, to rewrite the summations and that exp[im ·R0] = 1.

Appendix B: Effect of remote bands, distance to gates and some results for other system sizes

The results presented in the main text correspond to projecting Coulomb interactions to the topmost moiré band,
which is equivalent to mapping the system to an extended triangular Hubbard model. As we pointed out, this
approximation is not always valid and is more expected to break down above half-filling ν > 1. In order to determine
how much the inclusion of remote bands affects our results, in Fig. 6 we show charge gaps for ν = 1/3 and ν = 2/3,
calculated after projecting the Hamiltonian to different numbers of bands in the ED calculation.

FIG. 6. Effect of remote bands in the evolution of charge gaps as a function of W/Vm for fillings ν = 1/3 and ν = 2/3.

Adding the remote bands has the effect of enlarging the Hilbert space, lowering the ground state energy. The phase
boundary between antiferromagnetic and ferromagnetic regions at ν = 2/3–filling will be shifted because the remote
bands effectively screen the dielectric function. Besides these quantitative changes, the general trends regarding the
evolution of the charge gaps and the magnetic properties remain the same. From Fig. 6 we see that the effects of
remote bands become more prominent for smaller dielectric constant ε and higher filling factor ν. This makes sense,
since a small ε means stronger Coulomb interactions, which will allow for virtual transitions to remote bands.

In Fig. 7 we show the effect of modifying gate distance on the charge gaps at fillings ν = 1/3 and ν = 2/3. The
effect of the gates is introduced by modifying the interaction elements, Eq. (4), to

V σ,σ
′

i,j,k,l =
1

A

∑
Gi,Gj

Gk,Gl

(
z∗ki,Gi

z∗kj ,Gj
zkk,Gk

zkl,Gl

) 2πe2

ε q
tanh (q d) , (B1)

where d is the distance from gates to sample, as shown in Fig. 1(a). Making the gates closer will screen the long-range
interactions, which in turn will decrease the charge gap values. In particular, making the gate sufficiently close to the
sample will cause the Wigner crystal states to completely disappear, as has been seen in experiments done in high
proximity to gates [14].
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FIG. 7. Charge gaps as function of W/Vm for (a) ν = 1/3–filling and (b) ν = 2/3–filling corresponding to different distances
to gates and for ε = 20.

FIG. 8. (a) Ground state occupations in the atomic limit (top panel) and in the metallic regime (bottom panel). Results for
system sizes M = 9 and M = 12 correspond to ν = 1/3 and results for M = 16 correspond to filling ν = 1/4. (b) Many-body
low-energy spectrum for ν = 1/3 obtained at size M = 12, as a function of W/Vm. (c) Many-body low-energy spectrum for
ν = 2/3 obtained at size M = 12, as a function of W/Vm. These calculations were done for ε = 20.

Finally, in Fig. 8(a), we show examples of occupation distributions for different system sizes in the atomic limit
(top) and in the metallic limit (bottom). The top panel shows constant occupations for all system sizes, which are
in agreement with an insulating state of localized spins. In the bottom panel, all system sizes present vanishing
occupations at the points more close to the edge of the Brillouin zone. This is in agreement with a metallic state and
the formation of a Fermi surface.

The low-energy spectra for the M = 12 system size are also shown in Fig. 8(b) for ν = 1/3–filling and in Fig. 8(c)
for ν = 2/3–filling, as a function of W/Vm. We see the evolution of the ground state manifold, as well as the second
(particle-hole excitation) and third (charged excitation) bands that we see in M = 9. We additionally see two higher
energy bands above the unbound particle-hole band for this system size.
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